EXAMPLE - Replacement Transforms
This example illustrates the different uses of the replacement transformations to replace or extract cell data.
Source:
The following dataset contains contact information that has been gathered by your marketing platform from actions taken by visitors on your website. You must clean up this data and prepare it for use in an analytics platform.
LeadId | LastName | FirstName | Title | Phone | Request |
---|---|---|---|---|---|
LE160301001 | Jones | Charles | Chief Technical Officer | 415-555-1212 | reg |
LE160301002 | Lyons | Edward | 415-012-3456 | download whitepaper | |
LE160301003 | Martin | Mary | CEO | 510-555-5555 | delete account |
LE160301004 | Smith | Talia | Engineer | 510-123-4567 | free trial |
Transformation:
Title column: For example, you first notice that some data is missing. Your analytics platform recognizes the string value, "#MISSING#
" as an indicator of a missing value. So, you click the missing values bar in the Title column. Then, you select the Replace suggestion card. Note that the default replacement is a null value, so you click Edit and update it:
Transformation Name | |
---|---|
Parameter: Columns | Title |
Parameter: Formula | if(ismissing([Title]),'#MISSING#',Title) |
Request column: In the Request column, you notice that the reg
entry should be cleaned up. Add the following transformation, which replaces that value:
Transformation Name | |
---|---|
Parameter: Column | Request |
Parameter: Find | `{start}reg{end}` |
Parameter: Replace with | Registration |
The above transformation uses a Wrangle as the expression of the on:
parameter. This expression indicates to match from the start of the cell value, the string literal reg
, and then the end of the cell value, which matches on complete cell values of reg
only.
This transformation works great on the sample, but what happens if the value is Reg
with a capital R
? That value might not be replaced. To improve the transformation, you can modify the transformation with the following Wrangle in the on
parameter, which captures differences in capitalization:
Transformation Name | |
---|---|
Parameter: Column | Request |
Parameter: Find | `{start}{[R|r]}eg{end}` |
Parameter: Replace with | 'Registration' |
Add the above transformation to your recipe. Then, it occurs to you that all of the values in the Request
column should be capitalized in title or proper case:
Transformation Name | |
---|---|
Parameter: Columns | Request |
Parameter: Formula | proper(Request) |
Now, all values are capitalized as titles.
Phone column: You might have noticed some issues with the values in the Phone
column. In the United States, the prefix 555
is only used for gathering information; these are invalid phone numbers.
In the data grid, you select the first instance of 555
in the column. However, it selects all instances of that pattern, including ones that you don't want to modify. In this case, continue your selection by selecting the similar instance of 555
in the other row. In the suggestion cards, you click the Replace Text or Pattern transformation.
Notice, however, that the default Replace Text or Pattern transformation has also highlighted the second 555
pattern in one instance, which could be a problem in other phone numbers not displayed in the sample. You must modify the selection pattern for this transformation. In the on:
parameter below, the Wrangle has been modified to match only the instances of 555
that appear in the second segment in the phone number format:
Transformation Name | |
---|---|
Parameter: Column | Phone |
Parameter: Find | `{start}%{3}-555-%*{end}` |
Parameter: Replace with | '#INVALID#' |
Parameter: Match all occurrences | true |
Note the wildcard construct has been added (%*
). While it might be possible to add a pattern that matches on the last four characters exactly (%{4}
), that matching pattern would not capture the possibility of a phone number having an extension at the end of it. The above expression does.
注意
The above transformation creates values that are mismatched with the Phone Number data type. In this example, however, these mismatches are understood to be for the benefit of the system consuming your Alteryx output.
LeadId column: You might have noticed that the lead identifier column (LeadId
) contains some embedded information: a date value and an identifier for the instance within the day. The following steps can be used to break out this information. The first one creates a separate working column with this information, which allows us to preserve the original, unmodified column:
Transformation Name | |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | LeadId |
Parameter: New column name | 'LeadIdworking' |
You can now work off of this column to create your new ones. First, you can use the following replace transformation to remove the leading two characters, which are not required for the new columns:
Transformation Name | |
---|---|
Parameter: Column | LeadIdworking |
Parameter: Find | 'LE' |
Parameter: Replace with | '' |
Notice that the date information is now neatly contained in the first characters of the working column. Use the following to extract these values to a new column:
Transformation Name | |
---|---|
Parameter: Column to extract from | LeadIdworking |
Parameter: Option | Custom text or pattern |
Parameter: Text to extract | `{start}%{6}` |
The new LeadIdworking2
column now contains only the date information. Cleaning up this column requires reformatting the data, retyping it as a Datetime type, and then applying the dateformat
function to format it to your satisfaction. These steps are left as a separate exercise.
For now, let's just rename the column:
Transformation Name | |
---|---|
Parameter: Option | Manual rename |
Parameter: Column | LeadIdworking1 |
Parameter: New column name | 'LeadIdDate' |
In the first working column, you can now remove the date information using the following:
Transformation Name | |
---|---|
Parameter: Column | LeadIdworking |
Parameter: Find | `{start}%{6}` |
Parameter: Replace with | '' |
You can rename this column to indicate it is a daily identifier:
Transformation Name | |
---|---|
Parameter: Option | Manual rename |
Parameter: Column | LeadIdworking |
Parameter: New column name | 'LeadIdDaily' |
Results:
LeadId | LeadIdDaily | LeadIdDate | LastName | FirstName | Title | Phone | Request |
---|---|---|---|---|---|---|---|
LE160301001 | 001 | 160301 | Jones | Charles | Chief Technical Officer | #INVALID# | Registration |
LE160301002 | 002 | 160301 | Lyons | Edward | #MISSING# | 415-012-3456 | Download Whitepaper |
LE160301003 | 003 | 160301 | Martin | Mary | CEO | #INVALID# | Delete Account |
LE160301004 | 004 | 160301 | Smith | Talia | Engineer | 510-123-4567 | Free Trial |