lluiiag
|
A
1

Developer Guide

Version: 9.7
Doc Build Date: 12/31/2022

Disclaimers

Except as otherwise provided in an express written agreement, Alteryx Inc. (“ Alteryx”) makes no
representations or warranties with respect to the software and documentation contained herein
and specifically disclaims any implied warranties of merchantability or fitness for any particular

purpose. Furthermore, Alteryx reserves the right to revise the software and documentation from

time to time without the obligation of Alteryx to notify any person of such revisions or changes.

Copyright and Trademark Notices
© 2013 - 2022 Alteryx Inc. All Rights Reserved.

Alteryx Inc.

17200 Laguna Canyon Road
Irvine, CA 92618

Phone: +1 888 836 4274

Alteryx and Trifacta are registered trademarks of Alteryx Inc.
Credits

For third-party license information, please select About Trifacta from the Resources

menu.

See also Third-Party License Information.

1. Developer 4
1.1 User-Defined Functions 5
1.1.1 Java UDFs 8
1.2 Create Custom Data Types Using RegEx 18
1.3 API Reference 23
1.3.1 Manage API Access Tokens 25
1.3.2 API Endpoints for Designer Cloud Powered by Trifacta Enterprise 28
1.3.3 APl Tasks 36
1.3.3.1 API Task - Develop a Flow 37
1.3.3.2 API Task - Deploy a Flow 45
1.3.3.3 API Task - Run Job 56
1.3.3.4 API Task - Run Job on Dataset with Parameters 70
1.3.3.5 API Task - Run Plan 81
1.3.3.6 API Task - Define Deployment Import Mappings 86
1.3.3.7 API Task - Run Deployment 100
1.3.3.8 API Task - Publish Results 107
1.3.3.9 API Task - Swap Datasets 112
1.3.3.10 API Task - Manage Outputs 117
1.3.3.11 API Task - Manage AWS Configurations 132
1.3.3.12 API Task - Wrangle Output to Python 141
1.3.4 API Documentation Versions 144
1.4 Python SDK 145

Page #3

Developer

Contents:

® REST APlIs
® User-Defined Functions
® Topics

The Designer Cloud powered by Trifacta® platform provides multiple toolsets to empower developers to leverage
the platform's capabilities within their data pipelines.

[Use of the features documented in this section requires programming skills.

REST APIs

The Designer Cloud powered by Trifacta platform provides a robust set of REST APIs to automate your data
transformation processes. The list of REST APIs continues to expand with each release. See APl Reference.

User-Defined Functions

I Feature Availability: This feature may not be available in all product editions. For more information on
available features, see Compare Editions.

You can expand the capabilities of Wrangle (a domain-specific language for data transformation) to support
functions that you need for your environment.

See User-Defined Functions.

Topics

Copyright © 2022 Trifacta Inc. Page #4

User-Defined Functions

Contents:

®* UDF Service
¢ Supported UDF Language Frameworks
® Running a UDF within the Platform

The Designer Cloud powered by Trifacta® platform enables the creation of user-defined functions (UDFs) for
use in your Trifacta deployment. A user-defined function is a way to specify a custom process or transformation
for use in your specific Trifacta solution, using familiar development languages and third-party libraries. Through
UDFs, you can apply enterprise- or industry-specific expertise consistently into your data transformations. A user-
defined function is a custom function that is created in one of the supported language frameworks. Each user-
defined function has a defined set of inputs and generates a single output.

UDF Service

The following diagram provides a high-level overview of the UDF service which provides integration of user-
defined functions into recipe execution.

® Diagram 1: The figure illustrates execution of a UDF in interactive mode, where a user interacts with the

Transformer grid.
® Diagram 2: This feature illustrates how UDFs interact with the cluster at job execution time.

Copyright © 2022 Trifacta Inc. Page #5

Java UDFs in Transformer Grid

WS/WSS: 3005
N Customer java
- UDFs (compiled and
Nginx < java-udf-service registered on java-udf i
L restart)
Java UDF
results

Java UDFs on Hadoop

Run job on Hadoop

Batch job runner

Y

Spark Jab Customer java UDFs
Launcher [JavaUDFs (compiled jar on building java
UDF SDK)

IPC : 8020

hadoop-hdfs-namenode hadoop-hdfs-datanode hadoop-yarn-resourcemanager

YARN Containers
- RunJavalUDF

Figure: User-Defined Service

Supported UDF Language Frameworks
Please use the following links to enable the creation of user-defined functions in the listed language.

® Java UDFs

Copyright © 2022 Trifacta Inc. Page #6

Running a UDF within the Platform

After you have created and tested your UDF, you can execute it by entering udf in the Search panel and
populating the rest of the step in the Transform Builder.

In this example, the Adder UDF function is added:

Transformation Name I nvoke external function
Parameter: Column col A

Parameter: Arguments 100

Parameter: New column ny Adder UDFCol um

name

Notes:

® After entering udf , your UDF should appear in a drop-down list. If not, please verify that it has been
properly created, compiled, and registered and that the udf-service has been restarted.
® The Column parameter is a comma-separated list of the source data to be used as inputs to the exec

method.

® The Argument parameter is a string of comma-separated values used as inputs to the init method.

® Optionally, The New column name parameter can be used to provide a specific name to the generated
column. If it is not used, a column name is generated.

NOTE: When a recipe containing a user-defined function is applied to text data, any non-printing (control)
characters cause records to be truncated by the Spark running environment during job execution. In
these cases, please execute the job on the Photon running environment.

For more information, see Invoke External Function.

NOTE: Running user-defined functions for an external service, such as Hive, is not supported from within
a recipe step. As a workaround, you may be able to execute recipes containing such external UDFs on
the Photon running environment. Performance issues should be expected on larger datasets.

See Transformer Page.

Copyright © 2022 Trifacta Inc. Page #7

Java UDFs

Contents:

® Prerequisites
® Qverview
¢ Known Limitations
® Enable Service
® Deployment
® Creating a UDF
®* UDF Requirements
¢ Example - Concatenate strings
® Example - Add by constant
® Error Handling
® Testing the UDF
® Compiling the UDF
® JDK version mismatches
® Registering the UDF
® Running Your UDF
® Troubleshooting
"Websocket Receive()" error in Transformer page Ul
Photon crashes during execution of UDF
Databricks cluster has either stale or unknown libraries error
Build timestamp is missing in <filename>.JAR

This section describes how to create and deploy Java-based user-defined functions (UDFs) into your Trifacta®
deployment.

Creation of UDFs requires development experience and access to an integrated development
environment (IDE).

Prerequisites

1. Access to the Trifacta deployment

2. IDE

3. The Java UDF is stored in the Trifacta deployment in the following location: | i bs/ cust om udf s- sdk
/bui l d/ di stributions/java-custom udf-sdk. zi p

NOTE: cust onmt udf - sdk. zi p is required for compilation and executing of the unit test. Any JAR
files present in cust om udf - sdk. zi p,suchastri fact a- base- udf. j ar, do not need to be
packaged in the custom UDF JAR.

NOTE: If you are installing custom UDFs and the Trifacta node does not have an Internet connection,
you should download the Java UDF SDK in an Internet-accessible location, build your customer UDF
JAR there, and then upload the JAR to the Trifacta node.

Copyright © 2022 Trifacta Inc. Page #8

Overview

Each UDF requires at least one input and produces a single output value (map only).
Inputs and outputs must be one of the following types:

Bool

String

Long
Double

NOTE: If your UDF does not require an input value, you must create a dummy input as part of your UDF
definition.

Known Limitations

® In the Designer Cloud application , previews are not available for user-defined functions.
® Retaining state information across the exec method is unstable. More information is provided below.

NOTE: When a recipe containing a user-defined function is applied to text data, any null
characters cause records to be truncated by the running environment during Trifacta Photon job
execution. In these cases, please execute the job in the Spark running environment.
Enable Service
You must enable the Java UDF service in the Designer Cloud powered by Trifacta platform .
Steps:
1. You can apply this change through the Admin Settings Page (recommended) ortri f act a- conf. j son.

For more information, see Platform Configuration Methods.
2. Enable the correct flag:

"f eat ur e. enabl eUDFTr ansf orm enabl ed": true,

3. Save your changes.

Deployment
Steps:

1. Unzipj ava- cust om udf - sdk. zi p.
2. Within the unzipped directory, execute the install command. The following is specific to the Eclipse IDE:

gradl ew eclipse

3. Import the project into your IDE.

Copyright © 2022 Trifacta Inc. Page #9

Creating a UDF

UDF Requirements

All UDFs must implement the Tr i f act aUDF interface. This interface adds the four methods that each UDF must
override: init, exec, inputSchema, and finish.

1. init method: Used for setting private variables in the UDF. This method may be a no-op function if no
variables must be set. See the Example - Concatenate strings below.

Tip: In this method, perform your data validation on the input parameters, including count, data
type, and other constraints.

NOTE: The init method must be specified but can be empty, if there are no input parameters.

2. exec method: Contains functionality of the UDF. The output of the exec method must be one of the
supported types. It is also must match the generic as described. In the following example, Tri f act aUDF<
St ri ng> implements a String. This method is run on each record.

Tip: In this method, you should check the number of input columns.

Keep state that varies across calls to the exec method can lead to unexpected behavior.
One-time initialization, such as initializing the regex compiler, is safe, but do not allow state
information to mutate across calls to exec. This is a known issue.

3. inputSchema method: The inputSchema method describes the schema of the list on which the exec
method is acting. The classes in the schema must be supported. Essentially, you should support the 1/0O
types described earlier.

4. finish method: The finish method is run at the end of UDF. Typically, it is a no-op.

NOTE: If you are executing your UDF on the Spark running environment, the finish method cannot
be invoked at this point. Instead, it is invoked as part of the shutdown of the Java VM. This later
execution may result in the finish method failing to be invoked in situations like a JVM crash.

Example - Concatenate strings

The following code example concatenates two input strings in the Li st <Cbj ect >. This UDF can be easily
modified to concatenate more strings by modifying the i nput Schena function.

Copyright © 2022 Trifacta Inc. Page #10

Example UDF: ConcatUDF

package comtrifacta.trifactaudfs;
import java.io.|CException;
import java.util.List;

/**
* Exanpl e UDF that concatenates two col ums
*/
public class Concat UDF i npl ements TrifactaUDF<String> {
@verride
public String exec(List<Object> inputs) throws | OException {
if (inputs == null) {

return null;
}
StringBuil der sb = new StringBuilder();
for (int i =0; i < inputSchema().length; i += 1) {
if (inputs.get(i) == null) {
return null;
}

sb. append(i nputs.get(i));

return sb.toString();
}
@uppr essWar ni ngs("raw ypes")
public dass[] inputSchema() {
return new Class[]{String.class, String.class};

}

@verride
public void finish() throws | CException {
}
@verride
public void init(List<Object> initArgs) {
}

}

Notes:

® The first line indicates that the function is part of the com tri facta. tri f act audf s package.
® The defined UDF class implements the Tri f act aUDF class, which is the base interface for UDFs.
® |tis parameterized with the return type of the UDF (a Java St r i ng in this case).
® The input into the function is a list with input parameters in the order they are passed to the function
within the Designer Cloud powered by Trifacta platform . See Running Your UDF below.
®* The UDF checks the input data for null values, and if any nulls are detected, returns a null.
® Thei nput Schena describes the input list passed into the exec method.
® An error is thrown if the type of the data that is passed into the UDF does not match the schema.
® The UDF must handle improper data. See Error Handling below.

Example - Add by constant
In this example, the input value is added by a constant, which is defined in the init method.
® The init method consumes a list of objects, each of which can be used to set a variable in the UDF. The

input into the init function is a list with parameters in the order they are passed to the function within the De
signer Cloud powered by Trifacta platform . See Running Your UDF below.

Copyright © 2022 Trifacta Inc. Page #11

Example UDF: AdderUDF

package comtrifacta.trifactaudfs;
import java.io.|CException;
import java.util.List;

/**
* Exanple UDF. Adds a constant anount to an Integer colum.
*/
public class Adder UDF i npl enents TrifactaUDF<Long> {
private Long _addAnount;
@verride
public void init(List<Object> initArgs) {
if (initArgs.size() !'=1) {
Systemout. println("Adder UDF takes in exactly one init argument");

}
Long addAnmount = (Long) initArgs.get(0);
_addArmount = addAnount ;

}
@verride
public Long exec(List<Object> input) {
if (input == null) {
return null;

}
if (input.size() !'=1) {
return null;

}
return (Long) input.get(0) + _addAnount;

}

@uppr essWar ni ngs("rawt ypes")

public dass[] inputSchema() {
return new C ass[]{Long.cl ass};

}
@verride
public void finish() throws | COException {

}

Error Handling
The UDF must handle any error that should occur when processing the function. Two ways of dealing with errors:
1. For null data generated in the exec method, a null value can be returned. It appears in the final generated
column.

2. Any errors that cause the UDF to stop in the init or exec methods cause an IOException to be thrown. This
error signals the platform that an issue occurred with the UDF.

Tip: You can add to the Trifacta logs through Logger. Annotate your exceptions at the appropriate
logging level.

Testing the UDF
JUnit can be used to test the UDF. Below are examples of testing the two example UDFs.

Example - JUnit test for Concatenate strings:

Copyright © 2022 Trifacta Inc. Page #12

ConcatUDF Test

@est
public void concat UDFTest () throws | OException {
Concat UDF concat = new Concat UDF();
Arrayli st <Cbj ect> input = new Arrayli st <Chject>();
i nput.add("hello");
i nput.add("worl d");
String result = concat.exec(input);
String expected = "helloworld";
assert Equal s(expected, result);

Example - JUnit test for Add by constant:

AdderUDF Test

@est
public void adder UDFTest () {
Adder UDF add = new Adder UDF();
ArraylLi st<bject> initArgs = new ArrayLi st <Obj ect>(1);
initArgs.add(1L);
add.init(initArgs);
ArrayLi st <Qbj ect> i nputsl = new ArrayLi st <Object>();
inputsl.add(1L);
long result = add.exec(inputsl);
| ong expected = 2L;
assert Equal s(expected, result);

ArrayLi st <Qbj ect> i nputs2 = new ArrayLi st <Obj ect>();
i nput s2. add(9000L) ;
result = add. exec(inputs2);

expected = 9001L;
assert Equal s(expected, result);

Compiling the UDF

After writing the UDF, it must be compiled and included in a JAR before registering it with the platform. To
compile and package the function, run the following command from the root directory:

gradl ew build

The UDF code is assembled, and unit tests are executed. If all is well, the following JAR file is created in bui | d
/1ibs.

NOTE: Custom UDFs should be compiled to one or more JAR files. Avoid using the example JAR
filename, which can be overwritten on upgrade.

JDK version mismatches

To avoid an Unsupport ed naj or. m nor ver si on error during execution, the JDK version used to compile
the UDF JAR file should be less than or equal to the JDK version on the Hadoop cluster.

Copyright © 2022 Trifacta Inc. Page #13

If this is not possible, then set the value of the Conpati bi | i ty properties in the local bui | d. gr adl e file to the
JDK version on the Hadoop cluster prior to building the JAR file.

Example:
If the Hadoop cluster is on JDK 1.8, then add the following to the bui I d. gr adl e file:

target Conpatibility
sourceConpatibility

'1.8
1.8

Registering the UDF
After a function is compiled it must be registered with the platform.:

1. Enable user-defined functions (if not done so already)
2. Path to the JAR file that was generated in the previous steps.
3. The udf Packages value should contain the package name where the UDFs can be found.

Example configuration:

To apply this configuration change, login as an administrator to the Trifacta node. Then, edittri f act a- conf.
j son. For more information, see Platform Configuration Methods.

Example Config

"feature": {
"enabl eUDFTransfornt: {
"enabl ed": true
}
}

udf -service": {
"classpath": "% topCf Tree) s/ servi ces/ udf -service/build/libs/udf-service.jar: %topC Tree) s/ servi ces/ udf -
service/ bui | d/ dependenci es/ *",
"addi tional Jars": [
"/vagrant/|ibs/custom udfs-sdk/build/libs/custom udfs-exanple.jar"

]

df Packages": [
"comtrifacta.trifactaudfs"

]
b

Notes:

® Setenabl eUDFTr ansf or m enabl ed to t r ue, which enables UDFs in general.
® Under udf - servi ce:

® gspecify the full path to the JAR under addi ti onal Jars
® append the paths of any extra JAR dependencies that your UDFs require under cl asspat h

NOTE: Do not include any extra JAR dependencies in the udf - servi ce/ bui | d
/ dependenci es directory, as this directory may be purged at build time.

® gspecify the fully qualified package names under udf Packages

® This list contains all fully qualified names of your UDFs.

Copyright © 2022 Trifacta Inc. Page #14

® For example. if your UDF is com conpany. our udf s. MyUDF, then the package name is the
following: com conpany. our udf s

Steps:
After modifying the config, the udf-service needs to be restarted.
a. If you created a new UDF, restart the Designer Cloud application :

service trifacta restart

b. If you have modified an existing UDF, restart the UDF service:

NOTE: For an existing UDF, you must rebuild the JAR first. Otherwise, the changes are not
recognized during service re-initialization.

service java-udf-service restart

2. As part of the restart, any newly added Java UDFs are registered with the application.

Running Your UDF
For more information on executing your UDF in the Transformer page, see User-Defined Functions.

For examples, see Invoke External Function.

Troubleshooting

"Websocket Receive()" error in Transformer page Ul
If you execute a Java UDF, you may see an error similar to the following in the Transformer page:

Pl ease rel oad page (query execution failed).pp::WbSocket:: Receive() error: Unspecified failure.

When you check the udf . | og file on the server, the following may be present:
UDFWebsocket closed with status: C oseStatus[code=1009, reason=The decoded text nessage was too big for the
out put buffer and the endpoi nt does not support partial nessages]

Solution

The above issue is likely to be caused by the Trifacta Photon running environment sending too much data
through the buffer of the UDF's Websocket service. By default, this buffer size is set to 1048576 bytes (1 MB).

The Trifacta Photon running environment processes data through the Websocket service in 1024 (1 K) rows at a
time for the input and output columns of the UDF. If the data in the input columns to the UDF or output columns
from the UDF exceeds 1 KB (1024 characters) in total size for each row, the default size of the buffer is too small,
since the Trifacta Photon running environment processed 1K records at a time (1 K characters * 1 K rows >
1048576). The query then fails.

When setting a new buffer size:

® Assume that 1024 rows are processed from the buffer each time.
® [dentify the input columns and output columns for the UDF that is failing.

Copyright © 2022 Trifacta Inc. Page #15

® Identify the dataset that has the widest columns for both inputs and outputs here.

Tip: You can use the LEN function to do string-based computations of column width. See
LEN Function.

* Perform the following estimate on the widest set of input and output columns that you are processing:
Estimate the total expected number of characters for the input columns of the UDF.

Add a 20% buffer to the above estimate.

Repeat the above estimate for the widest output columns for the UDF.

Set your buffer size to the larger of the two estimates (input columns' width or output columns’
width).

® Example: A UDF takes two inputs and produces one output:

® If each input column is 256 characters, then the size of 1K rows of input would be 256 bytes * 2
(input cols) * 1024 rows = 0.5 MB.
® |f the output of the UDF per row is estimated to be 1024 characters, then the output estimate would
be 1024 bytes * 1024 rows = 1MB.
® So, set the buffer size to be 1 MB + 20% buffer over the larger estimate between input and output.
In this example, the buffer size should be 1.2 MB or 1258291 Bytes.
Steps:
1. You can apply this change through the Admin Settings Page (recommended) ortri f act a- conf. j son.
For more information, see Platform Configuration Methods.
2. Change the following setting:

"udf - servi ce. out put Buf fer Si ze": 1048576,

3. Save your changes and restart the platform.
Photon crashes during execution of UDF

During the execution of a UDF, the Photon client can crash. Possible errors include:

Error in changeCurrentEdit Error: Transformation engine has crashed. Please reload your browser (exit code:
null; message | D: 161)

Solution:

This crash can be caused by a number of issues. You can try the following:
1. You can apply this change through the Admin Settings Page (recommended) ortri f act a- conf. j son.
For more information, see Platform Configuration Methods.

2. Bump the value for udf - ser vi ce. udf Communi cat i onTi meout setting. Raise this value a bit at a time
to see if that allows the UDF to execute.

NOTE: Avoid setting this value to high, which can cause the Java heap size to be exceeded and
another Photon crash. Maximum value is 2147483646.

3. Save your changes and restart the platform.
Databricks cluster has either stale or unknown libraries error

When running a job on a Databricks cluster, you may receive an error message that the cluster has either stale or
unknown libraries.

Copyright © 2022 Trifacta Inc. Page #16

NOTE: This issue occurs only on a Databricks-based cluster during job execution.

This issue is caused by a change that was made to the custom UDFs code for Databricks. Prior to Release 7.10,
custom UDF jobs were checked for use in the Designer Cloud powered by Trifacta platform based on when the
JAR file was created. However, this timestamp presented inconsistencies in the following cases:
® In high availability environments, the created-at time for the file might be different between nodes on the
cluster.
* If the JAR file was passed between different services, each service might apply a different time as the file
was written to new locations.
Solution:
The platform now uses a built-at timestamp instead. This timestamp is assigned in the manifest file when the JAR

is assembled for the first time on a developer's local desktop. That timestamp remains consistent when the JAR
is delivered to the cluster or to different nodes or services.

NOTE: If you are receiving the above error, you must clean the UDF JAR files off of the cluster and
rebuild your custom UDFs for use in the platform. Please see earlier instructions for how to build.

Build timestamp is missing in <filename>.JAR
After you have executed a job, you may receive an error similar to the following in the Job Summary page:

Build Timestanp is missing in <filenane>. jar. Please rebuild your jars and try again.

Solution:

In this case, the referenced JAR file does not have a build timestamp in it. You must rebuild and redeploy the
custom UDF JAR file. See the previous Troubleshooting section for details.

Copyright © 2022 Trifacta Inc. Page #17

Create Custom Data Types Using RegEx

Contents:

® Custom Types Location
® Examples
®* Example - Days of the week
® Example - Sizes
® Reference
® Parameters
® Defining probabilities for Your Custom Data Type
Add custom types to manifest
Enable custom types
Register your custom types
Restart platform

As needed, you can deploy custom data types into the Designer Cloud powered by Trifacta® platform , in which
type validation is performed against regular expressions that you specify. This method is most useful for
validating against patterns, as opposed to specific values.

After a custom type has been added, it cannot be removed or disabled. Please verify your regular
expression before saving the type.

Custom Types Location

On the server hosting the Designer Cloud powered by Trifacta platform , type definitions are stored in the
following directory:

/opt/trifactalnode_nodul es/jsdataltype-packs/trifacta

This directory is referenced as $CUSTOM TYPE_DI Rin the steps below.

Before you begin creating custom data types, you should backup the t ype- packs/trifacta
directory to a location outside of your Trifacta deployment.

NOTE: Thetri f act a- ext r as directory in the t ype- packs directory contains experimental custom
data types. These data types are not officially supported. Please use with caution.

Examples

Example - Days of the week

Each custom data type is created and stored in a separate file. The following example file contains a regular
expression method for validating data against the set of days of the week:

Copyright © 2022 Trifacta Inc. Page #18

nanme": "DayOf Week",
"prettyNane": "Day of Wek",
"category" : "Date/Time",
"defaul t Probability": 1E-15,
"test Case": {
"stripWitespace": true,
"regexes": [
"~(nonday| t uesday| wednesday| t hur sday| f ri day| sat ur day| sunday) $",
"~(Monday| Tuesday| Wednesday| Thur sday| Fri day| Sat ur day| Sunday) $",
"A(non| tue| wed| thu| fri|sat]|sun)$",
"A(NMon| Tue| Wed| Thu| Fri | Sat| Sun) $"
I
“probability": 0.001

Example - Sizes

Suppose your data contains size information from Extra Small (XS) to Extra Extra Large (XXL). You can create a

regular expression to test for these sizes within a column of values. These sizes could be the following:

Extra Small
Small
Medium
Large

Extra Large
Extra Extra Large
XS

S

M

L

XL

XXL
Extra-Small
Extra-Large

Extra-Extra-Large

You may have noticed that there are multiple ways of expressing sizes and multiple types of case (upper case
and title case). To standardize, all values should be converted to lower case to simplify evaluation. The definition

may look like the following:

nanme": "size",
"prettyNanme": "Size",
"category" : "String",
"defaul t Probability": 1E-15,
"testCase": {
"stripWitespace": true,
"regexes": [

"ACxs| sl x| xx)$",

"Nextra-small|small|mediunilarge| extra-1arge| extra-extra-I|arge)$"

I

Copyright © 2022 Trifacta Inc.

Page #19

"probability":

}
}

Reference

Parameters

Parameter
Name

name

prettyName
cat egory
defaul t Pro
bability
t est Case

stripwite
space

r egexes

probability

0. 001

Description

Internal identifier for the custom type. Must be unique across all standard types and custom types.

NOTE: You should verify that your data type's Nane value does not conflict with other custom data type
names.

Display name for the custom type.

The category to assign to the type. The current categories are displayed within the data type drop-down for each
column.

Assign a default probability for the custom type. See below.

This block contains the regular expression specification to be applied to the column values.

When setto t I Ue, whitespace is removed from any value prior for purposes of validation. The original value is
untouched.

This array contains a set of regular expressions that are used to validate the column values. For a regex type, the
column value must match with at least one value among the set of expressions.

NOTE: Matching is case-insensitive.

NOTE: All match types must be double-escaped in the regex expression. For example, to replicate the \ d
pattern, you must enter: \ \ d.

Designer Cloud Powered by Trifacta Enterprise Edition implements a version of regular expressions based off of RE2 a
nd PCRE regular expressions.

(optional) Assign an incremental change to the probability when a match is found between a value and one of the
regular expressions. See Defining probabilities below.

Tip: In the t ypes sub-directory, you can review the regex-based types that are provided with the Designe
r Cloud powered by Trifacta platform . While you should not edit these files directly, they may provide
some guidance and some regex tips on how to configure your own custom data types.

Defining probabilities for Your Custom Data Type

For your custom type, the probability values are used to determine the likelihood that matching values indicate
that the entire column is of the custom data type.

® The def aul t Probabi | i ty value specifies the baseline probability that a match between a value and
one of the regular expressions indicates that the column is the specified type. On a logarithmic scale,
values are typically 1E-15 to 1E-20.

Copyright © 2022 Trifacta Inc.

Page #20

®* When a value is matched to one of the regular expressions, the pr obabi | i t y value is used to increment
the baseline probability that the next matching value is of the specified type. This value should also be
expressed on a logarithmic scale (e.g. 0. 001).

® In this manner, a higher number of matching values increases the probability that the type is also a match
to the custom type.

Probabilities become important primarily if you are creating a custom type that is a subset of an existing type. For
example, the Email Address custom type is a subset of String type. So, matches for the patterns expressed in the
Email Address definition should register a higher pr obabi | i t y value than the same incremental for the String
type definition.

Tip: For custom types that are subsets of other, non-String types, you should lower the def aul t Pr obab
i 1ity of the baseline type by a factor of 10 (e.g. 1E-15 to 1E-16) and raise the same probability in the
custom type by a factor of 10 (e.g. 1E-14). In this manner, you can give higher probability of matching to
these subset types.

Add custom types to manifest

To the $CUSTOM TYPE_DI R/ mani f est . j son file, you must add the filenames of any custom types that you
have created and stored in the t ypes directory:

{
"types": ["bodi es-of-water.json", "dayofweek.json"],
"dictionaries": ["oceans", "seas"]

}

Enable custom types
Steps:

1. You can apply this change through the Admin Settings Page (recommended) ortri f act a- conf. j son.
For more information, see Platform Configuration Methods.
2. Locate the following property:

"feature. enabl eCust onTypes": true,

3. To enable use of your custom data types in the Designer Cloud powered by Trifacta platform , locate and
edit enabl edSemant i cTypes property.

NOTE: Add your entries to the items that are already present in enabl edSenant i cTypes. Do
not delete and replace entries.

NOTE: Do not use this parameter to attempt to remove specific data types. Removal of the default
types is not supported.

"webapp. enabl edSemanti cTypes": [
" <Cust onTTypeNanmel>",
" <Cust oniTypeNanme2>",
" <Cust onTypeNameN>"

Copyright © 2022 Trifacta Inc. Page #21

where:

® <Cust onmTypeNanmel> corresponds to the internal name value for your custom data type.
4. Save your changes and restart the platform.

Register your custom types

To add your custom types to the Designer Cloud powered by Trifacta platform , run the following command from
the js-data directory:

node bin/load-types --manifest ${PATH TO MANI FEST_FI LE}

Restart platform
Restart services. See Start and Stop the Platform.

Check for the availability of your types in the column drop-down. See Column Menus.

Copyright © 2022 Trifacta Inc. Page #22

API Reference

This section contains reference information on the REST APIs that are made available by Designer Cloud
Powered by Trifacta® Enterprise Edition.

Access to API docs locally

NOTE: URLs to API endpoint documentation are case-sensitive.

To access the API documentation for each API endpoint and method that is available to your specific user
account, select Resources menu > APl documentation in the Designer Cloud application .

NOTE: This APl documentation portal displays only the APl endpoints based on your specific user
account and the features enabled in your Trifacta instance. Additional API endpoint documentation may
be available at https://api.trifacta.com. For more information on the differences between these
documentation portals, see APl Documentation Versions.

Enable Access
Access tokens required
If the API documentation is not available, a workspace administrator must enable the use of API access tokens.

API tokens enable users and processes to access the REST APIs available through the platform.

Tip: Individual users do not need personal API access tokens to use the APl documentation. The feature
must be enabled.

For more information, see Workspace Settings Page.

Enable access through the menu

To enable the Resources menu option and access to the API documentation, the following parameter must be
enabled.

Steps:
1. Login to the application as an administrator.
2. You can apply this change through the Admin Settings Page (recommended) ortri f act a- conf . j son.
For more information, see Platform Configuration Methods.
3. Locate the following parameter and setittot r ue:

"webapp. api Doc. enabl ed": true,

4. Save your changes and restart the platform.

Copyright © 2022 Trifacta Inc. Page #23

API Endpoint Documentation

You can access API reference documentation through the Designer Cloud application . In the left navigation bar,
select Resources menu > APl documentation.

Copyright © 2022 Trifacta Inc. Page #24

Manage APl Access Tokens

Contents:

®* Enable
® Enable individual access

® Generate New Token

* Via API

®* Via Ul
Use Token
List Tokens
Renew Token
Delete Token

This section provides some task information for how to use API access tokens as part of your API projects in Desi
gner Cloud Powered by Trifacta® Enterprise Edition. An access token is a hashed string that enables
authentication when submitted to any endpoint. Access tokens limit exposure of clear-text authentication values
and provide an easy method of managing authentication outside of the browser.

Notes:
® An access token is linked to its creator and can be generated by submitting a username/password
combination or another valid token from the same user.
® |f atoken is created for userA, userB can be provided the token to impersonate userA.
® You cannot create access tokens for users without their authentication credentials.
® Changes to passwords do not affect tokens.
® After a token has been created, it cannot be modified or extended.

® You can create an unlimited number of tokens.
® Access tokens can be used for authentication with any supported version of the APIs.

Enable

This feature must be enabled in your instance of the platform. For more information, see
Enable API Access Tokens.

Enable individual access
When access tokens are enabled, by default only administrators are permitted to generate tokens. Optionally,

workspace administrators can enable individual users in the workspace to generate and use their own API
access tokens. For more information, see Workspace Settings Page.

Generate New Token

API access tokens must be created.

Via API

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/getApiAccessToken
Via Ul

Tokens can be generated from the web application.

Copyright © 2022 Trifacta Inc. Page #25

Steps:

1
2
3.
4

ol

. Login to the Designer Cloud application .
. From the left nav bar, select User menu > Preferences > Access Tokens.

Click Generate New Token.

. Specify the number of days for how long the token should live.

Tip: Depending on how your environment is configured, you may be able to enter - 1 to create a
non-expiring token.

. Add a user-friendly description if desired.
. Click Generate.

NOTE: Copy the value of the token to the clipboard and store it in a secure location for use with your
scripts. For security reasons, the token value itself cannot be retrieved from the application after it has
been created.

Tip: If you wish to manage your token via the APIs, you should copy the Token ID value, too. The Token
ID can always be retrieved from the Designer Cloud application .

For more information, see Access Tokens Page.

Use Token

After a token has been acquired, it must be included in each request to the server, for as long as it is valid.

NOTE: After a token has been created, it cannot be extended or modified.

NOTE: API access tokens are not used by users through the Designer Cloud application .

NOTE: When using the APls in SSO environments, API access tokens work seamlessly with platform-
native versions of SAML and LDAP-AD. They do not work with the reverse proxy SSO methods. For
more information, see https://api.trifacta.com/ee/es.t/index.html#section/Authentication

After you have acquired the token, you submit it with each API request to the platform.

Example - cURL:

The following example returns a JSON version of the list of available REST API endpoints for your environment:

curl

Copyright

http://tri.exanpl e. com 3005/ v4/ open-api -spec -X GET -H "Aut hori zati on: Bearer (tokenValue)"

(t okenVal ue) is the value returned for the token when it was created.

© 2022 Trifacta Inc. Page #26

Example - REST client:
If you are submitting your API calls through a REST client, the Authorization header must be specified as follows:

Aut hori zation: Bearer (tokenVal ue)

List Tokens

NOTE: For security reasons, you cannot acquire the actual token through any of these means.

Tip: You can see all of your current and expired tokens through the Designer Cloud application . See
Access Tokens Page.

Endpoint Description
https://api.trifacta.com/ee/es.t/index.html#operation/listApiAccessTokens | List all access tokens for your user account.

https://api.trifacta.com/ee/es.t/index.html#operation/getApiAccessToken | List your access token for the specified token ID.

Renew Token

New tokens can be acquired at any time.

NOTE: It is the responsibility of the user to acquire a new API token before the current one expires. If a
token is permitted to expire, a request for a new token must include userld and password information.

® See https://api.trifacta.com/ee/es.t/index.html#operation/createApiAccessToken

® See Access Tokens Page.

Delete Token

® Via API: Acquire the t okenl d value for the token and use the delete endpoint. See
https://api.trifacta.com/ee/es.t/index.html#operation/deleteApiAccessToken

® Via Ul: In the Access Tokens page, select Delete Token... from the context menu for the token listing. See
Access Tokens Page.

Copyright © 2022 Trifacta Inc. Page #27

API Endpoints for Designer Cloud Powered by Trifacta
Enterprise
The following endpoints are available for Designer Cloud Powered by Trifacta® Enterprise Edition.

To access the reference documentation for each available APl endpoint and method, select Resources menu >
APl documentation in the Designer Cloud application .

ApiAccessToken

Path Description Documentation URL

POST /v4/apiAccessTokens Create api access https://api.trifacta.com/ee/es.t/index.html#operation
token /createApiAccessToken
GET /v4/apiAccessTokens List api access tokens | https://api.trifacta.com/ee/es.t/index.html#operation/listApiAccessTokens
GET /v4/apiAccessTokens/:tokenld Get api access token https://api.trifacta.com/ee/es.t/index.html#operation/getApiAccessToken
DELETE /v4/apiAccessTokens/: Delete api access https://api.trifacta.com/ee/es.t/index.html#operation
tokenld token /deleteApiAccessToken
AwsConfig
Path Description Documentation URL

POST /v4/awsConfigs | Create AWS Config = https://api.trifacta.com/ee/es.t/index.html#operation/create AwsConfig
GET /v4/awsConfigs List AWS configs https://api.trifacta.com/ee/es.t/index.html#operation/listAwsConfigs

PUT Iv4/awsConfigs/:id = Update AWS Config = https://api.trifacta.com/ee/es.t/index.html#operation/updateAwsConfig

AwsRole
Path Description Documentation URL
POST /v4/awsRoles Create AWS role | https://api.trifacta.com/ee/es.t/index.html#operation/createAwsRole
GET /v4/awsRoles List AWS roles https://api.trifacta.com/ee/es.t/index.html#operation/listAwsRoles
PUT Nv4/awsRoles/:id Update AWS role | https://api.trifacta.com/ee/es.t/index.html#operation/updateAwsRole

DELETE /v4/awsRoles/:id = Delete AWS role | https://api.trifacta.com/ee/es.t/index.html#operation/deleteAwsRole

Connection
Path Description Documentation URL
POST /v4/connections Create connection https://api.trifacta.com/ee/es.t/index.html#operation/createConnection
GET /vé4/connections List connections https://api.trifacta.com/ee/es.t/index.html#operation/listConnections
GET /v4/connections/count Count connections https://api.trifacta.com/ee/es.t/index.html#operation/countConnections
GET /v4/connections/:id Get connection https://api.trifacta.com/ee/es.t/index.html#operation/getConnection
DELETE /v4/connections/:id Delete connection https://api.trifacta.com/ee/es.t/index.html#operation/deleteConnection

GET /v4/connections/:id/status = Get connection status = https://api.trifacta.com/ee/es.t/index.html#operation/getConnectionStatus

ConnectorMetadata

Path Description Documentation URL

Create overrides for connector

Copyright © 2022 Trifacta Inc. Page #28

POST /v4/connectorMetadata/:connector

/overrides

GET /v4/connectorMetadata/:connector

/overrides

DELETE /v4/connectorMetadata/:
connector/overrides

GET /v4/connectorMetadata/:connector

GET /v4/connectorMetadata/:connector

/defaults

EnvironmentParameter

Path

POST Iv4
/environmentParameters

GET /v4/environmentParameters
POST Nv4

/environmentParameters
/package

GET /v4/environmentParameters
/package

GET 4
/environmentParameters/:id

DELETE /v4
/environmentParameters/:id

Flow

Path
POST /v4lflows
GET /v4/flows
POST /v4/flows/package

POST /v4lflows/package/dryRun

POST /val/flows/:id/copy
POST /v4/flows/:id/run
GET /v4/flows/count

GET /valflows!:id

PATCH /va/flows/:id
DELETE /v4/flows!/:id

GET /v4/flows!:id/package

GET /v4/flows/:id/package/dryRun

GET Nv4/flowsLibrary
GET /v4/flowsLibrary/count
GET Nv4/flows!:id/inputs

GET /v4/flows/:id/outputs

Copyright © 2022 Trifacta Inc.

Delete all custom overrides for a

connector

information

information

Description

Create environment parameter

List environment parameters

Import environment
parameters package

Export environment
parameters list

Get environment parameter

Delete environment parameter

Description
Create flow
List flows

Import Flow package

Import Flow package - Dry

run
Copy Flow
Run Flow
Count flows
Get flow
Patch flow
Delete flow
Export flow

Export flow - Dry run

Flow Library (list)
Flow Library (count)
List Flow inputs

List Flow outputs

Get overrides for connector

Get connector metadata

Get default connector metadata

https://api.trifacta.com/ee/es.t/index.html#operation
/updateConnectorOverrides

https://api.trifacta.com/ee/es.t/index.html#operation
/getConnectorOverrides

https://api.trifacta.com/ee/es.t/index.html#operation
/deleteConnectorOverrides

https://api.trifacta.com/ee/es.t/index.html#operation
/getConnectorConfig

https://api.trifacta.com/ee/es.t/index.html#operation
/getConnectorDefaults

Documentation URL

https://api.trifacta.com/ee/es.t/index.html#operation
[createEnvironmentParameter

https://api.trifacta.com/ee/es.t/index.html#operation
NlistEnvironmentParameters

https://api.trifacta.com/ee/es.t/index.html#operation
/importEnvironmentParametersPackage
https://api.trifacta.com/ee/es.t/index.html#operation

/getEnvironmentParametersPackage

https://api.trifacta.com/ee/es.t/index.html#operation
/getEnvironmentParameter

https://api.trifacta.com/ee/es.t/index.html#operation
/deleteEnvironmentParameter

Documentation URL

https://api.trifacta.com/ee/es.t/index.html#operation/createFlow
https://api.trifacta.com/ee/es.t/index.html#operation/listFlows
https://api.trifacta.com/ee/es.t/index.html#operation/importPackage

https://api.trifacta.com/ee/es.t/index.html#operation
/importPackageDryRun

https://api.trifacta.com/ee/es.t/index.html#operation/copyFlow
https://api.trifacta.com/ee/es.t/index.html#operation/runFlow
https://api.trifacta.com/ee/es.t/index.html#operation/countFlows
https://api.trifacta.com/ee/es.t/index.html#operation/getFlow
https://api.trifacta.com/ee/es.t/index.html#operation/patchFlow
https://api.trifacta.com/ee/es.t/index.html#operation/deleteFlow
https://api.trifacta.com/ee/es.t/index.html#operation/getFlowPackage

https://api.trifacta.com/ee/es.t/index.html#operation
/getFlowPackageDryRun

https://api.trifacta.com/ee/es.t/index.html#operation/listFlowsLibrary
https://api.trifacta.com/ee/es.t/index.html#operation/countFlowsLibrary
https://api.trifacta.com/ee/es.t/index.html#operation/getFlowInputs

https://api.trifacta.com/ee/es.t/index.html#operation/getFlowOutputs

Page #29

GET /v4/folders/:id/flows List flows in folder https://api.trifacta.com/ee/es.t/index.html#operation/getFlowsForFolder

GET /v4/folders/:id/flows/count Count flows in folder https://api.trifacta.com/ee/es.t/index.html#operation
/getFlowCountForFolder
PATCH /v4/flowst:id Replace dataset https://api.trifacta.com/ee/es.t/index.html#operation
IreplaceDataset /replaceDatasetInFlow
FlowNode
Path Description Documentation URL

POST /v4/flowNodes/:id/commitEdges = Create new edges = https://api.trifacta.com/ee/es.t/index.html#operation/commitEdges

FlowNotificationSettings

Path Description Documentation URL
POST Iv4 Create flow notification https://api.trifacta.com/ee/es.t/index.html#operation
/flowNotificationSettings settings /createFlowNotificationSettings

FlowPermission

Path Description Documentation URL
POST /v4/flows/:id/permissions | Share Flow https://api.trifacta.com/ee/es.t/index.html#operation/shareFlow
FlowRun
Path Description Documentation URL
GET Nv4/flowRuns/:id Get flow run https://api.trifacta.com/ee/es.t/index.html#operation/getFlowRun
GET /Nv4/flowRuns/:id/status Get Flow Run Status https://api.trifacta.com/ee/es.t/index.html#operation/getFlowRunStatus

GET Nv4/flowRuns/:id/jobGroups = Get JobGroups for Flow Run | https://api.trifacta.com/ee/es.t/index.html#operation/getFlowRunJobGroups

FlowRunParameterOverride

Path Description Documentation URL

POST v4 Create flow run parameter https://api.trifacta.com/ee/es.t/index.html#operation
/flowRunParameterOverrides override /createFlowRunParameterOverride

GET 4 Get flow run parameter https://api.trifacta.com/ee/es.t/index.html#operation
/flowRunParameterOverrides/:id override /getFlowRunParameterOverride

PATCH /v4 Patch flow run parameter https://api.trifacta.com/ee/es.t/index.html#operation
/flowRunParameterOverrides/:id override /patchFlowRunParameterOverride

DELETE /v4 Delete flow run parameter https://api.trifacta.com/ee/es.t/index.html#operation
/flowRunParameterOverrides/:id override /deleteFlowRunParameterOverride
Folder

Path Description Documentation URL
POST /v4/folders Create folder | https://api.trifacta.com/ee/es.t/index.html#operation/createFolder
GET /v4/folders List folders https://api.trifacta.com/ee/es.t/index.html#operation/listFolders

GET /v4/folders/count = Count folders | https:/api.trifacta.com/ee/es.t/index.html#operation/countFolders
PATCH /v4/folders/:id = Patch folder https://api.trifacta.com/ee/es.t/index.html#operation/patchFolder

DELETE /v4/folders/:id = Delete folder https://api.trifacta.com/ee/es.t/index.html#operation/deleteFolder

Copyright © 2022 Trifacta Inc. Page #30

ImportedDataset

Path
POST /v4/importedDatasets
POST /v4/importedDatasets/:id
/addToFlow
POST /v4/importedDatasets/:id/copy
POST /v4/importedDatasets/:id
/asyncRefreshSchema

GET /v4/importedDatasets/:id

Description

Create imported dataset

Add Imported Dataset to Flow
Copy imported dataset

Fetch and update latest

datasource schema

Get imported dataset

Documentation URL

https://api.trifacta.com/ee/es.t/index.html#operation
/createlmportedDataset

https://api.trifacta.com/ee/es.t/index.html#operation
/addimportedDatasetToFlow

https://api.trifacta.com/ee/es.t/index.html#operation
/copyDataSource

https://api.trifacta.com/ee/es.t/index.html#operation
/asyncRefreshSchema

https://api.trifacta.com/ee/es.t/index.html#operation

PUT Nv4/importedDatasets/:id

PATCH /v4/importedDatasets/:id

DELETE /v4/importedDatasets/:id

GET /v4/datasetLibrary

GET /v4/datasetLibrary/count

Job

Path

List Datasets

Count Datasets

Description

Update imported dataset

Patch imported dataset

Delete imported dataset

Documentation URL

/getimportedDataset

https://api.trifacta.com/ee/es.t/index.html#operation
/updatelmportedDataset

https://api.trifacta.com/ee/es.t/index.html#operation
/patchimportedDataset

https://api.trifacta.com/ee/es.t/index.html#operation
/deletelmportedDataset

https://api.trifacta.com/ee/es.t/index.html#operation
llistDatasetLibrary

https://api.trifacta.com/ee/es.t/index.html#operation
/countDatasetLibrary

GET /v4/jobs/:id/status = Get Job Status = https://api.trifacta.com/ee/es.t/index.html#operation/getJobStatus

JobGroup

Path

POST /v4/jobGroups
GET Nv4l/jobGroups

POST /v4/jobGroups/:id
/cancel

GET /v4/jobGroups/:id

GET /v4/jobGroups/:id
Iprofile

GET /v4/jobGroups/:id
IprofileResults

GET /v4/jobGroups/:id
/pdfResults

GET /v4/jobGroups/:id
Istatus

GET /v4/jobGroups/:id
/inputs

GET /v4ljobGroups/:id
/outputs

GET /v4/jobLibrary

Copyright © 2022 Trifacta Inc.

Description
Run Job Group
List job groups

Cancel Job Group
Get job group

Get Profile Information for Job
Group

Get Profile Information for Job
Group As a Map

Get PDF Results for Job Group
Get JobGroup Status

Get Job Group Inputs

Get Job Group Outputs

List Job Groups

Documentation URL
https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup
https://api.trifacta.com/ee/es.t/index.html#operation/listJobGroups

https://api.trifacta.com/ee/es.t/lindex.html#operation/cancelJobGroup

https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroup

https://api.trifacta.com/ee/es.t/index.html#operation
/getProfilingInformationForJobGroup

https://api.trifacta.com/ee/es.t/index.html#operation
/getProfilingIinformationForJobGroupConsistent

https://api.trifacta.com/ee/es.t/index.html#operation
/getJobGroupPdfResults
https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroupStatus
https://api.trifacta.com/ee/es.t/index.html#operation/getJobGrouplnputs

https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroupOutputs

https://api.trifacta.com/ee/es.t/index.html#operation/listJobLibrary

Page #31

GET /v4/jobLibrary/count Count Job Groups

GET /v4/jobGroups/:id/jobs = Get Jobs for Job Group

GET /v4/jobGroups/:id
/publications

Get Publications for Job Group

https://api.trifacta.com/ee/es.t/index.html#operation/countJobLibrary
https://api.trifacta.com/ee/es.t/lindex.html#operation/getJobsForJobGroup

https://api.trifacta.com/ee/es.t/index.html#operation
/getPublicationsForJobGroup

Macro

Path

POST /v4/macros/package

GET /v4/macros/:id/package = Get Macro Package

Misc

Path

Description

Description

Documentation URL

Import Macro Package = https://api.trifacta.com/ee/es.t/index.html#operation/importMacroPackage

https://api.trifacta.com/ee/es.t/index.html#operation/getMacroPackage

Documentation URL

GET /v4/open-api-spec = Get OpenAPI specification = https://api.trifacta.com/ee/es.t/index.html#operation/getOpenApiSpec

OutputObject

Path

POST /v4/outputObjects
GET /v4/outputObjects
POST /v4/outputObjects/:id
/wrangleToPython

GET /v4/outputObjects/count
GET /v4/outputObjects/:id
PATCH /v4/outputObjects/:id

DELETE /v4/outputObjects/:id

GET /v4/outputObjects/:id
/inputs

Person

Path

Description

Description

Create output object

List output objects

Generate python script for wrangle recipe
linked to an output object

Count output objects

Get output object

Patch output object

Delete output object

List inputs for Output Object

Documentation URL

Documentation URL

https://api.trifacta.com/ee/es.t/index.html#operation
/createOutputObject

https://api.trifacta.com/ee/es.t/index.html#operation
/listOutputObjects

https://api.trifacta.com/ee/es.t/index.html#operation
/getPythonScriptForOutputObjectinput

https://api.trifacta.com/ee/es.t/index.html#operation
/countOutputObjects

https://api.trifacta.com/ee/es.t/index.html#operation
/getOutputObject

https://api.trifacta.com/ee/es.t/index.html#operation
/patchOutputObject

https://api.trifacta.com/ee/es.t/index.html#operation
/deleteOutputObject

https://api.trifacta.com/ee/es.t/index.html#operation
/getinputsForOutputObject

GET /v4/people/current | Get Current Person = https://api.trifacta.com/ee/es.t/index.html#operation/getCurrentPerson

GET /v4/peoplel:id Get person
GET /v4/people List people
Plan
Path Description
POST /v4/plans Create plan
GET /Nv4/plans List plans
POST /v4/plans/:id/run Run plan

Copyright © 2022 Trifacta Inc.

https://api.trifacta.com/ee/es.t/index.html#operation/getPerson

https://api.trifacta.com/ee/es.t/index.html#operation/listPerson

Documentation URL

https://api.trifacta.com/ee/es.t/index.html#operation/createPlan
https://api.trifacta.com/ee/es.t/index.html#operation/listPlans

https://api.trifacta.com/ee/es.t/lindex.html#operation/runPlan

Page #32

POST /v4/plans/:id/permissions

GET /v4/plans/:id/permissions

POST /v4/plans/package

GET /v4/plans/count

GET Iv4/plans/:id/runParameters

GET Nv4/plans/:id/full

GET /v4/plans/:id/schedules

GET N4/plans/:id/package

PATCH /v4/plans/:id

DELETE /v4/plans/:id

DELETE /v4/plans/:id/permissions/:

subjectld

PlanNode

Path
POST /v4/planNodes

GET /v4/planNodes/:id
/runParameters

DELETE /v4/planNodes/:id

PlanOverride

Path

POST N4
/planOverrides

PUT v4

/planOverrides/:id plan

PlanSnapshotRun

Path
POST /v4/planSnapshotRuns/:id
/cancel
GET /v4/planSnapshotRuns
GET /v4/planSnapshotRuns/count

GET /v4/planSnapshotRuns/:id

GET /v4/planSnapshotRuns/:id
/schedule

Copyright © 2022 Trifacta Inc.

Share Plan

List permissions for plan

Import plan package

Count plans

List run parameters

Read plan with all attributes

List plan schedules

Export plan

Update plan
Delete plan

Delete plan permissions for a
user

Description
Create plan node

List run parameters for a plan
node

Delete plan node

Description

Override a parameter in a plan

Update the value of a parameter override in a

Description

Cancel a plan execution

https://api.trifacta.com/ee/es.t/index.html#operation/sharePlan

https://api.trifacta.com/ee/es.t/index.html#operation
/getPlanPermissions

https://api.trifacta.com/ee/es.t/index.html#operation
/importPlanPackage

https://api.trifacta.com/ee/es.t/lindex.html#operation/countPlans

https://api.trifacta.com/ee/es.t/index.html#operation
/planRunParameters

https://api.trifacta.com/ee/es.t/index.html#operation/readFull

https://api.trifacta.com/ee/es.t/index.html#operation
/getSchedulesForPlan

https://api.trifacta.com/ee/es.t/index.html#operation
/getPlanPackage

https://api.trifacta.com/ee/es.t/index.html#operation/updatePlan
https://api.trifacta.com/ee/es.t/index.html#operation/deletePlan

https://api.trifacta.com/ee/es.t/index.html#operation
/deletePlanPermissions

Documentation URL
https://api.trifacta.com/ee/es.t/index.html#operation/createPlanNode

https://api.trifacta.com/ee/es.t/index.html#operation
/getPlanNodeRunParameters

https://api.trifacta.com/ee/es.t/index.html#operation/deletePlanNode

Documentation URL

https://api.trifacta.com/ee/es.t/index.html#operation
[createPlanOverride

https://api.trifacta.com/ee/es.t/index.html#operation
/updatePlanOverride

Documentation URL

https://api.trifacta.com/ee/es.t/index.html#operation

/cancelPlanSnapshotRun

List plan snapshot runs

https://api.trifacta.com/ee/es.t/index.html#operation

[listPlanSnapshotRuns

Count plan snapshot
runs

Get plan snapshot run

https://api.trifacta.com/ee/es.t/index.html#operation
/countPlanSnapshotRuns

https://api.trifacta.com/ee/es.t/index.html#operation

/getPlanSnapshotRun

Get schedule for plan
run

https://api.trifacta.com/ee/es.t/index.html#operation
/getScheduleForPlanRun

Page #33

Publication

Path Description Documentation URL
POST /v4/publications Create publication = https://api.trifacta.com/ee/es.t/index.html#operation/createPublication
GET /v4/publications List publications https://api.trifacta.com/ee/es.t/index.html#operation/listPublications

GET /v4/publications/count = Count publications = https://api.trifacta.com/ee/es.t/index.html#operation/countPublications
GET /v4/publications/:id Get publication https://api.trifacta.com/ee/es.t/index.html#operation/getPublication
PATCH /v4/publications/:id | Patch publication ' https://api.trifacta.com/ee/es.t/index.html#operation/patchPublication

DELETE /v4/publications/:id | Delete publication = https://api.trifacta.com/ee/es.t/index.html#operation/deletePublication

Schedule
Path Description Documentation URL
POST /v4/schedules Create a schedule https://api.trifacta.com/ee/es.t/index.html#operation/createSchedule
GET /v4/schedules List schedules https://api.trifacta.com/ee/es.t/index.html#operation/listSchedules

POST /v4/schedules/:id/enable = Enable schedule https://api.trifacta.com/ee/es.t/index.html#operation/enableSchedule

POST /v4/schedules/:id/disable = Disable schedule | https://api.trifacta.com/ee/es.t/index.html#operation/disableSchedule

GET /v4/schedules/count Count schedules https://api.trifacta.com/ee/es.t/index.html#operation/countSchedules

GET /v4/schedules/:id Get schedule https://api.trifacta.com/ee/es.t/index.html#operation/getSchedule

PUT /v4/schedules/:id Update a schedule = https://api.trifacta.com/ee/es.t/index.html#operation/updateSchedule

DELETE /v4/schedules/:id Delete schedule https://api.trifacta.com/ee/es.t/index.html#operation/deleteSchedule
SqlScript

Path Description Documentation URL
POST /v4/sqlScripts Create sql script | https://api.trifacta.com/ee/es.t/index.html#operation/createSqlScript
GET /v4/sqlScripts List sql scripts https://api.trifacta.com/ee/es.t/index.html#operation/listSqlScripts

GET /v4/sqlScripts/count = Count sql scripts = https://api.trifacta.com/ee/es.t/index.html#operation/countSqlScripts
GET v4/sqlScripts/:id Get sql script https://api.trifacta.com/ee/es.t/index.html#operation/getSqlScript
PATCH /v4/sqlScripts/:id = Patch sql script = https://api.trifacta.com/ee/es.t/index.html#operation/patchSqlScript

DELETE /v4/sqlScripts/:id = Delete sql script = https://api.trifacta.com/ee/es.t/index.html#operation/deleteSqlScript

WebhookFlowTask

Path Description Documentation URL
POST /v4/webhookFlowTasks Create webhook https://api.trifacta.com/ee/es.t/index.html#operation/createWebhookFlowTask
POST /v4/webhooks/test Test webhook settings = https://api.trifacta.com/ee/es.t/index.html#operation/testWebhook
GET /v4/webhookFlowTasks/:id Read webhook https://api.trifacta.com/ee/es.t/index.html#operation/getWebhookFlowTask
DELETE /v4/webhookFlowTasks/:id | Delete webhook https://api.trifacta.com/ee/es.t/index.html#operation/deleteWebhookFlowTask
Workspace
Path Description Documentation URL

Copyright © 2022 Trifacta Inc. Page #34

POST /v4/workspaces/current
/delete-configuration

POST /v4/workspaces/:id/delete-
configuration

GET /v4/workspaces/current
/configuration

PATCH /v4/workspaces/current
/configuration

GET /v4/workspaces/:id
/configuration

PATCH /v4/workspaces/:id
/configuration

GET /v4/workspaces/:id
/configuration-schema

Reset a configuration settings for
the current workspace

Reset a workspace configuration
settings

Get current workspace configuration
Save current workspace
configuration

Get workspace configuration

Save workspace configuration

Get configuration schema

Get current configuration schema

https://api.trifacta.com/ee/es.t/index.html#operation
/deleteCurrentWorkspaceConfigurationSettings

https://api.trifacta.com/ee/es.t/index.html#operation
/deleteWorkspaceConfigurationSettings

https://api.trifacta.com/ee/es.t/index.html#operation
/getCurrentConfigurationForWorkspace

https://api.trifacta.com/ee/es.t/index.html#operation
/saveCurrentWorkspaceConfiguration

https://api.trifacta.com/ee/es.t/index.html#operation
/getConfigurationForWorkspace

https://api.trifacta.com/ee/es.t/index.html#operation
/saveWorkspaceConfiguration

https://api.trifacta.com/ee/es.t/index.html#operation
/getConfigurationSchema

https://api.trifacta.com/ee/es.t/index.html#operation

GET /v4/workspaces/current

/configuration-schema /getCurrentConfigurationSchema

https://api.trifacta.com/ee/es.t/index.html#operation
/transferUserAssetsInCurrentWorkspace

PATCH /v4/workspaces/current Transfer User Assets

[transfer

WrangledDataset

Path Description Documentation URL

POST /v4lwrangledDatasets Create wrangled

dataset

https://api.trifacta.com/ee/es.t/index.html#operation
/createWrangledDataset

List wrangled datasets https://api.trifacta.com/ee/es.t/index.html#operation

listWrangledDatasets

GET /v4/wrangledDatasets

POST /v4/wrangledDatasets/:id
/addToFlow

Add wrangled dataset
to flow

https://api.trifacta.com/ee/es.t/index.html#operation
/addWrangledDatasetToFlow

https://api.trifacta.com/ee/es.t/index.html#operation
/countWrangledDatasets

GET /v4/wrangledDatasets/count Count wrangled

datasets

GET /v4/wrangledDatasets/:id Get wrangled dataset https://api.trifacta.com/ee/es.t/index.html#operation

/getWrangledDataset

PATCH /v4/wrangledDatasets/:id Patch Wrangled Dataset = https://api.trifacta.com/ee/es.t/index.html#operation

/patchWrangledDataset

DELETE /v4/wrangledDatasets/:id Delete wrangled dataset = https://api.trifacta.com/ee/es.t/index.html#operation

/deleteWrangledDataset

GET /v4/wrangledDatasets/:id
/primarylnputDataset

Get Input Dataset https://api.trifacta.com/ee/es.t/index.html#operation/getinputDataset

PUT Nv4/wrangledDatasets/:id
/primarylnputDataset

Swap Input Dataset https://api.trifacta.com/ee/es.t/index.html#operation

/updatelnputDataset

WriteSetting

Path Description Documentation URL
POST /v4/writeSettings Create writesetting | https://api.trifacta.com/ee/es.t/index.html#operation/create WriteSetting
GET /v4/writeSettings List write settings https://api.trifacta.com/ee/es.t/index.html#operation/listWriteSettings

GET /v4/writeSettings/count | Count write settings | https://api.trifacta.com/ee/es.t/index.html#operation/countWriteSettings

GET /v4/writeSettings/:id Get write setting https://api.trifacta.com/ee/es.t/index.html#operation/getWriteSetting

PATCH /va/writeSettings/:id | Patch write setting https://api.trifacta.com/ee/es.t/index.html#operation/patchWriteSetting

DELETE /v4/writeSettings/:id = Delete write setting | https://api.trifacta.com/ee/es.t/index.html#operation/deleteWriteSetting

Copyright © 2022 Trifacta Inc. Page #35

API Tasks

In this section, you can review examples of how to execute common tasks using one or more of the available
REST APIs.

Copyright © 2022 Trifacta Inc. Page #36

API Task - Develop a Flow

Contents:

® Qverview

® Example Datasets
Step - Create Containing Flow
Step - Create Datasets
Step - Wrangle Data
Step - Create Output Objects
Step - Run Job
Step - Monitoring Your Job
Step - Re-run Job

Overview
This example walks through the process of creating, identifying, and executing a job through automated methods.
For this example, these tasks are accomplished using the following methods:

NOTE: This API task applies to a Development instance of the Designer Cloud powered by Trifacta®
platform , which is the default platform instance type. For more information on Development and
Production instance, see Overview of Deployment Manager.

1. Locate or create flow. The datasets that you wrangle must be contained within a flow. You can add them
to an existing flow or create a new one through the APIs.
2. Create dataset. Through the APIs, you create an imported dataset from an asset that is accessible
through one of the established connections. Then, you create the recipe object through the API.
a. For the recipe, you must retrieve the internal identifier.
b. Through the application, you modify the recipe for the dataset.
3. Automate job execution. Using the APIs, you can automate execution of the wrangling of the dataset.
a. As needed, this job can be re-executed on a periodic basis or whenever the source files are
updated.

Example Datasets
In this example, you are attempting to wrangle monthly point of sale (POS) data from three separate regions into
a single dataset for the state. This monthly data must be enhanced with information about the products and

stores in the state. So, the example has a combination of transactional and reference data, which must be
brought together into a single dataset.

Tip: To facilitate re-execution of this job each month, the transactional data should be stored in a
dedicated directory. This directory can be overwritten with next month's data using the same filenames.
As long as the new files are structured in an identical manner to the original ones, the new month's data
can be processed by re-running the API aspects of this task.

Example Files:
The following files are stored on HDFS:

Path and Filename Description

Copyright © 2022 Trifacta Inc. Page #37

hdf s: ///user/pos/ POS-r01. t xt Point of sale transactions for Region 1.
hdf s: ///user/ pos/ POS-r 02. t xt Point of sale transactions for Region 2.
hdf s: ///user/pos/ POS-r 03. t xt Point of sale transactions for Region 3.
hdf s:///user/ref/ REF_PROD. t xt | Reference data on products for the state.

hdf s:///user/ref/ REF_CAL. t xt Reference data on stores in the state.

NOTE: The reference and transactional data are stored in separate directories. In this case, you can
assume that the user has read access through his Trifacta account to these directories, although this
access must be enabled and configured for real use cases.

Base URL:
For purposes of this example, the base URL for the Trifacta platform is the following:

http://ww. exanpl e. com 3005

Step - Create Containing Flow

To begin, you must locate a flow or create a flow through the APIs to contain the datasets that you are importing.

NOTE: You cannot add datasets to the flow through the f | ows endpoint. Moving pre-existing datasets
into a flow is not supported in this release. Create or locate the flow first and then when you create the
datasets, associate them with the flow at the time of creation.

® See https://api.trifacta.com/ee/es.t/index.html#operation/createlmportedDataset
® See https://api.trifacta.com/ee/es.t/index.html#operation/createWrangledDataset

Locate:

NOTE: If you know the display name value for the flow and are confident that it is not shared with any
other flows, you can use the APIs to retrieve the flowld. See
https://api.trifacta.com/ee/es.t/index.html#operation/listFlows

1. Login through the application.
2. In the Flows page, select or create the flow to contain the above datasets.
3. In the Flow Details page for that flow, locate the flow identifier in the URL:

Flow Details URL | htt p://ww. exanpl e. com 3005/ fl ows/ 10

Flow Id 10
4. Retain this identifier for later use.

Create:
1. Through the APIs, you can create a flow using the following call:

Endpoint http://ww. exanpl e. com 3005/ v4/ f | ows

Authentication = Required

Copyright © 2022 Trifacta Inc. Page #38

Method PCST

Request Body {

"nane": "Point of Sale - 2013",
"description": "Point of Sale data for state"

}

2. The response should be status code 201 - Cr eat ed with a response body like the following:

{
"id": 10,
"updat edAt": "2017-02-17T17:08: 57.848Z",
"createdAt": "2017-02-17T17:08:57.848Z",
"nanme": "Point of Sale - 2013",
"description": "Point of Sale data for state",
"creator": {
“idUro 1
H
"updater": {
idUro 1
H
"wor kspace": {
"id'r 1

}
}

3. Retain the flow identifier (10) for later use.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createFlow

Checkpoint: You have identified or created the flow to contain your dataset or datasets.

Step - Create Datasets
To create datasets from the above sources, you must:

1. Create an imported dataset for each file.
2. For each imported dataset, create a recipe, which can be used to transform the imported dataset.

The following steps describe how to complete these actions via API for a single file.

Steps:

1. To create an imported dataset, you must acquire the following information about the source. In the above
example, the source is the POS-r 01. t xt file.

a. uri

b. name

c. description

d. bucket (if a file stored on S3)
2. Construct the following request:

Endpoint http: //ww. exanpl e. com 3005/ v4/i nport edDat aset s

Authentication = Required

Method PCST

Request Body

Copyright © 2022 Trifacta Inc. Page #39

3. You should receive a 201 -

"id': 8,

{

"uri": "hdfs:///user/pos/PCS-rOl.txt",

"name": "POS-rO0l1.txt",

"description": "POS-r01.txt"

}

"size": "281032",

“uri": "hdfs:/
"dynami cPat h":
"bucket": null

/ / user/pos/POS-r01. txt",
nul |,

"isSchemati zed": true,

"isDynamc": f

al se,

"di sabl eTypel nference": fal se,

"updat edAt": "
"createdAt": "
" par si ngScri pt
"id': 14
},
"runPar anet er
"data":

I

2017- 02- 08T18: 38: 56. 640Z" ,
2017- 02- 08T18: 38: 56. 560Z"
Ld": {

s": {
[

"name": "POS-r01.txt",
"description": "POS-r01.txt",

“creator": {
idho1
}
"updater": {
idho1
}

"connection"

4. You must retain the i d value so you can reference it when you create the recipe.
5. See https://api.trifacta.com/ee/es.t/index.html#operation/createlmportedDataset
6. Next, you create the recipe. Construct the following request:

Endpoint
Authentication
Method

Request Body

7. You should receive a 201 -

"id": 23,
"wrangl ed":
"updat edAt ":
"createdAt":

:onull

http://ww. exanpl e. com 3005/ v4/ wr angl edDat aset s

Required

POST

{ "name":"POS-r01",
"inportedDataset": {

"id":8
I
"flow': {

"id":10
}

true,
"2018-02-06T19: 59: 22. 735Z2",
"2018-02-06T19: 59: 22. 6982",

nanme": "PCS-r01",

"active": true,

Copyright © 2022 Trifacta Inc.

Cr eat ed response with a response body similar to the following:

Cr eat ed response with a response body similar to the following:

Page #40

"referencelnfo": null,

"activeSanmple": {
"id": 23

}

"creator": {

idUro1
b
"updater": {
idUro1
H
"recipe": {
“id': 23
I
"flow': {
"id": 10

8. From the recipe, you must retain the value for the i d. For more information, see
https://api.trifacta.com/ee/es.t/index.html#operation/createWrangledDataset
9. Repeat the above steps for each of the source files that you are adding to your flow.

Checkpoint: You have created a flow with multiple imported datasets and recipes.

Step - Wrangle Data

After you have created the flow with all of your source datasets, you can wrangle the base dataset to integrate all
of the source into it.

Steps for Transactional data:

1. Open the PCS-r 01 dataset. It's loaded in the Transformer page.
2. To chain together the other transactional data into this dataset, you use a uni on transform. In the Search
panel, enter uni on in the textbox and press ENTER.
3. In the Union page:
a. Click Add datasets.
b. Select the other two transactional datasets: POS- r 02 and PCS- r 03.

NOTE: When you join or union one dataset into another, changes made in the joined
dataset are automatically propagated to the dataset where it has been joined.

c. Add the datasets and align by name.
d. Check the dataset names and fields. If all looks well, click Add to Recipe.

Steps for reference data:

In the columns St or e_Nbr and | t em Nor are unique keys into the REF_CAL and REF_PROD datasets,
respectively. Using the Join window, you can pull in the other fields from these reference datasets based on
these unique keys.

Open the PCS- r 01 dataset.

In Search panel, enter j oi n dat aset s for the transform. The Join window opens.

Select the RED_PROD dataset. Click Accept. Click Next.

Review the two keys to verify that they are the proper columns on which to structure the join. Click Next.
Click the All tab. Select all fields to add. Click Review.

After reviewing your join, click Add to Recipe.

For each | t em Nbr value that has a matching | TEM NBR value in the reference dataset, all of the other
reference fields are pulled into the PCS- r 01 dataset.

NooakwbdpE

Copyright © 2022 Trifacta Inc. Page #41

You can repeat the above general process to integrate the reference data for stores.

Checkpoint: You have created a flow with multiple datasets and have integrated all of the relevant data
into a single dataset.

Step - Create Output Objects
Before you run a job, you must define output objects, which specify the following:

® Running environment where the job is executed
® Profiling on or off
® outputObjects have the following objects associated with them:
* writeSettings: These objects define the file-based outputs that are produced for the output object
® publications: These objects define the database target, table, and other settings for publication to
a relational datastore.

NOTE: You can continue with this task without creating outputObjects yet. In this task, overrides are
applied during the job definition, so you don't have to create the outputObjects and writeSettings at this
time.

For more information on creating outputObjects, writeSettings, and publications, see API Task - Manage Outputs.

Step - Run Job

Through the APIs, you can specify and run a job. In the above example, you must run the job for the terminal
dataset, which is POS- r 01 in this case. This dataset contains references to all of the other datasets. When the
job is run, the recipes for the other datasets are also applied to the terminal dataset, which ensures that the
output reflects the proper integration of these other datasets into POS-r 01.

NOTE: In the following example, writeSettings have been specified as overrides in the job definition.

These overrides are applied for this job run only. If you need to re-run the job with these settings, you
must either 1) re-apply the overrides or 2) create the writeSettings objects.For more information, see
API Task - Manage Outputs.

Steps:

1. Acquire the internal identifier for the recipe for which you wish to execute a job. In the previous example,
this identifier was 23.
2. Construct a request using the following:

Endpoint http://ww. exanpl e. com 3005/ v4/j obG oups

Authentication = Required

Method PCST

Request Body:

{

"wr angl edDat aset ": {
"id": 23
b

Copyright © 2022 Trifacta Inc. Page #42

"overrides": {
"execution": "photon",
"profiler": true,
"witesettings": [

{
"path": "hdfs://hadoop: 50070/ trifactal/ queryResul ts/adm n@xanpl e. cont POS-r 01. csv",
"action": "create",
"format": "csv",
"conpression": "none",
"header": fal se,
"asSingleFile": fal se
}

]
}

anfront: null

3. In the above example, the specified job has been launched for recipe 23 to execute on the Trifacta Photon

running environment with profiling enabled.

a. Output format is CSV to the designated path. For more information on these properties, see
https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup
b. Output is written as a new file with no overwriting of previous files.
4. Aresponse code of 201 - Creat ed is returned. The response body should look like the following:

{
"sessionld": "79276c31-c58c-4e79-aebe-fedla25ebcal”,
"reason": "JobStarted",
"jobGaph": {
"vertices": [
21,
22
1.
"edges": [
{
"source": 21,
"target": 22
}
]
H
"id": 3
"jobs": {
"data": [
{
id 21
I
{
id 22
}
]
}
}

5. Retain the i d value, which is the job identifier, for monitoring.

Step - Monitoring Your Job

You can monitor the status of your job through the following endpoint:

Endpoint htt p: // ww. exanpl e. com 3005/ v4/j obG oups/ <i d>/ st at us

Authentication = Required

Method GET

Copyright © 2022 Trifacta Inc.

Page #43

Request Body None.

When the job has successfully completed, the returned status message is the following:

" Conpl et e"

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Step - Re-run Job

In the future, you can re-run the job exactly as you specified it by executing the following call:

Tip: You can swap imported datasets before re-running the job. For example, if you have uploaded a
new file, you can change the primary input dataset for the dataset and then use the following API call to
re-run the job as specified. See https://api.trifacta.com/ee/es.t/index.html#operation/updatelnputDataset

Endpoint http://ww. exanpl e. com 3005/ v4/j obG oups
Authentication = Required

Method POST

Request Body {

"wr angl edDat aset": {

"id": 23
H
"overrides": {

"execution": "photon",

"profiler": true,

"writesettings": [

{
"path": "hdfs://hadoop: 50070/ trifactal/ queryResul ts/adm n@xanpl e. conf PCS-r 01. csv",

"action": "create",
"format": "csv",
"conpression": "none",

"header": fal se,
"asSingleFile": false
}
]
}

anfront': null

The job is re-run as it was previously specified.

Copyright © 2022 Trifacta Inc. Page #44

API Task - Deploy a Flow

Contents:

® Qverview
® Prerequisites
® Task
Step - Get Flow Id
Step - Export a Flow
Step - Create Deployment
Step - Create Connection
Step - Create Import Rules
Step - Import Package to Create Release
Step - Activate Release
Step - Run Deployment
Step - lterate
Step - Set up Production Schedule

Overview

In this task, you learn how to deploy a flow in development to a production instance of the platform. After you
have created and finished a flow in a Development (Dev) instance, you can deploy it to an environment designed
primarily for production execution of jobs for finished flows (Prod instance). For more information on managing
these deployments, see Overview of Deployment Manager.

Prerequisites

Finished flow: This example assumes that you have finished development of a flow with the following
characteristics:

® Single dataset imported from a table through a Redshift connection
® Single JSON output

Separate Dev and Prod instances: Although it is possible to deploy flows to the same instance in which they
are developed, this example assumes that you are deploying from a Dev instance to a completely separate Prod
instance. The following implications apply:

® Separate user accounts to access Dev (Userl) and Prod (Admin2) instances.

Tip: You should do all of your recipe development and testing in Dev/Test. Avoid making changes
in a Prod environment.

NOTE: Although these are separate user accounts, the assumption is that the same admin-level
user is using these accounts through the APIs.

®* New connections must be created in the Prod instance to access the production version of the database
table.

Task

In this example, your environment contains separate Dev and Prod instances, each of which has a different set of
users.

Item Dev Prod

Copyright © 2022 Trifacta Inc. Page #45

Environment http://wrangle-dev.example.com:3005 http://wrangle-prod.example.com:

3005

Tip: Dev environment work can be done through the Ul, which may be

easier.
User Userl Admin2

NOTE: Userl has no access to Prod.
Source DB devWrangleDB prodWrangleDB
Source Table Dev-Orders Prod-Orders
Connection Dev Redshift Conn Prod Redshift Conn

Name

Example Flow:
User 1 is creating a flow, which is used to wrangle weekly batches of orders for the enterprise. The flow contains:

A single imported dataset that is created from a Redshift database table.

A single recipe that modifies the imported dataset.

A single output to a JSON file.

Production data is hosted in a different Redshift database. So, the Prod connection is different from the
Dev connection.

Steps:

1. Build in Dev instance: Userl creates the flow and iterates on building the recipe and running jobs until a
satisfactory output can be generated in JSON format.

2. Export: When Userl is ready to push the flow to production, Userl exports the flow and downloads the
export package ZIP file to the local desktop.

3. Deploy to Prod instance:
a. Admin2 creates a new deployment in the Prod instance.
b. Admin2 creates a new connection (Prod Redshift Conn) in the Prod instance.
c. Admin2 creates new import rules in the Prod instance to map from the old connection (Dev Redshift
Conn) to the new one (Prod Redshift Conn).
d. Admin2 uploads the export ZIP package.
4. Test deployment: Through Flow View in the Prod instance, Admin2 runs a job. The results look fine.
5. Set schedule: Using cron, Admin2 sets a schedule to run the active release for this deployment once per

week.
a. Each week, the Prod-Orders table must be refreshed with data.
b. The dataset is now operational in the Prod environment.

Step - Get Flow Id
The first general step is for the Dev user (Userl) to get the flowld and export the flow from the Dev instance.

Steps:

Tip: If it's easier, you can gather the flowld from the user interface in Flow View. In the following
example, the flowld is 21:

http://ww. w angl e- dev. exanpl e. com 3005/ f| ows/ 21

Copyright © 2022 Trifacta Inc. Page #46

1. Through the APIs, you can create a flow using the following call:

Endpoint
Authentication = Required
Method GET

Request Body = None.

2. The response should be status code 200 -

{ "data": [
{
"id" 21,
"nane": "Intern Training",
"description": "null",

htt p: / / ww. wr angl e- dev. exanpl e. com 3005/ v4/ fl ows

OK with a response body like the following:

“createdAt": "2019-01-08T18: 14: 37.8512",
"updat edAt": "2019-01-08T18: 57: 26. 824Z",

"creator": {

"id': 2
.
"updater": {
"idh 2
b
"folder": {
"id'ro 1
b
"wor kspace": {
idUro1
}
b
{
"id": 19,
"nanme": "exanple Flow',
"description": null,
"createdAt": "2019-01-08T17: 25: 21. 392Z",
"updat edAt": "2019-01-08T17: 30: 30. 959",
"creator": {
"idh 2
b
"updater": {
"idh 2
b
"folder": {
“id': 4
H
"wor kspace": {
idUro 1
}
}

3. Retain the flow identifier (21) for later use.

Checkpoint: You have identified the flow to export.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/listFlows

Copyright © 2022 Trifacta Inc.

Page #47

Step - Export a Flow

Export the flow to your local desktop.

Tip: This step may be easier to do through the Ul in the Dev instance.

Steps:
1. Export flowld=21:

Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/f | ows/ 21/ package
Authentication = Required
Method CET

Request Body | None.

2. The response should be status code 200 - OK. The response body is the flow itself.
3. Download and save this file to your local desktop. Let's assume that the filename you choose is f | ow
W angl eOr der s. zi p.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/getFlowPackage

Step - Create Deployment

In the Prod environment, you can create the deployment from which you can manage the new flow. Note that the
following information has changed for this environment:

Item Prod env value
userld Admin2
baseURL = http://www.wrangle-prod.example.com:3005
Steps:
1. Through the APIs, you can create a deployment using the following call:
Endpoint http://ww. w angl e- prod. exanpl e. com 3005/ v4/ depl oynent s

Authentication = Required

NOTE: Username and password credentials must be submitted for the Adm n2 account.

Method POST

Request Body {

"nanme": "Production Orders"

2. The response should be status code 201 - Cr eat ed with a response body like the following:

{
"id': 3,
"nane": "Production Oders",

Copyright © 2022 Trifacta Inc. Page #48

"updat edAt": "2017-11-27T23: 48: 54. 340Z",
"createdAt": "2017-11-27T23: 48: 54. 340Z",
"creator": {

tid'ro1
}
“updater": {
tid'ro1
}

3. Retain the deploymentld (3) for later use.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createDeployment

Step - Create Connection

When a flow is exported, its connections are not included in the export. Before you import the flow into a new
environment:

® Connections must be created or recreated in the Prod environment. In some cases, you may need to point
to production versions of the data contained in completely different databases.
® Rules must be created to remap the connection to use in the imported flow.
This section and the following step through these processes.
Steps:
1. From the Dev environment, you collect the connection information for the flow:
Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ connecti ons

Authentication = Required

NOTE: Username and password credentials must be submitted for the User 1 account.

Method GET

Request Body | None.

2. The response should be status code 200 - Ok with a response body like the following:

{
"data": [
{
"id": 9,
"host": "dev-redshift.exanple.conf,
"port": 5439,
"vendor": "redshift",
"parans": {

"connect StrQpts": "",
"def aul t Dat abase": "devW angl eDB",
"extraLoadParans": "BLANKSASNULL EMPTYASNULL TRI MBLANKS TRUNCATECOLUWNS"
},
"ssl": false,
"vendor Name": "redshift",
"nane": "Dev Redshift Conn",
"description": ""

"type": "jdbc",
"isdobal": true,
"credential Type": "ianRol eArn",

"credenti al sShared": true,
“uui d": "b8014610- ce56- 11e7- 9739- 27deec2c3249",
"di sabl eTypel nference": fal se,

Copyright © 2022 Trifacta Inc. Page #49

5. The response should be status code 201 -

“createdAt": "2017-11-21T00: 55: 50. 770Z",
"updat edAt": "2017-11-21T00: 55: 50. 770Z",
"credential s": [

{
"user": "devDBuser"
}
1.
"creator": {
"id" 2
I
"updater": {
"id" 2
3
"wor kspace": {
"id' 1
}
}
1.
"count": {
"owned": 1,
"shared": O,
"count": 1

3. You retain the above information for use in Production.
4. In the Prod environment, you create the new connection using the following call:

Endpoint htt p: / / ww. wr angl e- pr od. exanpl e. com 3005/ v4/ connecti ons

Authentication = Required

NOTE: Username and password credentials must be submitted for the Adni N2 account.

Method PCST
Request Body {
"host": "prod-redshift.exanple.cont,
"port": 1433,
"vendor": "redshift",
"parans": {

"connectStrQpts": "',
"def aul t Dat abase": "prodW angl eDB",

"extralLoadParans”: "BLANKSASNULL EMPTYASNULL TRI MBLANKS TRUNCATECOLUMNS®

I

"vendor Nane": "redshift",
"nane": "Redshift Conn Prod",
"description": "",

"isd obal ": true,
"type": "jdbc",
"ssl": fal se,
"credential Type": "ianRol eArn",
"credentials": [
{
"usernane": "prodDBUser",
"password": "<password>",
"ianmRol eArn": "iam aws: 12345"
}

Copyright © 2022 Trifacta Inc.

Cr eat ed with a response body like the following:

Page #50

"id" 12,
"host": "prod-redshift.exanple.conf,
"port": 5439,
"vendor": "redshift",
"parans": {
"connectStrQOpts": "',
"def aul t Dat abase": "prodW angl eDB",
"extralLoadPar ans": "BLANKSASNULL EMPTYASNULL TRI MBLANKS TRUNCATECOLUWNS'
b
"ssl": false,
"name": "Redshift Conn Prod",
"description": "",

"type": "jdbc",
"isd obal ": true,
"credential Type": "ianRol eArn",

"credenti al sShared": true,

"uuid": "fa7e06c0-0143- 11e8- 8f af - 27c¢0392328c5",
"di sabl eTypel nference": fal se,

“createdAt": "2018-01-24T20:20: 11.181z",

"updat edAt": "2018-01-24T20: 20: 11.1812",
"credentials": [

{
}

"usernane": "prodDBUser"

I

“creator": {

idh 2
I
"updater": {
"idt 2

6. When you hit the / v4/ connect i ons endpoint again, you can retrieve the connectionld for this
connection. In this case, let's assume that the connectionld value is 12.

See https://api.trifacta.com/ee/es.t/index.html#operation/createConnection

Step - Create Import Rules

Now that you have defined the connection to use to acquire the production data from within the production
environment, you must create an import rule to remap from the Dev connection to the Prod connection within the
flow definition. This rule is applied during the import process to ensure that the flow is working after it has been
imported.

In this case, you must remap the uui d value for the Dev connection, which is written into the flow definition, with
the connection Id value from the Prod instance.

For more information on import rules, see API Task - Define Deployment Import Mappings.
Steps:
1. From the Dev environment, you collect the connection information for the flow:
Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ connecti ons

Authentication = Required

NOTE: Username and password credentials must be submitted for the User 1 account.

Method GET

Copyright © 2022 Trifacta Inc. Page #51

Request Body | None.

2. The response should be status code 200 - Ok with a response body like the following:

"data": [
{
"id": 9,
"host": "dev-redshift.exanple.conf,
"port": 5439,
"vendor": "redshift",
"parans": {
"connect StrQpts": "",
"def aul t Dat abase": "devW angl eDB",

"extralLoadParans": "BLANKSASNULL EMPTYASNULL TRI MBLANKS

H

"ssl": false,

"vendor Nanme": "redshift",
"nane": "Dev Redshift Conn",
"description": "",

"type": "jdbc",

"isdAobal": true,

"credential Type": "ianRol eArn",
"credenti al sShared": true,

"uui d": "b8014610-ce56-11e7-9739-27deec2c3249",

"di sabl eTypel nference": fal se,

“createdAt": "2017-11-21T00: 55:50. 770Z",
"updat edAt": "2017-11-21T00: 55: 50. 770Z",

"credentials": [
{
"user": "devDBuser"
}
I
"creator": {
"id"r 2
b
"updater": {
"id"r 2
},
"wor kspace": {
"id'ro1
}
}
1.
"count": {
"owned": 1,
"shared": O,
"count": 1

TRUNCATECCOLUMWNS"

3. From the above information, you retain the following, which uniquely identifies the connection object,

regardless of the instance to which it belongs:

"uui d": "b8014610- ce56-11e7-9739- 27deec2c3249",

4. Against the Prod environment, you now create an import mapping rule:

Endpoint htt p: // ww. wr angl e- pr od. exanpl e. com 3005/ v4/ depl oynment s/ 3

/ obj ect | nport Rul es
Authentication = Required

Method PATCH

Request Body:

Copyright © 2022 Trifacta Inc.

Page #52

[{"tabl eNane": "connections", "onCondition":{"uuid": "b8014610-ce56-11e7-9739-27deec2c3249"},"
wi thCondition": {"id":12}}]

5. The response should be status code 200 - Ok with a response body like the following:

{
"del eted": []

}

Since the method is a PATCH, you are updating the rules set that applies to all imports for this deployment.
In this case, there were no pre-existing rules, so the response indicates that nothing was deleted. If
another set of import rules is submitted, then the one you just created is deleted.

See https://api.trifacta.com/ee/es.t/index.html#operation/updateObjectimportRules

See https://api.trifacta.com/ee/es.t/index.html#operation/updateValuelmportRules

Step - Import Package to Create Release
You are now ready to import the package to create the release.
Steps:

1. Against the Prod environment, you now import the package:

Endpoint http://ww. w angl e- prod. exanpl e. com 3005/ v4/ depl oynent s/ 3
/rel eases

Authentication = Required
Method PCST

Request Body The request body must include the following key and value combination submitted as form data:

key value
data | "@path-to-flow-WrangleOrders.zip"

2. The response should be status code 201 - Cr eat ed with a response body like the following:

{ "i nport Rul eChanges": {

"object": [{"tabl eNane":"connections", "onCondition":{"uuid": "b8014610-ce56-11e7-9739-
27deec2c3249"}, "wi thCondi tion": {"id":12}}],

"value": []

b
"fl owNane": "Wangle Orders”

See https://api.trifacta.com/ee/es.t/index.html#operation/importPackageForDeployment

Step - Activate Release

When a package is imported into a release, the release is automatically set as the active release for the
deployment. If at some point in the future, you need to change the active release, you can use the following
endpoint to do so.

Steps:

Copyright © 2022 Trifacta Inc. Page #53

1. Against the Prod environment, use the following endpoint:
Endpoint htt p: // ww. wr angl e- prod. exanpl e. com 3005/ v4/rel eases/ 5

Authentication = Required

Method PATCH

Request Body {

"active": true

2. The response should be status code 200 - OKwith a response body like the following:

{

"id": 3,
"updater": {
"id": 3

b
"updat edAt": "2017-11-28T00: 06: 12. 1472"

See https://api.trifacta.com/ee/es.t/index.html#operation/patchRelease

Step - Run Deployment

You can now execute a test run of the deployment to verify that the job executes properly.

NOTE: When you run a deployment, you run the primary flow in the active release for that deployment.
Running the flow generates the output objects for all recipes in the flow.

NOTE: For datasets with parameters, you can apply parameter overrides through the request body
through the following API call. For more information, see
https://api.trifacta.com/ee/es.t/index.html#operation/runDeployment
Steps:
1. Against the Prod environment, use the following endpoint:

Endpoint http://ww. w angl e- prod. exanpl e. com 3005/ v4/ depl oynment s/ 3/ run

Authentication = Required
Method PCST

Request Body | None.
2. The response should be status code 201 - Cr eat ed with a response body like the following:

{

"data": [
{
"reason": "JobStarted",
"sessionld": "dd6a90e0-c353-11e7-ad4e- 7f 2dd2aed621",
"id": 33

Copyright © 2022 Trifacta Inc. Page #54

See https://api.trifacta.com/ee/es.t/index.html#operation/runDeployment

Step - Iterate
If you need to make changes to fix issues related to running the job:

® Recipe changes should be made in the Dev environment and then passed through export and import of
the flow into the Prod deployment.
® Connection issues:
® Check Flow View in the Prod instance to see if there are any red dots on the objects in the package.
If so, your import rules need to be fixed.
® Verify that you can import data through the connection.
® Qutput problems could be related to permissions on the target location.

Step - Set up Production Schedule

When you are satisfied with how the production version of your flow is working, you can set up periodic schedules
using a third-party tool to execute the job on a regular basis.

The tool must hit the Run Deployment endpoint and then verify that the output has been properly generated.

Copyright © 2022 Trifacta Inc. Page #55

APl Task - Run Job

Contents:

® Run Job Endpoints
® Run job
* Run flow
® Run deployment
Prerequisites
Step - Run Job
Step - Monitoring Your Job
Step - Re-run Job
Step - Run Job with Overrides - Files
® |nput file overrides
® OQutput file overrides
Step - Run Job with Overrides - Tables
Step - Run Job with Overrides - Webhooks
Step - Run Job with Parameter Overrides
Step - Spark Job Overrides
Step - Databricks Job Overrides
® General example
® Databricks job overrides reference

This section describes how to run a job using the APIs available in Designer Cloud Powered by Trifacta®
Enterprise Edition.

A note about API URLSs:
In the listed examples, URLs are referenced in the following manner:

<protocol >://<pl at form base_url >/

In your product, these map references map to the following:

<http or https>://<hostname>: <port_nunber >/

For more information, see API| Reference.

Run Job Endpoints
Depending on the type of job that you are running, you must use one of the following endpoints:
Run job

Run a job to generate the outputs from a single recipe in a flow.

Tip: This method is covered on this page.

Endpoint IvaljobGroups/:id

Copyright © 2022 Trifacta Inc. Page #56

Method POST

Reference documentation | https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Run flow
Run all outputs specified in a flow. Optionally, you can run all scheduled outputs.
Endpoint Iv4/flows/:id/run

Method POST

Reference documentation | https://api.trifacta.com/ee/es.t/index.html#operation/runFlow

Run deployment
Run the primary flow in the active release of the specified deployment.

Deployments are available only through the Deployment Manager. For more information, see
Overview of Deployment Manager.

Endpoint Iv4ldeployments/:id/run

Method POST

Reference documentation | https://api.trifacta.com/ee/es.t/index.html#operation/runDeployment

Prerequisites
Before you begin, you should verify the following:

1. Get authentication credentials. As part of each request, you must pass in authentication credentials to
the platform. For more information, see Manage API Access Tokens.

For more information, see https://api.trifacta.com/ee/es.t/index.html#section/Authentication
2. Verify job execution. Run the desired job through the Designer Cloud application and verify that the
output objects are properly generated.

NOTE: By default, when scheduled or API jobs are executed, no validations are performed of any
writesettings objects for file-based outputs. Issues with these objects may cause failures during
transformation or publishing stages of job execution. Jobs of these types should be tested through
the Designer Cloud application first. A workspace administrator can disable the skipping of these
validations.

3. Acquire recipe (wrangled dataset) identifier. In Flow View, click the icon for the recipe whose outputs
you wish to generate. Acquire the numeric value for the recipe from the URL. In the following, the recipe Id
is 28629:
http://<platformbase_url>/flows/5479?reci pe=28629&t ab=r eci pe
4. Create output object. A recipe must have at least one output object created for it before you can run a job

via APIs. For more information, see Flow View Page.

If you wish to apply overrides to the inputs or outputs of the recipe, you should acquire those identifiers or paths
now. For more information, see "Run Job with Parameter Overrides" below.

Copyright © 2022 Trifacta Inc. Page #57

Step - Run Job

Through the APIs, you can specify and run a job. To run a job with all default settings, construct a request like the
following:

NOTE: Aw angl edDat aset is an internal object name for the recipe that you wish to run. Please see
previous section for how to acquire this value.

Endpoint <protocol >://<pl atf orm base_url| >/ v4/jobG oups
Authentication Required

Method POST

Request Body {

"wr angl edDat aset ": {
"id": 28629
}
}

Response Code 201 - Created

Response Body {

"sessionld": "79276c31-c58c-4e79-ae5e-fedla25ebcal”,
"reason": "JobStarted",
"jobGaph": {
"vertices": [
21,
22

1,
"edges": [
{

"source": 21,

"target": 22
}
]
o
"id": 961247,
"jobs": {
"data": [
{
"id": 21
H
{
id 22

If the 201 response code is returned, then the job has been queued for execution.

Tip: Retain the i d value in the response. In the above, 961247 is the internal identifier for the job group
for the job. You will need this value to check on your job status.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Copyright © 2022 Trifacta Inc. Page #58

Checkpoint: You have queued your job for execution.

Step - Monitoring Your Job

You can monitor the status of your job through the following endpoint:

Endpoint
Authentication
Method
Request Body
Response Code

Response Body

When the job has successfully completed, the returned status message includes the following:

<protocol >://<pl atform base_url >/ v4/jobG oups/ <i d>/

Required

GET

None.

200 - &

{
"id": 961247,
"nane": null,

"description": null,

"ranfrom': "ui",

"ranfor": "recipe",

"status": "Conplete",

"profilingEnabl ed": true,

"runPar anet er Ref erenceDat e": "2019-08-20T17: 46: 27. 000Z",
"createdAt": "2019-08-20T17: 46: 28. 000Z",

"updat edAt": "2019-08-20T17:53:17.000Z",

"wor kspace": {

"idUr 22

b

"creator": {
"id"': 38

o

"updater": {
"id": 38

o

"snapshot": {
"id": 774476

H

"wr angl edDat aset ": {
"id": 28629

H

"flowRun": null

"status": "Conplete",

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroup

Tip: You have executed the job. Results have been delivered to the designated output locations.

Step - Re-run Job

In the future, you can re-run the job using the same, simple request:

Copyright © 2022 Trifacta Inc.

Page #59

Endpoint <protocol >://<pl atform base_url >/ v4/jobG oups
Authentication | Required

Method POST

Request Body {

"wr angl edDat aset ": {
"id": 28629
}
}

The job is re-run as it was previously specified.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createJobGroup

Step - Run Job with Overrides - Files

As needed, you can specify runtime overrides for any of the settings related to the job definition or its outputs. For
file-based jobs, these overrides include:

Data sources

Execution environment

profiling

Output file, format, and other settings

Input file overrides

You can override the file-based data sources your job run. In the following example, two datasets are overridden
with new files.

NOTE: Overrides for data sources apply only to file-based sources. File-based sources that are
converted during ingestion, such as Microsoft Excel files, cannot be swapped in this manner.

NOTE: Overrides must be applied to the entire file path. As part of this overrides, you can redefine the
bucket from which the source data is taken.

Endpoint <protocol >://<pl atform base_url >/ v4/jobG oups
Authentication = Required

Method POST

Request Body {

"wr angl edDat aset ": {
"id": 28629
b
"overrides": {
"dat asources": {
"airlines - region 1": [
"s3://ny-new bucket/test-override-input/airlines3.csv",
"s3://ny-new bucket/test-override-input/airlines4.csv",
"s3://ny-new bucket/test-override-input/airlines5.csv"

Copyright © 2022 Trifacta Inc. Page #60

]

irlines - region 2": [
"s3://ny-new bucket/test-override-input/airlinesl.csv",
]
}
}
}

The job specified for recipe 28629 is re-run using the new data sources.

Notes:

® The names of the datasources (ai rlines - region landairlines - region 2)refertothe
display name values for the datasets that are the sources for the wrangledDataset (recipe) in the flow.
You can use this APl method to overwrite the bucket name for your source, but you must replace the
entire path.

® The parameterized list of files can be from different folders, too.
* File type and size information is not displayed in the Job Details page for these overridden jobs.
[]

No validation is performed on the existence of these files prior to execution. If the files do not exist, the job
fails.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createJobGroup

Output file overrides

NOTE: Override values applied to a job are not validated. Invalid overrides may cause your job to fail.

® See API Task - Manage Outputs.
® See https://api.trifacta.com/ee/es.t/index.html#operation/getWriteSetting

1. Acquire the internal identifier for the recipe for which you wish to execute a job. In the previous example,
this identifier was 28629.

2. Construct a request using the following:

Endpoint <protocol >://<pl atf orm base_url >/ v4/j obG oups

Authentication = Required

Method POST

Request Body:

{
"wr angl edDat aset ": {
"id": 28629
1,
"overrides": {
"profiler": true,
"execution": "spark",
"witesettings": [
{
"path": "<new_path_to_out put>",
"format": "csv",
"header": true,
"asSingleFile": true,
"includeM smat ches": true

Copyright © 2022 Trifacta Inc. Page #61

]
}

"ranfrom': null

3. Inthe above example, the job has been launched with the following overrides:
a. Job will be executed on the Spark cluster. Other supported values depend on your product edition
and available running environments:

Value foroverri des. executi on Description

phot on Running environment on Trifacta node

spar k Spark on integrated cluster, with the following exceptions.
dat abri cksSpar k Spark on Azure Databricks

enr Spar k Spark on AWS EMR

dat af | ow Dataflow

Job will be executed with profiling enabled.

Output is written to a new file path.

Output format is CSV to the designated path.

Output has a header and is generated as a single file.

Output will include values if they are mismatched for the column's data type.

-~D® 00T

NOTE: i ncl udeM snat ches is f al se by default. You can setitto t r ue as an override
or as part of the output object definition.

4. Aresponse code of 201 - Creat ed is returned. The response body should look like the following:

{

"sessionld": "79276c31-c58c-4e79-ae5e-fedla25ebcal”,
"reason": "JobStarted",
"jobGaph": {
"vertices": [
21,
22

]

dges": [
{
"source": 21,
"target": 22

]

Iy
"id: 962221,

"jobs": {
"data": [
{

I
{

“id'ro21

5. Retain the i d value, which is the job identifier, for monitoring.

Copyright © 2022 Trifacta Inc. Page #62

Step - Run Job with Overrides - Tables

You can also pass job definition overrides for table-based outputs. For table outputs, overrides include:

® Path to database to which to write (must have write access)
® Connection to write to the target.

Tip: This identifier is for the connection used to write to the target system. This connection must
already exist. For more information on how to retrieve the identifier for a connection, see

https://api.trifacta.com/ee/es.t/index.html#operation/listConnections

* Name of output table
® Target table type

Tip: You can acquire the target type from the vendor value in the connection response. For more
information, see

https://api.trifacta.com/ee/es.t/index.html#operation/listConnections

® action:
Key value Description
Create Create a new table with each publication.

cr eat eAndLoad Append your data to the table.
t runcat eAndLoad | Truncate the table and load it with your data.

dr opAndLoad Drop the table and write the new table in its place.

® |dentifier of connection to use to write data.

® See API Task - Manage Outputs.
® See https://api.trifacta.com/ee/es.t/index.html#operation/getPublication

1. Acquire the internal identifier for the recipe for which you wish to execute a job. In the previous example,
this identifier was 28629.
2. Construct a request using the following:

Endpoint <protocol >://<pl atform base_url >/ v4/jobG oups

Authentication = Required

Method POST

Request Body:

{
"wr angl edDat aset": {
"id": 28629
},
"overrides": {
"publications": [
{
"path": [
"prod_db"
I

Copyright © 2022 Trifacta Inc. Page #63

"t abl eNane": "Tabl e_CaseFct n2",
"action": "createAndLoad",
"target Type": "postgres",
"connectionld": 3
}
]
}

anfront': null

3. Inthe above example, the job has been launched with the following overrides:

NOTE: When overrides are applied to publishing, any publications that are already attached to the
recipe are ignored.

a. Output path is to the pr od_db database, using table name is Tabl e_CaseFct n2.
b. Output action is "create and load." See above for definitions.
c. Target table type is a PostgreSQL table.
4. Aresponse code of 201 - Creat ed is returned. The response body should look like the following:

{

"sessionld": "79276c31-c58c-4e79-ae5e-fedla25ebcal”,
"reason": "JobStarted",
"jobGaph": {
"vertices": [
21,
22

]

’dges": [
{

"source": 21,
"target": 22

]
b,
"id": 962222,
"jobs": {
"data": [
{
"id': 21

5. Retain the i d value, which is the job identifier, for monitoring.

Step - Run Job with Overrides - Webhooks

When you execute a job, you can pass in a set of parameters as overrides to generate a webhook message to a
third-party application, based on the success or failure of the job.

For more information on webhooks, see Create Flow Webhook Task.

Copyright © 2022 Trifacta Inc. Page #64

1. Acquire the internal identifier for the recipe for which you wish to execute a job. In the previous example,
this identifier was 28629.
2. Construct a request using the following:

Endpoint <protocol >://<pl atform base_url >/ v4/jobG oups

Authentication = Required

Method POST

Request Body:

{

"wrangl edDat aset": {
"id": 28629
}

verrides": {
"webhooks": [{
"name": "webhook override",
"url": "http://exanple.cont,
"met hod": "post",
"triggerEvent": "onJobFailure",
"body": {
"text": "override"
b
"headers": {
"test Header": "val 1"
b
"ssl Verification": true,
"secretKey": "123"
}H

3. Inthe above example, the job has been launched with the following overrides:

Override Description

setting

name Name of the webhook.

url URL to which to send the webhook message.

method The HTTP method to use. Supported values: POST, PUT, PATCH, GET, or DELETE. Body is ignored for GET
and DELETE methods.

triggerEvent | Supported values: onJobFai | ur e - send webhook message if job fails 0nJobSuccess - send webhook
message if job completes successfully onJobDone - send webhook message when job fails or finishes
successfully

body (optional) The value of the t Xt field is the message that is sent.

NOTE: Some special token values are supported. See Create Flow Webhook Task.

header (optional) Key-value pairs of headers to include in the HTTP request.

sslVerificati | (optional) Settot I ue if SSL verification should be completed. If not specified, the value ist I ue.
on

secretKey (optional) If enabled, this value should be set to the secret key to use.

4. Aresponse code of 201 - Creat ed is returned. The response body should look like the following:

Copyright © 2022 Trifacta Inc. Page #65

"sessionld":

"79276¢c31-c58c-4e79- aeb5e-fedla25ebcal”,

"reason": "JobStarted",
"jobGraph": {
"vertices": [

21,
22
1.
"edges":
{

]
I
"id": 962222
"jobs": {
"data":

{

b
{

5. Retain the i d value, which is the job identifier, for monitoring.

Step - Run Job with Parameter Overrides

[

'source": 21,

"target": 22

[

“id"ro21

You can pass overrides of the default parameter values as part of the job definition. You can use the following

mechanism to pass in parameter overrides of the following types:

® Datasets with parameters (variable type)

® Qutput object parameters

®* Flow parameters

The syntax is the same for each type.

1. Acquire the internal identifier for the recipe for which you wish to execute a job. In the previous example,
this identifier was 28629.

2. Construct a request using the following:

Endpoint
Authentication

Method

Request Body:

{

<protocol >://<pl atform base_url >/ v4/jobG oups

Required

PCST

"wr angl edDat aset ": {

"id": 28629
}

"overrides":
"runPar anmet

{

ers": {

"overrides": {

"data":

{

"key":

Copyright © 2022 Trifacta Inc.

[

"var Regi on",

Page #66

"val ue": "02"

}
]
}
}
}

"ranfront: null

3. Inthe above example, the specified job has been launched for recipe 28629 . The run parameter var Re
gi on has been set to 02 for this specific job. Depending on how it's defined in the flow, this parameter
could influence change either of the following:

a. The source for the imported dataset.
b. The path for the generated output.
c. A flow parameter reference in the recipe
d. For more information, see Overview of Parameterization.
4. Aresponse code of 201 - Creat ed is returned. The response body should look like the following:

{
"sessionld": "79276c31-c58c-4e79-aebe-fedla25ebcal”,

"reason": "JobStarted",
"jobGaph": {
"vertices": [
21,
22
1.
"edges": [
{
"source": 21,
"target": 22
}
]
H
"id": 962223,
"jobs": {
"data": [
{
"id': 21
b,
{
id 22

5. Retain the i d value, which is the job identifier, for monitoring.

Step - Spark Job Overrides
When it is enabled, you can submit overrides to a specific set of Spark properties for your job.

This feature and the Spark properties to override must be enabled. For more information on enabling this feature,
see Enable Spark Job Overrides .

The following example, shows how to run a job for a specified recipe with Spark property overrides applied to it.
This example assumes that the job has already been configured to be executed on Spark (" executi on":

"spark"):
Endpoint <protocol >://<pl at f orm base_url >/ v4/j obG oups

Authentication = Required

Copyright © 2022 Trifacta Inc. Page #67

Method PCST

Request Body:

{
"wr angl edDat aset ": {
"id": 28629
},
"overrides": {
"sparkOptions": [
{

"key": "spark.executor.cores",
"val ue": "2"

I

{

"key": "spark.executor.nenory",
"val ue": "4GB"

Step - Databricks Job Overrides

You can submit overrides to a specific set of Databricks properties for your job execution. These overrides can be
applied to AWS Databricks or Azure Databricks.

General example

The following example shows how to run a job on Databricks for a specified recipe with several property
overrides applied to it:

Endpoint htt ps://ww. exanpl e. conl v4
/ j obGr oups

Authentication = Required

Method POST

Request Body:

{
"wrangl edDat aset ": {
"id": 60
3
"overrides": {
"execution": "databricksSpark",
"profiler": true,
"dat abricksOptions": [
{"key": "maxWorkers", "value": 8},
{"key": "pool Id", "value": "pool-123456789"},
{"key": "enabl eLocal Di skEncryption", "value": true}
]
}
}

The above overrides do the following:

Copyright © 2022 Trifacta Inc. Page #68

® Sets the maximum number of worker nodes on the cluster to 8. Databricks is permitted to adjust the
number of nodes for job execution up to this limit.

® |nstructs the Databricks cluster to use worker pool pool - 123456789 for the job.

® Enables encryption on the local Databricks cluster node of temporary job files for additional security.

Databricks job overrides reference
The following properties can be overridden for AWS Databricks and Azure Databricks jobs:

{
"wrangl edDat aset": {"id": 60},
"overrides": {
"dat abricksOptions": [
"autoterm nati onM nutes" : <integer_override_val ue>,
"awsAttributes.availability" : "<string_override_val ue>",
"awsAttributes. avail abilityZone" : "<string_override_val ue>",
"awsAttri but es. ebsVol une. count” : <integer_override_val ue>,
"awsAttri butes. ebsVol une. si ze" : <integer_override_val ue>,
"awsAttributes. ebsVol une.type" : "<string_override_val ue>",
"awsAttributes. first OnDemandl nst ances"” : <integer_override_val ue>,
"awsAttributes.instanceProfil eArn" : "<string_override_val ue>",
"awsAttributes. spot Bi dPricePercent” : <deci nal _override_val ue>,
"clusterMde" : "<string_override_val ue>",
"clusterPolicyld" : "<string_override_val ue>",
"driverNodeType" : "<string_override_val ue>",
"enabl eAut ot erm nation" : <bool ean_overri de_val ue>,
"enabl eLocal Di skEncryption" : <bool ean_override_val ue>,
"l ogsDestination" : "<string_override_val ue>",
"maxWor kers" : <integer_override_val ue>,
"m nWorkers" : <integer_override_val ue>,
"pool Id" : "<string_override_val ue>",
"pool Nane" : "<string_override_val ue>",
"driverPool 1d" : "<string_override_val ue>",
"driverPool Nane" : "<string_override_val ue>",
"serviceUrl" : "<string_override_val ue>",
"sparkVersion" : "<string_override_val ue>",
"wor ker NodeType" : "<string_override_val ue>",

NOTE: Overrides that begin with awsAt t ri but es apply to AWS Databricks only.

NOTE: If a Databricks cluster policy is used, all job-level overrides except for cl ust er Pol i cyl d are
ignored.

For more information:

® Configure for Azure Databricks
® Configure for AWS Databricks

Copyright © 2022 Trifacta Inc. Page #69

APl Task - Run Job on Dataset with Parameters

Contents:

® Overview
® Example Datasets
® Step - Create Containing Flow
® Step - Create Datasets with Parameters
® Example 1 - Dataset with Datetime parameter
® Example 2 - Dataset with Variable
® Example 3 - Dataset with pattern parameter
® Example 4 - Dataset with parameterized bucket name
® Step - Wrangle Data
® Step - Run Job
® Example 1 - Dataset with Datetime parameter
® Example 2 - Dataset with Variable
®* Example 3 - Dataset with pattern parameter
®* Example 4 - Dataset with parameterized bucket name
® Step - Monitoring Your Job
® Step - Re-run Job

Overview
This example task describes how to run jobs on datasets with parameters through Designer Cloud Powered by
Trifacta® Enterprise Edition.

A dataset with parameters is a dataset in which some part of the path to the data objects has been
parameterized. Since one or more of the parts of the path can vary, you can build a dataset with parameters to
capture data that spans multiple files. For example, datasets with parameters can be used to parameterize
serialized data by region or data or other variable. For more information on datasets with parameters, see
Overview of Parameterization.

Basic Task

The basic method by which you build and run a job for a dataset with parameters is very similar to the non-
parameterized dataset method with a few notable exceptions. The steps in this task follow the same steps for the
standard task. Where the steps overlap links have been provided to the non-parameterized task. For more
information, see API Task - Develop a Flow.

Example Datasets
This example covers three different datasets, each of which features a different type of dataset with parameters.

Example Parameter Description
Number Type

1 Datetime In this example, a directory is used to store daily orders transactions. This dataset must be defined with a
parameter Datetime parameter to capture the preceding 7 days of data. Jobs can be configured to process all of this
data as it appears in the directory.

2 Variable This dataset segments data into four timezones across the US. These timezones are defined using the
following text values in the path: paci fi ¢, nount ai n,cent r al , and east er n. In this case, you
can create a parameter called I €gi ON, which can be overridden at runtime to be set to one of these four
values during job execution.

3 Pattern
parameter

Copyright © 2022 Trifacta Inc. Page #70

This example is a directory containing point-of-sale transactions captured into individual files for each region.
Since each region is defined by a numeric value (01, 02, 03), the dataset can be defined using a pattern

parameter.
4 Environment | An environment parameter is defined by an admin and is available for every user of the project or
parameter workspace. In particular, environment parameters are useful for defining source bucket names, which may

vary between environments in the same organization.

Step - Create Containing Flow
You must create the flow to host your dataset with parameters.

In the response, you must capture and retain the flow Identifier. For more information, see
API Task - Develop a Flow.

Step - Create Datasets with Parameters

NOTE: When you import a dataset with parameters, only the first matching dataset is used for the initial
file. If you want to see data from other matching files, you must collect a new sample within the
Transformer page.

Example 1 - Dataset with Datetime parameter

Suppose your files are stored in the following paths:

MyFi | es/ 1/ Dat et i me/ 2018- 04- 06- or der s. csv
MyFi | es/ 1/ Dat eti me/ 2018- 04- 05- or der s. csv
M/Fi | es/ 1/ Dat eti me/ 2018- 04- 04- orders. csv
MyFi | es/ 1/ Dat et i me/ 2018- 04- 03- or der s. csv
M/Fi | es/ 1/ Dat eti me/ 2018- 04- 02- orders. csv
M/Fi | es/ 1/ Dat eti me/ 2018- 04- 01- order s. csv
MyFi | es/ 1/ Dat et i me/ 2018- 03- 31- or der s. csv

When you navigate to the directory through the application, you mouse over one of these files and select Paramet
erize.

In the window, select the date value (e.g. YYYY- MM DD) and then click the Datetime icon.
Datetime Parameter:

®* Format: YYYY- MM DD

® Date Range: Date is last 7 days.

® Click Save.

The Datetime parameter should match with all files in the directory. Import this dataset and wrangle it.

After you wrangle the dataset, return to its flow view and select the recipe. You should be able to extract the
flowld and recipeld values from the URL.

For purposes of this example, here are some key values:

¢ flowld: 35
® recipeld: 127

Example 2 - Dataset with Variable

Suppose your files are stored in the following paths:

Copyright © 2022 Trifacta Inc. Page #71

MyFi | es/ 1/ vari abl e/ census- east ern. csv
M/Fi | es/ 1/ vari abl e/ census-central . csv
MyFi | es/ 1/ vari abl e/ census- nount ai n. csv
M/Fi | es/ 1/ vari abl e/ census- paci fic. csv

When you navigate to the directory through the application, you mouse over one of these files and select Paramet
erize.

In the window, select the region value, which could be one of the following depending on the file: east er n, cent
ral , mount ai n, or paci fi c. Click the Variable icon.

Variable Parameter:
® Name:regi on
¢ Default Value:Set this default to paci fi c.

® Click Save.

In this case, the variable only matches one value in the directory. However, when you apply runtime overrides to
the r egi on variable, you can set it to any value.

Import this dataset and wrangle it.

After you wrangle the dataset, return to its flow view and select the recipe. You should be able to extract the
flowld and recipeld values from the URL.

For purposes of this example, here are some key values:

¢ flowld: 33
® recipeld: 123

Example 3 - Dataset with pattern parameter

Suppose your files are stored in the following paths:

M/Fi | es/ 1/ pattern/ POS-r01. csv
M/Fi | es/ 1/ pattern/ POS-r02. csv
MyFi | es/ 1/ pattern/ PCS-r03. csv

When you navigate to the directory through the application, you mouse over one of these files and select Paramet
erize.

In the window, select the two numeric digits (e.g. 02). Click the Pattern icon.
Pattern Parameter:

® Type: Pattern

® Matching regular expression: {di gi t } { 2}

® Click Save.

In this case, the Pattern should match any sequence of two digits in a row. In the above example, this
expression matches: 01, 02, and 03, all of the files in the directory.

Import this dataset and wrangle it.

After you wrangle the dataset, return to its flow view and select the recipe. You should be able to extract the
flowld and recipeld values from the URL.

For purposes of this example, here are some key values:

Copyright © 2022 Trifacta Inc. Page #72

* flowld: 32
® recipeld: 121

Checkpoint: You have created flows for each type of dataset with parameters.

Example 4 - Dataset with parameterized bucket name
You can parameterize part or all of the bucket name in your source or target paths.

Suppose you have multiple workspaces that use different S3 buckets for sources of data. For example, your
environments might look like the following:

Environment S3 Bucket Name
Dev myco-dev

Prod myco-prod

For your datasources, you can parameterize the name of the bucket, so that if you migrate your flow between
these environments, the references to datasources are updated based on the parameterized value for the bucket
in the new environment.

Create environment parameter
Parameterized buckets are a good use for environment parameters. An environment parameter is a parameter
that is available for use by every user in the project or workspace. In this case, the bucket name can be

referenced for all datasets in the project or workspace, so turning that value into a parameter makes managing
your datasources much more efficient.

You can use the following example to create environment parameter called env. bucket Nane, with a value of ny
co- dev. This environment parameter would be created in your Dev environment:

NOTE: The overri deKey value, which is the name of the environment parameter, must begin with env. .

Endpoint htt p: // ww. exanpl e. com 3005/ v4/ envi r onnent Par anet er s

Authentication = Required

Method PCST
Request Body {
"overrideKey": "env.bucket Nanme",
"val ue": {
"variable": {
"val ue": "nyco-dev"
}
}
}
Response {
"ido1,
"overrideKey": "env.bucket Nanme",
"val ue": {
"variable": {
"val ue": "nyco-dev"

Copyright © 2022 Trifacta Inc. Page #73

}
b

"createdAt": "2021-06-24T14:15: 222",
"updat edAt": "2021-06-24T14: 15: 222",
"del eted_at": "2021-06-24T14:15: 227",

"usagel nfo": {
"runParanmeters": 1
}
}

For more information on creating environment parameters, see
https://api.trifacta.com/ee/es.t/index.html#operation/createEnvironmentParameter

Create dataset with parameterized bucket name

The following example creates an imported dataset with two parameters:

Parameter Parameter Environment Description
Name Type Parameter?
myPath path No The parameterized part of the path.
The static value is / .
The default value is / dunty.
In this case, for the job run, the value is overridden with / dunmy 2.
env. bucket Yes The parameterized part of the bucket path.
bucketName
The static value is My CO- .
In this case, for the job run, the value deV is inserted after the fifth
character in the variable.
Endpoint http://ww. exanpl e. com 3005/ v4/i nport edDat aset s

Authentication = Required
Method PCST

Request Body {

"name”: "Dummy Dat aset",

"uri": "/path",

"description": "My S3 paraneterized dataset",
"type": "S3",

"isDynami c": true,
"runParaneters": [
{
"type": "path",
"overrideKey": "nyPath",
"insertionlndices": [
{
"i ndex": 1,
"order": O
}
1

"val ue": {
"variable": {

"val ue": "dummy2"
}

}
o

Copyright © 2022 Trifacta Inc.

Page #74

"type": "bucket",
"overrideKey": "env.bucket Parant,
"insertionlndices": [
{
"index": 5,
"order": 0
}
1.
"val ue": {
"variable": {
"val ue": "dev"
}
}
}
I,
"dynam cBucket": "nyco-",
"dynam cPath": "/"

Response

"visible": true,
"nunfFl ows": 0,
"path": "/dunmmy",
"bucket": "",
"type": "s3",
"isDynami c": true,
"runParaneters": [
{
"type": "path",
"overrideKey": "nyPath",
"insertionlndices": [
{
"i ndex": 1,
"order": O
}
1,
"val ue": {
"variable": {
"val ue": "dummy2"
}
3

"i sEnvironnent Paraneter": false

"type": "bucket",
"overrideKey": "env.bucket Parant,
"insertionlndices": [
{
"i ndex": 5,
"order": O
}
1,
"val ue": {
"variable": {
"val ue": "dev"
}
3
"i sEnvironnment Paraneter": true
}
1,
"dynami cBucket": "nyco-",
"dynam cPath": "/"

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createlmportedDataset

Copyright © 2022 Trifacta Inc. Page #75

Step - Wrangle Data

After you have created your dataset with parameter, you can wrangle it through the application. For more
information, see Transformer Page.

Step - Run Job

Below, you can review the API calls to run a job for each type of dataset with parameters, including relevant
information about overrides.

Example 1 - Dataset with Datetime parameter

NOTE: You cannot apply overrides to these types of datasets with parameters. The following request
contains overrides for write settings but no overrides for parameters.

1. Endpoint http://ww. exanpl e. com 3005/ v4/j obG oups
Authentication = Required

Method POST

Request Body {

"wr angl edDat aset ": {

“id": 127
3
"overrides": {

"execution": "photon",

"profiler": true,

"witesettings": [

{
"path": "MFil es/queryResul ts/joe@xanpl e.conl 2018- 04- 03-orders. csv",

"action": "create",
"format": "csv",
"conpression": "none",

"header": fal se,
"asSingleFile": false
}
]
}

unPar aneters": {}

2. Inthe above example, the job has been launched for recipe 127 to execute on the Trifacta Photon running
environment with profiling enabled.
a. Output format is CSV to the designated path. For more information on these properties, see
https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup
b. Output is written as a new file with no overwriting of previous files.
3. Aresponse code of 201 - Creat ed is returned. The response body should look like the following:

{
"sessionld": "79276c31-c58c-4e79-aebe-fedla25ebcal”,
"reason": "JobStarted",
"jobGaph": {
"vertices": [
21,
22

]

dges": [

Copyright © 2022 Trifacta Inc. Page #76

"source": 21,
"target": 22

4. Retain the j obgr oupl d=29 value for monitoring.

Example 2 - Dataset with Variable

In the following example, the r egi on variable has been overwritten with the value cent r al to execute the job

onorders-central . csv:

1. Endpoint htt p: // ww. exanpl e. com 3005/ v4/j obG oups

Authentication = Required
Method PCST

Request Body {

"wr angl edDat aset ":
"id": 123

}

{

"pat h":
"action":
"format": "
"conpression":
"header":
"asSingleFile":

}
]
b

"runPar aneters":
"overrides":

"data":

"Key":
"val ue":

verrides": {
"execution":
"profiler":
"witesettings":

"MFil es/ queryResul t s/ j oe@xanpl e. coni r egi on- eastern. csv",

2. Inthe above example, the job has been launched for recipe 123 to execute on the Trifacta Photon running

environment with profiling enabled.
a. Output format is CSV to the designated path. For more information on these properties, see
https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Copyright © 2022 Trifacta Inc.

Page #77

b. Output is written as a new file with no overwriting of previous files.

3. Aresponse code of 201 -

Cr eat ed is returned. The response body should look like the following:

{
"sessionld": "79276c31-c58c-4e79-ae5e-fedla25ebcal”,
"reason": "JobStarted",
"jobGaph": {
"vertices": [
21,
22
1
"edges": [
{
"source": 21,
"target": 22
}
]
I
"id" 27,
"jobs": {
"data": [
{
"id" 21
I
{
"id" 22
}
]
}
}

4. Retain the j obgr oupl d=27 value for monitoring.

Example 3 - Dataset with pattern parameter

NOTE: You cannot apply overrides to these types of datasets with parameters. The following request
contains overrides for write settings but no overrides for parameters.

1. Endpoint htt p: // ww. exanpl e. com 3005/ v4/j obG oups
Authentication = Required
Method PCST
Request Body {
"wr angl edDat aset ": {
"id': 121
H
"overrides": {
"execution": "photon",
"profiler": false,
"witesettings": [
{
"path": "hdfs://hadoop: 50070/ tri factal/ queryResul t s/ adm n@xanpl e. con? PCS- r 02.
txt”
"action": "create",
"format": "csv",
"conpression": "none",
"header": fal se,
"asSingleFile": false
}
]
},

Copyright © 2022 Trifacta Inc.

Page #78

"runPar anet ers":

}

2. Inthe above example, the job has been launched for recipe 121 to execute on the Trifacta Photon running

environment with profiling enabled.
a. Output format is CSV to the designated path. For more information on these properties, see
https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup
b. Output is written as a new file with no overwriting of previous files.
3. Aresponse code of 201 - Creat ed is returned. The response body should look like the following:

{

"sessionld": "79276c31-c58c-4e79-aebe-fedla25ebcal”,

"reason": "JobStarted",
"jobGaph": {
"vertices": [
21,
22
]

’dges": [
{

"source": 21,

"target": 22

4. Retain the j obgr oupl d=28 value for monitoring.

Example 4 - Dataset with parameterized bucket name

The following example contains a parameterized bucket reference, with a specified override value. Administrators
and project owners can specify the default value for environment parameters, and users can specify overrides for

these values at job execution time.

Endpoint http: //ww. exanpl e. com 3005/ v4/j obG oups

Authentication = Required

Method POST

Request Body {

"wr angl edDat aset ":

"idvr 121
}

"overrides": {

"key": "env.bucket Nane",

"data": [
{
"val ue":
}

]

Copyright © 2022 Trifacta Inc.

"runParaneters": {

Page #79

In the above example, the job has been launched for recipe 121 to execute with the env. bucket Nanme override
value (nyco- dev?2) for the environment parameter.

For more information on these properties, see https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Step - Monitoring Your Job

After the job has been created and you have captured the jobGroup Id, you can use it to monitor the status of
your job. For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroup

Step - Re-run Job

If you need to re-run the job as specified, you can use the wrangledDataset identifier to re-run the most recent job.

Tip: When you re-run a job, you can change any variable values as part of the request.

Example request:
Endpoint http://ww. exanpl e. com 3005/ v4/j obG oups

Authentication = Required

Method POST

Request Body {

"wr angl edDat aset ": {
"id": 123

H

"runParaneters": {
"overrides": {

"data": [{
"key": "region",
"value": "central"

For more information, see API Task - Develop a Flow.

Copyright © 2022 Trifacta Inc. Page #80

APl Task - Run Plan

Contents:

Prerequisites

Step - Run Plan

Step - Run Plan with Overrides
Step - Monitoring Your Plan Run
Step - Add Flow Messages

This section describes how to run a plan using the APIs available in Designer Cloud Powered by Trifacta®
Enterprise Edition.

® A planis a scheduled sequence of tasks based on a trigger that you define.
®* When a plan is executed via API, the request is the trigger, and the plan is executed immediately.
® Plans can be designed in the Designer Cloud application . For more information, see Plans Page.
® For more information on plans in general, see Overview of Operationalization.
A note about API URLSs:

In the listed examples, URLs are referenced in the following manner:

<protocol >://<pl at f orm base_ur| >/

In your product, these map references map to the following:

<http or https>://<hostname>: <port _nunber>/

For more information, see API Reference.

Prerequisites
Before you begin, you should verify the following:

1. Get authentication credentials. As part of each request, you must pass in authentication credentials to
the platform.

Tip: The recommended method is to use an access token, which can be generated from the Desig
ner Cloud application . For more information, see Access Tokens Page.

For more information, see https://api.trifacta.com/ee/es.t/index.html#section/Authentication
2. Verify plan and its flows and outputs:
a. You must create a plan first. See Plan View Page.
b. As part of creating that plan, you must verify that all referenced flows and output objects are
properly defined and can be executed independently.

NOTE: In a flow, all recipes that you wish to have executed by the corresponding task must
have a defined output object. For each output object, you must create at least one write
settings or publication object. During plan runs, these objects are not validated, and tasks
fail without them.

Copyright © 2022 Trifacta Inc. Page #81

c. Any applicable parameters are applied to the tasks at the time of execution. Parameter overrides
are not supported in plans.
d. See Flow View Page.
3. Verify plan execution. Run the desired plan through the Designer Cloud application and verify that the
output objects are properly generated. See Plan View Page.
4. Acquire plan identifier. In Plan View, acquire the numeric value for the plan from the URL. In the
following, the plan Id is 1234:

http://<pl atform base_url >/ pl ans/ 1234

Step - Run Plan
Through the APIs, you can run a plan. Construct a request like the following, where:

® <j d>is the plan identifier that you already extracted from the Plan View URL.

Endpoint <protocol >://<pl at form base_url| >/ v4/ pl ans/ <i d>/run
Authentication Required

Method POST

Request Body None.

Response Code 201 - Created
Response Body {

"val i dationStatus": "Valid",
"pl anSnapshot Runl d": 2

If the 201 response code is returned, then the plan has been queued for execution.

Tip: Retain the i d value in the response. In the above, 2 is the internal identifier for the plan run, which is
referenced via the generated snapshot of the corresponding flows in the plan's tasks. You will need this
value to check on your plan run status.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/runPlan

Checkpoint: You have queued your plan for execution.

Step - Run Plan with Overrides

When you run your plan, you can apply overrides to any of the parameters that are sourced in flow tasks within
the plan. Overrides are applied in the body request when submitting to the plan run API endpoint.

Endpoint <protocol >://<pl atf orm base_url >/ v4/ pl ans/ <i d>/ run

Authentication Required

Method POST

Copyright © 2022 Trifacta Inc. Page #82

Request Body {
"pl anNodeOverrides": [

{
"handl e": "ax",
"overrideKey": "region",
"val ue": {
"variable": {
"val ue": "02"
}
}
o
{
"handl e": "cq",
"overrideKey": "state",
"val ue": "CA"
}

Response Code 201 - Created

Response Body {

"val i dationStatus": "Valid",
"pl anSnapshot Runl d": 2
}
Request Description
Body
Attribute
handl e This value corresponds to the identifier for the task node in Plan View. In the Designer Cloud application ,

Tasks are label in the following format:

<t ask_t ype>- <handl el d>

where:

e <task_type> - isastring literal:
e f| ow ask denotes a flow task.
¢ htt p denotes an HTTP task.
¢ sl| ack denotes a Slack task.
e del et e denotes a Delete task.
e <handl el d> - a lowercase identifier for the task. Handle value must be two lowercase letters, at a minimum.
Value must be unique to the tasks of the plan. This value is used as the handl e value.

Tip: You can retrieve this value by selecting the task in Plan View, which is listed at the top of the task icon.

overri de | The name of the parameter to override.

Key
val ue The override value to apply to the parameter. This value can be specified as a String value or as a JSON object. See the

previous examples.

If the 201 response code is returned, then the plan has been queued for execution.

Copyright © 2022 Trifacta Inc. Page #83

Tip: Retain the i d value in the response. In the above, 2 is the internal identifier for the plan run, which is
referenced via the generated snapshot of the corresponding flows in the plan's tasks. You will need this
value to check on your plan run status.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/runPlan

Step - Monitoring Your Plan Run
You can monitor the status of your plan run through the following endpoint, where:

® <j d>is the plan snapshot identifier for your run that you retained from the previous step.

Endpoint <protocol >://<pl at f orm base_url >/ v4/ pl anSnapshot Runs/ <i d>
Authentication Required
Method CET
Request Body None.
Response Code 200 - K
Response Body {
"id": 2
"status": "lnProgress”,
"schedul eHi storyld": null,
"startedAt": "2020-04-23T17:53: 33. 466Z"
"finishedAt": null,
"submittedAt": "2020-04-23T17:53: 32.9932"
"executionld": null,
"createdAt": "2020-04-23T17:53: 33.3122Z"
"updat edAt": "2020-04-23T17:53: 33. 499Z"

"plan": {
"idho 1

When the plan run has successfully completed, the returned status message includes the following:

"status": "Conplete",

For more information, see https://api.trifacta.com/ee/es.t/index.html#tag/PlanSnapshotRunYou can also review
your plan runs through the Designer Cloud application at the following URL:

<protocol >://<pl at form base_ur| >/ pl ans/ <pl anl d>/ r uns/ <pl anSnapshot Runl d>

Tip: You have executed the plan run. Results have been delivered to the designated output locations.

Step - Add Flow Messages

Copyright © 2022 Trifacta Inc. Page #84

You can configure flow webhooks and email notifications to deliver to stakeholders through the individual flows
that are referenced in your plans.

NOTE: These features may require enablement and configuration in your environment.

For more information on these messaging types, see Overview of Operationalization.

A flow webhook is a REST API-based message that is triggered on the success or failure of generating an

output from a flow. When the output referenced in a plan is generated, any webhook messages for the output are
also triggered.

NOTE: You can define the equivalent of a webhook in your plan. HTTP tasks execute similar requests to
a flow webhook and are an integrated part of plans. For more information, see Create HTTP Task.

Some uses:

® You can configure webhooks to deliver messages for each output referenced in the flow. Based on the
schedule for your flow, you can review these messages to determine if the flow executed properly.
® You can configure a final output in the final task that is executed after the upstream recipes in the same
flow.
® All of the upstream recipes in the flow feed into a final recipe, which generates an unused output.
®* When you create a flow webhook based on this final output, you can send a message that the final task
has been executed.
® For more information, see Create Flow Webhook Task.

An email notification is an email that is sent through the configured SMTP server to stakeholders based on the
successful or failed execution of an output. You can define email notifications for your individual flows, and these
messages get delivered as part of the flow execution that is part of the plan.

Tip: When an email notification is sent as part of task execution, the internal plan identifier is included as
part of the message.

For more information on email notification, see Manage Flow Notifications Dialog.

Copyright © 2022 Trifacta Inc. Page #85

API Task - Define Deployment Import Mappings

Contents:

® Import Rules
® Notes on import rules
Import Rule Requirements
Import Rule Types
® Object Mapping Types
® Value Mapping Types
® Examples
Example - Replace a connection
Example - Remap an HDFS location
Example - Remap an S3 location
Example - Remap a WASB location
Example - Remap an ADLS Gen2 location
Example - Remap an ADLS Genl location
® Example - Remap a relational datasource
¢ Import Dry-Run

Before you import a packaged flow into a Production environment, you may need to apply import rules to remap
objects and locations from the source instance to the new instance. Import mapping rules are not required when
importing into the same environment, although they may be helpful in some cases.

Tip: If you are importing a flow that references file-based sources and wish to use the original files in
your imported file, you may find it easier to configure the importing user's permissions to access the
appropriate directories of the sources and then to swap datasets as needed after you complete the
import. This method is suitable and easier to do across a fewer number of flows.

NOTE: Import mapping rules apply to deployments in a Production instance under deployment
management. You cannot apply import mapping rules between two Dev instances.

NOTE: Import mapping rules do not apply to any SQL referenced in your flows or datasets. In addition to
remapping the connection identifiers, you should store your database names and table names as
environment parameters, which apply to the entire workspace. These variables can be exported from one
workspace and imported into another, where they can be updated to the correct value for the workspace.
For more information, see Overview of Parameterization.

NOTE: Import mapping rules require the use of the APIs made available from the Designer Cloud
powered by Trifacta® platform . APl usage is considered a developer-level skill.

® For more information on creating an export package, see Export Flow.
® For more information on how to import, see Import Flow.

You can apply the following types of remappings:

Type Description

Value | For value remappings, you can specify rules to match on specific values or patterns of values in the import package and remap
those values for use in the new instance.

Copyright © 2022 Trifacta Inc. Page #86

NOTE: In this release, value remapping is supported only for S3 bucket names and paths to imported datasets and
output locations. Examples are provided below.

Object = For object remappings, you can specify rules to match a value listed in the import package and remap that value to a defined
object in the new instance.

NOTE: In this release, object remapping is supported only for connections. An example is provided below.

Import Rules

When a flow is imported, references in the flow definition that apply in the source instance may not apply in the
target instance. For example, the location paths to the source datasets may need to be rewritten to point to a

different location in the target instance.

Before you import your flow definition, you need to define rules for any value or object remapping that must be
done in the target environment.

Notes on import rules

1. Value and object remapping rules should be completed before you import the flow. The flow may be non-
functional until the rules are applied.

Tip: After you create your import rules, you can perform via API a dry run of the import. Any errors
are reported in the response. Details are provided below.

2. Value and object remapping rules are applied at the time of import. If you add new rules, they are not
retroactively applied to release packages that have already been imported.

3. When changing rules:
a. Any previously applied rules to the same import object are deleted.

b. You can apply multiple rules in the same change.
c. Rules are applied in the order in which they are listed in the request. Rules listed later in the request

must be compatible with expected changes applied by the earlier rules.
4. Value and object remapping must be completed via API. API usage is considered a developer-level skill.

Examples are provided below.

NOTE: Import mapping rules do not work for parameterized datasets. If the imported dataset with
parameters is still accessible, you should be able to run jobs from it.

Import Rule Requirements

® |f you are importing into the same instance from which you exported (Dev/Test/Prod on the same instance):

® Import rules are not required.
® |f you want to use a different source of data in your Prod flow, you must create import rules.

® |f you are importing into a different instance from which you exported (Dev and Prod on different instances):
® Import rules are required, except in unusual cases.

Import Rule Types

The following types of rules can be applied to import mappings.

Copyright © 2022 Trifacta Inc. Page #87

NOTE: Depending on the type of mapping, some of these rules may not apply. Please be sure to review
the Examples below.

Object Mapping Types
Type Description
t abl e | Setthis valueto connect i ons. You must then specify the UUI d of the connection identifier in the imported flow and

Nanme replace it with the internal identifier of the connection in the importing instance.

Value Mapping Types

Type Description

fil eLocati This type is used to remap paths to files.
on

NOTE: fi | el ocat i on rules apply to both input and output paths. Paths and their rules should be
defined with care.

s3Bucket (AWS) Name of the S3 to remap.
dbTabl eNane | (relational source) Name of the table to remap.
dbPat h (relational source) Path to the database table. This value is an array.

host (Azure) Depending on the Azure datastore, this rule replaces:

® WASB: blobhost name
® ADLS Gen2: storage account
® ADLS Genl: datastore in the datalake

userinfo (Azure) Depending on the Azure datastore, this rule replaces:

® WASB: container name
® ADLS Gen2: filesystem name

Examples
The following are some example import rules to address specific uses.
Example - Replace a connection

In this following example, you must remap the connection from the source instance of the platform to the
corresponding connection in the instance where you are importing.

First, you must be able to uniquely identify the connection from the source that you wish to remap.
® While the connection Id may work in a limited scope, that identifier is unlikely to be unique within your
environment.

® If you do know the connect Id from the source system, you can skip the first step below.

In the API response in a connection definition, you can acquire the uui d value for the connection, which is a
unique identifier for the connection object across all instances of the platform:

Item v4 APIs

API| Endpoint From the source instance:

/v4/ connecti ons

Copyright © 2022 Trifacta Inc. Page #88

Method

Request Body None.

Response Body

"data": [

"connect Parans": {
"vendor": "redshift",
"vendor Nanme": "redshift",
"host": "redshift.exanple.coni,
"port": "5439",

"extralLoadParans”: "BLANKSASNULL EMPTYASNULL TRI MBLANKS TRUNCATECOLUWNS',

"def aul t Dat abase": "test"
H
"id" 2,
"host": "redshift.exanple.conf,
"port": 5439,
"vendor": "redshift",
"parans": {

"extralLoadParans”: "BLANKSASNULL EMPTYASNULL TRI MBLANKS TRUNCATECOLUWNS',

"def aul t Dat abase": "test"
H
"ssl": fal se,
"vendor Nanme": "redshift",
"nane": "redshift",
"description": null,
"type": "jdbc",
"isdAobal": true,
"credential Type": "ianRol eArn",
"credential sShared": true,
"uui d": "097c2300- 2f 6a- 11e9- a585- 57562e0d9cd6",
"di sabl eTypel nference": fal se,
"createdAt": "2019-02-13T08: 33: 28. 368Z",
"updat edAt": "2019-02-13T08: 33: 28. 3812",
"credentials": [

{

"ianRol eArn": "arn:aws:iam sonet hi ng",
"usernanme": "User Nane"

}
1
"creator": {

"idso 1
H
"updater": {

"id' 1
H
"wor kspace": {

"id'r 1
}

"connect Parans": {

"vendor": "hive",

"vendor Nanme": "hive",

"host": "hadoop",

"port": "10000",

"jdbc": "hive2",

"def aul t Dat abase": "defaul t"
H
"id" 1,
"host": "hadoop",
"port": 10000,
"vendor": "hive",
"parans": {

Copyright © 2022 Trifacta Inc.

Page #89

]

"count":

}

i

"jdbc": "hive2",
"connect StringOptions":
"def aul t Dat abase": "defaul t"

b

"ssl fal se,

"vendor Nane": "hive",

"nane": "hive",

"description": null,

"type": "jdbc",

"isd@obal": true,

"credential Type": "conf",

"credenti al sShared": true,

"uui d": "08alal80-2f 6a- 11e9- b2b2- 85d2b0b67f 5",
"di sabl eTypel nference": fal se,
"createdAt": "2019-02-13T08: 33: 26. 936Z",
"updat edAt": "2019-02-13T08: 33: 26. 9527",
"credentials": [],

"creator": {

"idhro 1

b

"updater": {
"id'ro 1

b

"wor kspace": {
idUro1

}

2

Documentation | See https://api.trifacta.com/ee/es.t/index.html#operation/getConnection

In the above, you identify that the connection used for the exported flow is the Redshift one. This object has the
following unique identifier:

"uuid": "097c2300- 2f 6a- 11e9- a585- 57562e0d9cd6"

In the target system, you must now create a rule in the deployment into which you are importing that searches for
this unique value. In the following example:

® The deploymentld is known to be 4.

® The connectionld for the equivalent Redshift connection in the target system is 1.

The uui d field in the import package is searched for the matching string. If it is found, the connection in the

import package is replaced with the connection in the target system with an Id of 1:

Item v4 APIs

API Endpoint

Method PATCH

Request Body [

{

/ v4/ depl oyment s/ 4/ obj ect | nport Rul es

"t abl eNane": "connections",
"onCondi tion": {

I

"uui d":

"097c2300- 2f 6a- 11e9- a585- 57562e0d9cd6"”

"wi thCondition": {

Copyright © 2022 Trifacta Inc.

Page #90

Status Code 200 - OK

- Success
Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
"del eted": {

"data": []
}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateObjectimportRules

To test your rule, perform a dry run of the import. See below.
Example - Remap an HDFS location

In this example, your import rule must remap the path to the source from your Dev paths to your Prod paths.
Suppose the pattern looks like this:

Dev Path hdfs://dataset s/ dev/ 1/ 164e0Obca-8c91-4e3c-9d0a- 2a85eedec817/ nyDat a. csv

Prod hdf s: // dat aset s/ prod/ 1/ 164e0bca- 8c91- 4e3c- 9d0a- 2a85eedec817/ nyDat a- Pr od.
Path csv

Note the differences:

® The/dev/ part of the path has been replaced by / pr od/ .
®* The filename is different.

You can use the following value import rules to change the path values. In the following example, the rules are
applied separately.

NOTE: You can specify multiple rules in a single request. Rules are applied in the order that they are
listed. Latter rules must factor the results of earlier rules.

Request:
Iltem v4 APIs
AP Endpoint / v4/ depl oynment s/ 4/ val uel nport Rul es
Method PATCH

Request Body:

Copyright © 2022 Trifacta Inc. Page #91

[
{"type":"fileLocation","on":"/\/dev\//","with":"/prod/"},
{"type":"fileLocation","on":"/\/([a-zA-Z0-9_]*).csv/","wi th":"$1-Prod. csv"}
]

Response:

Item v4 APIs

Status Code | 200 - OK

- Success
Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
"del eted": {
"data": []

}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateValuelmportRules

To test your rule, perform a dry run of the import. See below.
Example - Remap an S3 location
For S3 sources, you can apply remapping rules including changing to a new S3 bucket.

In this example, your import rule must remap the path to the source from your Dev paths to your Prod paths.
Suppose the pattern looks like this:

Dev S3 Bucket Name | W angl e- dev
Dev Path / projs/tweets/v04/tweets_nonth. csv
Prod S3 Bucket Name | Wr angl e- pr od

Prod Path /tweet s/tweets_nont h. csv
You can use the following value import rules to change the bucket name and path values.

NOTE: You can specify multiple rules in a single request. Rules are applied in the order that they are
listed. Latter rules must factor the results of earlier rules.

s3Bucket name rule: This rule replaces the name of the S3 bucket to use with the new one: wr angl e- pr od.
fileLocation rule: This rule uses regular expressions to match each segment of the path in the bucket's paths.

Files are located at a consistent depth in the source bucket.

Path segments and filename use only alphanumeric values and underscores ().

The replacement path is shortened to contain only the parent name ($2) and the filename ($4) in the path.
This rule applies to both input and output object file paths.

Copyright © 2022 Trifacta Inc. Page #92

Request:

Item v4 APIs

API Endpoint / v4/ depl oynent s/ 4/ val uel nport Rul es

Method PATCH

Request Body:

[
{"type":"s3Bucket","on":"w angl e-dev","wi th":"w angl e-prod"},
{"type":"fileLocation","on":"/\/([a-zA-Z0-9_]*)\/([a-zA-Z0-9_]*)\/([a-zA-Z0-9_]*)\/([a-zA-Z0-9_]*).csv/","
with":"/$2/ $4. csv"}
]

Response:

Item v4 APIs

Status Code | 200 - OK

- Success
Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
"del eted": {
"data": []

}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateValuelmportRules

To test your rule, perform a dry run of the import. See below.
Example - Remap a WASB location
For WASB sources, you can apply remapping rules during import.
In this example, your import rule must remap the blob host, container, and file location:
Dev Blobhost st or age- washb- account - dev. bl ob. cor e. wi ndows. net
Dev Container cont ai ner - dev
Dev File Location |/ proj s/ wor k/ orders. csv
Prod Blobhost st or age- wasb- account - prod. bl ob. cor e. wi ndows. net

Prod Container cont ai ner - pr od

Copyright © 2022 Trifacta Inc. Page #93

Prod File Location |/ 2003/t ransacti ons/orders. csv
You can use the following value import rules to change the blobhost, container, and file paths.

NOTE: You can specify multiple rules in a single request. Rules are applied in the order that they are
listed. Latter rules must factor the results of earlier rules.

host rule: This rule replaces the blobhost name to use with the new one: st or age- wasb- account - pr od.
bl ob. core. wi ndows. net .

userinfo rule: This rule replaces the container name to use with the new one: cont ai ner - pr od.

fileLocation rule: This rule performs a text substitution to replace the file path. This rule applies to both input and
output object file paths.

Request:
Item v4 APIs
AP Endpoint / v4/ depl oynent s/ 4/ val uel nport Rul es
Method PATCH

Request Body:

[
{"type":"host","on":"storage-wash-account -dev. bl ob. core. wi ndows. net","w th": " st orage-wasb-account - pr od. bl ob.
core.w ndows. net"},
{"type":"userinfo","on":"container-dev","w th":"container-prod"},
{"type":"fileLocation","on":"/projs/work/orders.csv","w th":"/2003/transacti ons/orders.csv"}

]

Response:

Item v4 APIs

Status Code 200 - OK

- Success
Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
"del eted": {

"data": []
}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateValuelmportRules

To test your rule, perform a dry run of the import. See below.

Copyright © 2022 Trifacta Inc. Page #94

Example - Remap an ADLS Gen2 location
For ADLs Gen2 sources, you can apply remapping rules during import.
In this example, your import rule must remap the storage account, filesystem, and file location:

Dev Storage Account | St or age- adl sgen2-account - dev. bl ob. core. wi ndows. net
Dev Filesystem filesystem dev

Dev File Location / proj s/ work/orders. csv

Prod Storage Account | St or age- adl sgen2-account - prod. bl ob. core. wi ndows. net
Prod Filesystem filesystem prod

Prod File Location / 2003/t ransacti ons/ orders. csv
You can use the following value import rules to change the storage account, filesystem, and file paths.

NOTE: You can specify multiple rules in a single request. Rules are applied in the order that they are
listed. Latter rules must factor the results of earlier rules.

host rule: This rule replaces the storage account name to use with the new one: st or age- adl sgen2-
account - prod. bl ob. cor e. wi ndows. net .

userinfo rule: This rule replaces the filesystem name to use with the new one: fi | esyst em pr od.

fileLocation rule: This rule performs a text substitution to replace the file path. This rule applies to both input and
output object file paths.

Request:
Iltem v4 APIs
API Endpoint / v4/ depl oynent s/ 4/ val uel nport Rul es
Method PATCH

Request Body:

[
{"type":"host","on":"storage-adl sgen2-account - dev. bl ob. core. wi ndows. net", "wi t h": "st or age- adl sgen2- account -
prod. bl ob. core. wi ndows. net"},
{"type":"userinfo","on":"filesystemdev","with":"filesystem prod"},
{"type":"fileLocation","on":"/projs/work/orders.csv","w th":"/2003/transacti ons/orders.csv"}

]

Response:

Item v4 APIs

Copyright © 2022 Trifacta Inc. Page #95

Status Code | 200 - OK

- Success
Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
"del eted": {

"data": []
}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateValuelmportRules

To test your rule, perform a dry run of the import. See below.

Example - Remap an ADLS Genl location

For ADLS Genl sources, you can apply remapping rules during import.

In this example, your import rule must remap the Azure data lake store and file location:

Dev data store adl : // st orage- adl sgenl-account. azur edat al akest or e. net
Dev File Location / proj s/ wor k/ orders. csv
Prod data store adl : // st orage- adl sgenl-account - prod. azur edat al akest or e. net

Prod File Location '/ 2003/transacti ons/orders. csv
You can use the following value import rules to change the datastore and file paths.

NOTE: You can specify multiple rules in a single request. Rules are applied in the order that they are
listed. Latter rules must factor the results of earlier rules.

host rule: This rule replaces the datastore hame to use with the new one: st or age- adl sgenl- account -
prod. azur edat al akest ore. net.

fileLocation rule: This rule performs a text substitution to replace the file path. This rule applies to both input and
output object file paths.

Request:
Item v4 APIs
AP Endpoint / v4/ depl oynent s/ 4/ val uel nport Rul es
Method PATCH

Request Body:

[
{"type":"host","on":"storage-adl sgenl-account-dev. azur edat al akestore. net","wi th":"storage-adl sgenl-account -
prod. azur edat al akestore. net"},

Copyright © 2022 Trifacta Inc. Page #96

{"type":"fileLocation","on":"/projs/work/orders.csv","w th":"/2003/transacti ons/orders.csv"}

]

Response:

Item v4 APIs

Status Code | 200 - OK

- Success
Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
"del eted": {
"data": []
}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateValuelmportRules

To test your rule, perform a dry run of the import. See below.
Example - Remap arelational datasource

When you migrate a relational source from a Dev instance to a Prod instance, you may need to remap your flow
to use the production database and table.

NOTE: These rules can be applied to sources or publications of a flow.

In this example, you are replacing the input and output source databases and tables with the corresponding
production DB values.

Item Dev value Prod value
Tablename 1 dev_trans prod_trans
Pathvaluel dev_db2_src prod_db2_src
Tablename 2 dev_trans_out prod_trans_out

Pathvalue2 | dev_db2_out prod_db2_out

In a single request, you can apply the rules changes to map the above Dev values to the Prod values.

NOTE: You can specify multiple rules in a single request. Rules are applied in the order that they are
listed. Latter rules must factor the results of earlier rules.

The on parameter accepts regular expressions. In the following example request, the on parameter has been
configured to use a regular expression, under the assumption that all current and future imports will respect the
current pattern or database paths and table names.

dbTableName rule: This rule replaces the name of the table to use.

Copyright © 2022 Trifacta Inc. Page #97

dbPath rule: This rule replaces the path value to database table.

NOTE: The content of a dataset or output dbPat h is an array. The regular expression for on is applied to
every element in the dbPat h value. Typically, there's only one element in the dbPat h array. In some
cases, there may be multiple elements, so be careful when specifying the on value.

Request:
Item v4 APIs
AP Endpoint / v4/ depl oynent s/ 4/ val uel nport Rul es
Method PATCH

Request Body:

[
{"type":"dbTabl eNane","on":"/dev_([a-zA-Z0-9_]*)/","with":"prod_%$1"},
{"type":"dbPath","on":"/dev_([a-zA-Z0-9_]*)_src/","with":"prod_$1_out"}
]

Response:

Item v4 APIs

Status Code | 200 - OK

- Success
Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
"del eted": {

"data": []
}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateValuelmportRules
To test your rule, perform a dry run of the import. See below.

Import Dry-Run

After you have specified a set of import rules, you can perform a dry-run of an import of an import package. This
dry-run does not perform the actual import but does report any permissions errors or other issues in the
response.

In this example, the f | ow2i nport . zi p file contains the package to import into deployment 4.

Copyright © 2022 Trifacta Inc. Page #98

Request:

Item v4 APIs

API Endpoint [v4/ depl oynent s/ 4/ r el eases/ dryRun

Method POST

Request Body ' In form data submitted with the request, you must include the following key-value pair:

Key Value

data @ "@flow2import.zip"

Response:
Item v4 APIs
Status Code - Success 200 - OK

Response Body The response body contains any import remapping rules that have been applied during the import process.

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/importPackageForDeploymentDryRun

After the above dry-run has been executed, the import package can be imported and is automatically connected
to the appropriate connection. See
https://api.trifacta.com/ee/es.t/index.html#operation/importPackageForDeployment

Copyright © 2022 Trifacta Inc. Page #99

API Task - Run Deployment

Contents:

Run Job Endpoints

Prerequisites

Step - Run Deployment

Step - Monitoring Your Deployment Job

Step - Run Deployment with Overrides
® Acquire the active outputs for the deployment
® Acquire output object information
® Run deployment with overrides

® Step - Run Deployment with Spark Overrides

This section describes how to run a deployment using the APIs available in Designer Cloud Powered by
Trifacta® Enterprise Edition.

®* A deployment is a packaging mechanism for versioning your production-level flows.
® Deployments are created and managed through a separate interface.
® For more information, see Overview of Deployment Manager.

A note about APl URLSs:

In the listed examples, URLSs are referenced in the following manner:

<protocol >://<pl atform base_url| >/

In your product, these map references map to the following:

<http or https>://<hostname>: <port_nunber>/

For more information, see APl Reference.

Run Job Endpoints
Depending on the type of job that you are running, you must use one of the following endpoints:
Run job:
Run a job to generate the outputs from a single recipe in a flow.
Endpoint IvaljobGroups/:id

Method POST

Reference documentation | https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Run flow:

Run all outputs specified in a flow. Optionally, you can run all scheduled outputs.

Endpoint Iva/flows/:id/run

Copyright © 2022 Trifacta Inc. Page #100

Method POST

Reference documentation @ https://api.trifacta.com/ee/es.t/index.html#operation/runFlow

Run deployment:

Run the primary flow in the active release of the specified deployment.

Tip: This method is covered on this page.

Deployments are available only through the Deployment Manager. For more information, see
Overview of Deployment Manager.

Endpoint Ival/deployments/:id/run

Method POST

Reference documentation @ https://api.trifacta.com/ee/es.t/index.html#operation/runDeployment

Prerequisites
Before you begin, you should verify the following:

1. Get authentication credentials. As part of each request, you must pass in authentication credentials to
the Designer Cloud powered by Trifacta platform .

Tip: The recommended method is to use an access token, which can be generated from the Desig
ner Cloud application . For more information, see Access Tokens Page.

See https://api.trifacta.com/ee/es.t/index.html#operation/Authentication

2. Develop your flow. Before you deploy a flow through the Deployment Manager, you should build and test
your flow in a development environment. See API Task - Develop a Flow.

3. Deploy your flow. After you have developed a flow, you can deploy it. See API Task - Deploy a Flow.

4. Acquire deployment identifier. In Deployment Manager, acquire the numeric value for the deployment.
See Deployment Manager Page.

Step - Run Deployment
Through the APIs, you can run a deployment. When a deployment is executed:

® All of the recipes that are included in the active release of the deployment are executed.
® All default values for outputs are applied.

In the following example, the deployment identifier is 2.
Endpoint <protocol >://<pl atform base_url >/ v4/ depl oyrment s/ 2/ run
Authentication Required
Method PCGST
Request Body None.
Response Code 201 - Created

Response Body {
"data": [

Copyright © 2022 Trifacta Inc. Page #101

"reason": "JobStarted",
"sessionld": "dd6a90e0-c353-11e7-ad4e- 7f 2dd2ae4621",
"id": 33

If the 201 response code is returned, then the deployment job has been queued for execution.

Tip: Retain the i d value in the response. In the above, 961247 is the internal identifier for the job group
for the job. You will need this value to check on your job status.

For more information, see API Task - Deploy a Flow.

Checkpoint: You have queued your deployment job for execution.

Step - Monitoring Your Deployment Job

You can monitor the status of your deploy job through the following endpoint using the i d value that was returned
in the previous step:

<protocol >://<pl atform base_url >/ v4/jobG oups/<i d>/status

For more information, see API Task - Run Job.

Step - Run Deployment with Overrides

When you run a deployment, you cannot apply overrides to the request. However, you can complete the following
steps to apply overrides when you execute the jobs within the active release. In this task, you run jobs on the
specific recipes of the active deployment, applying overrides as needed.

Suppose you are running the jobs for deployment id 2, and you want to apply some overrides.

NOTE: A deployment can trigger several different jobs within a single flow. In the following example, it is
assumed that there is only one output.

Acquire the active outputs for the deployment
The first step is to acquire all of the active outputs for the deployment.
Endpoint <protocol >://<pl atform base_url| >/ v4/ depl oynent s/ 2/ acti veout put s

Authentication Required

Method GET

Request Body None.

Copyright © 2022 Trifacta Inc. Page #102

Response Code | 200

Response Body {

in the above response:

K

"data":

[

"out put Obj ectld": 6,
"fl owNodel d": 27,

"reci peNanme": "USDA_Far mers_Mar ket _2014"

® The fl owNodel d value corresponds to the recipe (wr angl edDat aset) identifier that you wish to modify.
® The out put Obj ect | d value corresponds to the output object that is produced by default from the recipe.

Acquire output object information

The next step is to review the output object to determine what needs to be overridden. Since you are overriding a
file-based publication, you can query directly for the wri t eSet t i ngs objects associated with the output object:

Endpoint <protocol >://<pl atform base_url >/ v4/ out put Cbj ects/ 6/ witeSettings

Authentication | Required

Method GET

Request Body None.

Response 200 -
Code
Response {
Body

csv”

Copyright © 2022 Trifacta Inc.

XK

"data":

}

}

"delint:
"idUr 17,
"path": "hdfs://hadoop: 50070/ exanpl e/ j oe@xanpl e. coml USDA_Far ner s_Mar ket _2014.

"action": "create",
"format": "csv",
"conpression": "none",

"header": true,

"asSingleFile": true,

"prefix": null,

"suffix": " _increnent",

"hasQuot es": true,

"createdAt": "2019-11-05T18: 26: 31.972Z",
"updat edAt": "2019-11-05T18: 30: 56. 756Z2"
"creator": {

"idt 2
pdater": {
"idh 2
ut put oj ect™: {
"id': 6
“delint: ", ",
"id": 16,
"path":

"hdf s: // hadoop: 50070/ exanpl e/ j oe@xanpl e. coml USDA_Far ner s_MNar ket _2014.

Page #103

json",

"action": "create",
"format": "json",
"conpression": "none",

"header": fal se,

"asSingleFile": false,

"prefix": null,

"suffix": "_increnent",

"hasQuot es": fal se,

"createdAt": "2019-11-05T18: 26: 44. 983Z",
"updat edAt": "2019-11-05T18: 30: 56. 743Z2",
"creator": {

"id'ro 2
H
"updater": {

"id' 2
}

"out put Object": {
"id': 6

Run deployment with overrides

Now that you have access to the outputs generated by the deployment, you decide to override the following for
each file:

® Filename:
® Remove the year information at the end of the filename
® Store in a separate folder called f i nal
® Wipe the table and reload it each time (acti on=overwite)
¢ Disable profiling

From the activeOutputs endpoint, you retrieved the flowNodeld (27).
Endpoint <protocol >://<pl atform base_url >/ v4/jobG oups/

Authentication Required

Method POST

Request Body {

"wr angl edDat aset": {
"id'r 27

H

"overrides": {
"profiler": false,
"witesettings": [

{
"path": "hdfs://hadoop: 50070/ exanpl e/ j oe@xanpl e. cont fi nal / USDA_Far nmer s_Mar ket .
csv",
"format": "csv",
"action": "overwite"
b
{
"path": "hdfs://hadoop: 50070/ exanpl e/ j oe@xanpl e. cont fi nal / USDA_Far ner s_Mar ket .
json",
"format": "json",
"action": "overwite"
}

Copyright © 2022 Trifacta Inc. Page #104

}

ranfront: null

Response 201 - Created
Code
Response {
Body "sessionld": "b29467c3-f c59- 499e- aed6- d797746a86eb"
"reason": "JobStarted",
"jobGraph": {
"vertices": [
10,
11,
12
1.
"edges": [

{

"source": 10,
"target": 11

"source": 10,

"target": 12
}
]
b
"id": 4
"jobs": {
"data": [
{
id 10
o
{
id 11
I
{
id 12

Checkpoint: Your job with overrides has been queued for execution.

You can use the job identifier (4) to monitor the job status.

Step - Run Deployment with Spark Overrides

When you run a deployment, you can specify override values to the Spark properties that have been made
available for overrides.

NOTE: These overrides only apply if you are running the job on Spark and if the feature has been
enabled in your deployment.

® This feature and the properties to override must be enabled. See Enable Spark Job Overrides.

Copyright © 2022 Trifacta Inc. Page #105

® All of the recipes that are included in the active release of the deployment are executed.

All other default values are applied. In the following example, the deployment identifier is 2.
Endpoint <protocol >://<pl atform base_url >/ v4/ depl oynment s/ 2/ run

Authentication Required

Method POST
Request Body {
"sparkOptions": [
{
"key": "spark.executor.cores",
"val ue": "2"
}
{
"key": "spark.executor. nmenory",

"val ue": "4GB"

}
]
}

Response Code 201 - Created

Response Body {

"data": [
{
"reason": "JobStarted",
"sessionld": "dd6a90e0-c353-11e7-ad4e- 7f 2dd2ae4621",
"id": 33

If the 201 response code is returned, then the deployment job has been queued for execution.

Checkpoint: You have queued your deployment job for execution.

Copyright © 2022 Trifacta Inc. Page #106

API Task - Publish Results

Contents:

Overview

® Basic Task
Step - Create Connections

® Redshift connection

® Hive connection

® Tableau Server connection

® SQL DW connection
Step - Run Job
Step - Publish Results to Hive
Step - Publish Results to Tableau Server
Step - Publish Results to SQL DW
Step - Publish Results to Redshift
Step - Publish Results with Overrides

Overview
After you have run a job to generate results, you can publish those results to different targets as needed. This

section describes how to automate those publishing steps through the APIs.

In the application, you can publish after generating results. See Publishing Dialog.

NOTE: This task applies to re-publishing job results after you have already generated them.

NOTE: After you have generated results and written them to one target, you cannot publish to the same
target. You must configure the outputs to specify a different format and location and then run a new job.

Basic Task

1.

2.
3.
4,

Create connections to each target to which you wish to publish. Connections must support write

operations.

Specify a job whose output meets the requirements for the target.

Run the job.

When the job completes, publish the results to the target(s).

Step - Create Connections

For each target, you must have access to create a connection to it. After a connection is created, it can be

reused, so you may find it easier to create them through the application.

® Some connections can be created via API. For more information, see
https://api.trifacta.com/ee/es.t/index.html#operation/createConnection

® Other connections must be created through the application. Links to instructions are provided below.

NOTE: Connections created through the application must be created through the Connections page,
which is used for creating read/write connections. Do not create these connections through the Import

Data page. See Connections Page.

Copyright © 2022 Trifacta Inc.

Page #107

Redshift connection

Required Output Format: Avro
Example Id: 2

Create via API: N

Doc Link: Amazon Redshift Connections

Other Requirements:

Requires S3 set as the base storage layer. See Set Base Storage Layer.

Hive connection

Required Output Format: Avro
Example Id: 1
Create via API: Y
Doc Link: Hive Connections
Other Requirements:
® Requires integration with a Hadoop cluster.

Tableau Server connection

Required Output Format: HYPER
Example Id: 3
Create via API: Y
Doc Link: Tableau Server Connections
Other Requirements:

®* None.

SQL DW connection

Required Output Format: Parquet
Example Id: 4
Create via API: N
Doc Link: Microsoft SQL Data Warehouse Connections
Other Requirements:
® Available only on Azure deployments. See Configure for Azure.

Step - Run Job

Before you publish results to a different datastore, you must generate results and store them in HDFS.

NOTE: To produce some output formats, you must run the job on the Spark running environment.

In the examples below, the following example data is assumed:

Identifier Value

jobld

flowld

2

3

Copyright © 2022 Trifacta Inc.

Page #108

For more information on running a job, see https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup
For more information on the publishing endpoint, see
https://api.trifacta.com/ee/es.t/index.html#operation/publishJobGroup

Step - Publish Results to Hive

The following uses the Avro results from the specified job (jobld = 2) to publish the results to the t est _t abl e tabl
e in the def aul t Hive schema through connectionld=1.

NOTE: To publish to Hive, the targeted database is predefined in the connection object. For the pat h
value in the request body, you must specify the schema in this database to use. Schema information is
not available through API. To explore the available schemas, click the Hive icon in the Import Data page.
The schemas are the first level of listed objects. For more information, see Import Data Page.

Request:
Endpoint http: // ww. w angl e- dev. exanpl e. com 3005/ v4/j obGr oups/ 2/ publ i sh

Authentication = Required
Method PUT

Request Body {
"connection": {
"idUro 1
b
"path": ["default"],

"table": "test_table",
"action": "create",
"input Format": "avro"
}
Response:
Status Code 200 - K
Response Body {
"j obgroupl d": 2,

"reason":"JobStarted",
"sessionl d": "24862060- 4f cd- 11e8- 8622- f daOf bf 6f 550"

Step - Publish Results to Tableau Server

The following uses the HYPER results from the specified job (jobld = 2) to publish the results to the t est _t abl e3
table in the def aul t Tableau Server database through connectionld=3.

Request:
Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ j obG oups/ 2/ publ i sh
Authentication = Required

Method PUT

Copyright © 2022 Trifacta Inc. Page #109

Request Body {

"connection": {

"id": 3

b
"path": ["default"],
"table": "test_table3",
"action": "creat eAndLoad",
"input Format": "hyper"

}

Response:
Status Code 200 - K

Response Body {

"j obgroupld": 2,
"reason":"JobStarted",
"sessionl d":"24862060- 4f cd- 11e8- 8622- f da0f bf 6f 552"

Step - Publish Results to SQL DW

The following uses the Parquet results from the specified job (jobld = 2) to publish the results to the t est _t abl e4
table in the dbo SQL DW database through connectionld=4.

Request:
Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/j obGr oups/ 2/ publ i sh
Authentication = Required
Method PUT

Request Body {

"connection": {
"id": 4

}

"path": ["dbo"],

"table": "test_table4",

"action": "createAndLoad",

"input Format": "pqt"

Response:

Status Code 200 - K

Response Body {

"j obgroupld": 2,

"joblds": 22,

"reason": "JobStarted",

"sessionld': "855f83a0-dc94-11e8-bdla-f998d808020d"

Copyright © 2022 Trifacta Inc. Page #110

Step - Publish Results to Redshift

The following uses the Avro results from the specified job (jobld = 2) to publish the results to the t est _t abl e2 ta
ble in the publ i ¢ Redshift schema through connectionld=2.

NOTE: To publish to Redshift, the targeted database is predefined in the connection object. For the pat h
value in the request body, you must specify the schema in this database to use. Schema information is
not available through API. To explore the available schemas, click the Redshift icon in the Import Data
page. The schemas are the first level of listed objects. For more information, see Import Data Page.

Request:
Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/j obGr oups/ 2/ publ i sh
Authentication = Required

Method PUT

Request Body {

"connection": {
"idh 2

}

"path": ["public"],

"table": "test_table2",

"action": "create",

"input Format": "avro"

Response:

Status Code 200 - &K
Response Body {
"j obgroupld": 2,

"reason":"JobStarted",
"sessionld":"fae64760- 4f c4- 11e8- 8cha- 0987061e4e16"

Step - Publish Results with Overrides

When you are publishing results to a relational source, you can apply overrides to the job to redirect the output or
change the action applied to the target table. For more information, see API Task - Run Job.

Copyright © 2022 Trifacta Inc. Page #111

API Task - Swap Datasets

Contents:

® QOverview
® Example Datasets
® Assumptions
Step - Import Dataset
Step - Swap Dataset from Recipe
Step - Rerun Job
Step - Monitor Your Job
Step - Schedule Your Job

Overview
After you have created a flow, imported a dataset, and created a recipe for that dataset, you may need to swap in
a different dataset and run the recipe against that one. This task steps through that process via the APlIs.

NOTE: If you are processing multiple parallel datasources in a single job, you should create a dataset
with parameters and then run the job. For more information, see
API Task - Run Job on Dataset with Parameters.

This task utilizes the following methods:

1. Creating an imported dataset. After the new file has been added to the backend datastore, you can
import into Designer Cloud Powered by Trifacta® Enterprise Edition as an imported dataset.

2. Swap dataset. Using the ID of the imported dataset you created, you can now assign the dataset to the
recipe in your flow.

3. Run ajob. Run the job against the dataset.

4. Monitor progress. Monitor the progress of the job until it is complete.

Example Datasets

In this example, you are wrangling data from orders placed in different regions on a quarterly basis. When a new
file drops, you want to be able to swap out the current dataset that is assigned to the recipe and swap in the new
one. Then, run the job.

Example Files:
The following files are stored in HDFS:

Path and Filename Description

hdf s:///user/orders/ MyCo- order s-west - QL. t xt Orders from West region for Q1
hdfs:///user/orders/ MyCo- or der s-west - Q2. t xt | Orders from West region for Q2
hdfs:///user/orders/ MyCo-orders-north-QL. txt Orders from North region for Q1
hdfs:///user/orders/ MyCo- orders-north- Q. txt Orders from North region for Q2
hdf s:///user/orders/ MyCo- order s- east - QL. t xt Orders from East region for Q1

hdfs:///user/orders/ MyCo-orders-east-QL.txt | Ordersfrom East region for Q2

Copyright © 2022 Trifacta Inc. Page #112

Assumptions

You have already created a flow, which contains the following imported dataset and recipe:

NOTE: When an imported dataset is created via API, it is always imported as an unstructured dataset.
Any recipe that references this dataset should contain initial parsing steps required to structure the data.

Tip: Through the Ul, you can import one of your datasets as unstructured. Create a recipe for this
dataset and then edit it. In the Recipe panel, you should be able to see the structuring steps. Back in
Flow View, you can chain your structural recipe off of this one. Dataset swapping should happen on the

first recipe.

Object Type Name Id
flow MyCo-Orders-Quarter 2
Imported Dataset MyCo-orders-west-Q1.txt = 8
Recipe (wrangledDataset) | n/a 9
Job n/a 3

Base URL:

For purposes of this example, the base URL for the platform is the following:

http://ww. exanpl e. com 3005

Step - Import Dataset

NOTE: You cannot add datasets to the flow through the f | ows endpoint. Moving pre-existing datasets
into a flow is not supported in this release. Create or locate the flow first and then when you create the
datasets, associate them with the flow at the time of creation.

® See https://api.trifacta.com/ee/es.t/index.html#operation/createlmportedDataset
® See https://api.trifacta.com/ee/es.t/index.html#operation/createWrangledDataset

NOTE: When an imported dataset is created via API, it is always imported as an unstructured dataset.
Any recipe that references this dataset should contain initial parsing steps required to structure the data.

The following steps describe how to create an imported dataset and assign it to the flow that has already been
created (flowld=2).

Steps:

1. To create an imported dataset, you must acquire the following information about the source.

path

type

name
description

aoop

Copyright © 2022 Trifacta Inc. Page #113

e. bucket (if a file stored on S3)
2. In this example, the file you are importing is MyCo- or der s- west - Q2. t xt . Since the files are similar in
nature and are stored in the same directory, you can acquire this information by gathering the information
from the imported dataset that is already part of the flow. Execute the following:

Endpoint htt p: // ww. exanpl e. com 3005/ v4/i nport edDat aset s
Authentication | Required

Method POST

Request Body {

"path": "hdfs:///user/orders/MCo-orders-west-Q.txt",
"name": "MCo-orders-west-Q.txt",
"description": "MCo-orders-west-@"

}

3. The response should be a 201 - Cr eat ed status code with something like the following:

{

"id" 12,

"size": "281032",

"path": "hdfs:///user/orders/ MyCo-orders-west-Q.txt",

"dynam cPath": null,

"wor kspacel d": 1,

"isSchenatized": false,

"isDynanic": false,

"di sabl eTypel nference": fal se,

"createdAt": "2018-10-29T23:15:01.8312",

"updat edAt": "2018-10-29T23:15:01. 8892",

"par si ngReci pe": {

"id'r 11

H
"runParaneters": [],
"nane": "MyCo-orders-west-Q.txt.txt",
"description": "MCo-orders-west-Q@.txt",
“creator": {

"id'r 1
}

updater": {
idho1
}

onnection": null

4. You must retain the i d value so you can reference it when you create the recipe.
5. See https://api.trifacta.com/ee/es.t/index.html#operation/createlmportedDataset

Checkpoint: You have imported a dataset that is unstructured and is not associated with any flow.

Step - Swap Dataset from Recipe

The next step is to swap the primary input dataset for the recipe to point at the newly imported dataset. This step
automatically adds the imported dataset to the flow and drops the previous imported dataset from the flow.

1. Use the following to swap the primary input dataset for the recipe:

Endpoint http://ww. exanpl e. com 3005/ v4/ wr angl edDat aset s/ 9

Copyright © 2022 Trifacta Inc. Page #114

[pri maryl nput Dat aset
Authentication = Required
Method PUT

Request Body {
"inmportedDataset": {
"idh 12
}
}

2. The response should be a 200 - K status code with something like the following:

{
"id": 9,
"wrangl ed": true,
"createdAt": "2019-03-03T17:58:53.979Z2",
"updat edAt": "2019-03-03T18:01:11.3102",
"recipe": {
"id": 9,
"nanme": "POS-r01",
"description": null,
"active": true,
"nextPortld": 1,
"createdAt": "2019-03-03T17:58:53.965Z2",
"updat edAt": "2019-03-03T18:01:11.3082",
"currentEdit": {
"id": 8
}
"redoLeaf Edit": {
"id' 7
.
"creator": {
"idhro 1
b
"updater": {
"id'ro 1
}
b,
"referencelnfo": null,
"activeSample": {
"idv 7
b
"creator": {
"idhro 1
b
"updater": {
"id'r 1
H
"ref erencedFl owNode": nul |,
"flow': {
"id' 2
}
}

3. The new imported dataset is now the primary input for the recipe, and the old imported dataset has been
removed from the flow.

https://api.trifacta.com/ee/es.t/index.html#operation/updatelnputDataset

Step - Rerun Job

To execute a job on this recipe, you can simply re-run any job that was executed on the old imported dataset,
since you reference the job by jobld and wrangledDataset (recipe) Id.

Copyright © 2022 Trifacta Inc. Page #115

Endpoint htt p: // ww. exanpl e. com 3005/ v4/j obG oups
Authentication = Required

Method POST

Request Body {

"wr angl edDat aset ": {
"id': 9
}
}

The job is re-run as it was previously specified.

If you need to modify any job parameters, you must create a new job definition.

Step - Monitor Your Job

After the job has been queued, you can track it to completion. See API Task - Develop a Flow.

Step - Schedule Your Job

When you are satisfied with how your flow is working, you can set up periodic schedules using a third-party tool
to execute the job on a regular basis.

The tool must hit the above endpoints to swap in the new dataset and run the job.

Copyright © 2022 Trifacta Inc. Page #116

API Task - Manage Outputs

Contents:

® Qverview
® Basic Task
® Variations
Step - Get Recipe ID
Step - Create outputObject
Step - Run a Test Job
Step - Create writeSettings Object
Step - Get Connection ID for Publication
Step - Create a Publication
Step - Apply Overrides
Step - Apply Spark Job Overrides

Overview

Through the APIs, you can separately manage the outputs associated with an individual recipe. This task
describes how to create output objects, which are associated with your recipe, and how to publish those outputs
to different datastores in varying formats. You can continue to modify the output objects and their related write
settings and publications independently of managing the wrangling process. Whenever you need new results,
you can reference the wrangled dataset with which your outputs have been associated, and the job is executed
and published in the appropriate manner to your targets.

Relevant terms:

Term Description

out put Ob | An outputObject is a definition of one or more types of outputs and how they are generated. It must be associated with
jects a recipe.

NOTE: An outputObject must be created for a recipe before you can run a job on it. One and only one
outputObject can be associated with a recipe.

writeSet AwriteSettings object defines file-based outputs within an outputObject. Settings include path, format, compression,
tings and delimiters.

pu bl i cat ' A publications object is used to specify a table-based output and is associated with an outputObject. Settings include
i ons the connection to use, path, table type, and write action to apply.

NOTE: If you need to make changes for purposes of a specific job run, you can add overrides to the
request for the job. These overrides apply only for the current job. For more information, see
https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Basic Task
Here's the basic task described in this section.

Get the internal identifier for the recipe for which you are building outputs.
Create the outputObject for the recipe.

Create a writeSettings object and associate it with the outputObject.

Run a test job, if desired.

For any publication, get the internal identifier for the connection to use.
Create a publication object and associate it with the outputObject.

oukrwNE

Copyright © 2022 Trifacta Inc. Page #117

7. Run your job.
Variations
If you are generating exclusively file-based or relational outputs, you can vary this task in the following ways:
For file-based outputs:
Get the internal identifier for the recipe for which you are building outputs.
Create the outputObject for the recipe.

Create a writeSettings object and associate it with the outputObject.
Run your job.

PN E

For relational outputs:

Get the internal identifier for the recipe for which you are building outputs.
Create the outputObject for the recipe.

For any publication, get the internal identifier for the connection to use.
Create a publication object and associate it with the outputObject.

Run your job.

arwpdE

Step - Get Recipe ID

To begin, you need the internal identifier for the recipe.

NOTE: In the APIs, a recipe is identified by its internal name, a wrangled dataset.

Request:
Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ wr angl edDat aset s

Authentication = Required
Method GET

Request Body = None.

Response:
Status Code 200 -

Response Body {
"data": [

"id: 11,
"wrangl ed": true,
"createdAt": "2018-11-12T23:06: 36.473Z",
"updat edAt": "2018-11-12T23: 06: 36. 539Z2",
"recipe": {

"id": 10

nane": "PCS-r01",

"description": null,

"referencelnfo": null,

"activeSanple": {
"id' 11

}

reator": {
"id'o 1

}
"updater": {

Copyright © 2022 Trifacta Inc. Page #118

v o1
b
"flow': {

"idh: 4

"id' o1,
"wrangl ed": true,
"createdAt": "2018-11-12T23:19:57.650Z",
"updat edAt": "2018-11-12T23:20:47.297Z2",
"recipe": {
"id": 19
H
"name": "nmenber_info",
"description": null,
"referencelnfo": null,
"activeSanple": {
"id": 20
b
"creator": {
"id'o 1
I
"updater": {
"id'ro1
b
"flow': {
"id': 6

cURL example:

curl -X GET \
http://ww. wr angl e- dev. exanpl e. com 3005/ v4/ wr angl edDat aset s \
-H "aut horization: Basic <auth_token>" \
-H 'cache-control: no-cache'

Relevant terms:

Term Description
URL URL and method to execute.

aut hori zat i on | Authorization taken to pass to the platform. Basic authorization works.

NOTE: This token must be passed with each request to the platform.

cache-cont r ol ' Cache control setting.

content-type | HTTP content type to send. These applications use appl i cati on/j son.

Checkpoint: In the above, let's assume that the recipe identifier of interest is wr angl edDat aset =11.
This means that the flow where it is hosted is f | ow. i d=4. Retain this information for later.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/getWrangledDataset

Copyright © 2022 Trifacta Inc. Page #119

Step - Create outputObject

Create the outputObject and associate it with the recipe identifier. In the following request, the wrangledDataset
identifier that you retrieved in the previous call is applied as the f | owNodel d value.

The following example includes an embedded wri t eSet t i ngs object, which generates a CSV file output. You
can remove this embedded object if desired, but you must create awr i t eSet t i ngs object before you can
generate an output.

Request:

Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ out put Cbj ect s
Authentication = Required

Method POST

Request Body {

"execution": "photon",
"profiler": true,

"i sAdhoc": true,
"witeSettings": {

"data": [
{
"delin: ,
"path": "hdfs://hadoop: 50070/ trifactal/ queryResul t s/ adm n@xanpl e. con1 PCS_01.
avro",
"action": "create",
"format": "avro",
"conpression": "none",
"header": fal se,
"asSingleFile": false,
"prefix": null,
"suffix": "_increnent",
"includeM smat ches": true,
"hasQuotes": false
}
]
H
"fl owNode": {
"idhr 11
}
}
Response:
Status Code 201 - Created
Response Body {
"id': 4,
"execution": "photon",

"profiler": true,

"i sAdhoc": true,

"updat edAt": "2018-11-13T00: 20: 49. 258Z",
"createdAt": "2018-11-13T00: 20: 49. 258Z",
"creator": {

"id'ro1
b
"updater": {
"idUro1
,
"fl owNode": {
"id'ro11

Copyright © 2022 Trifacta Inc. Page #120

cURL example:

curl -X POST \

http://ww. wr angl e- dev. exanpl e. conf v4/ out put bj ects \

-H "aut horizati on: Basic <auth_token>" \
-H 'cache-control: no-cache' \
-H 'content-type: application/json' \
-d ' {
"execution": "photon",
"profiler": true,
"i sAdhoc": true,
"writeSettings": {

"path": "hdfs://hadoop: 50070/ trifactal/ queryResul ts/adm n@xanpl e. coni POS_01. avro",

"data": [
{
"delint: ",",
"action": "create",
"format": "avro",
"conpression": "none",

"header": fal se,
"asSingleFile": false,
"prefix": null,

"suffix": "_increnent",

"i ncludeM smat ches": true,
"hasQuotes": false

]

},
"fl owNode": {
"id'r 11

Relevant terms:

Term Description

URL URL and method to execute.

aut hori zati on

cache-contr ol

content-type

Authorization taken to pass to the platform. Basic authorization works.

NOTE: This token must be passed with each request to the platform.

Cache control setting.

HTTP content type to send. These applications use appl i cati on/j son.

Checkpoint: You've created an outputObject (i d=4) and an embedded writeSettings object and have
associated them with the appropriate recipe f | owNodel d=11. You can now run a job for this recipe
generating the specified output.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createOutputObject

Copyright © 2022 Trifacta Inc.

Page #121

Step - Run a Test Job

Now that outputs have been defined for the recipe, you can just execute a job on the specified recipe f | owNodel
d=11:

Request:
Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ j obG oups
Authentication = Required
Method POST

Request Body {

"wr angl edDat aset ": {
"id'r 11
}
}

Response:
Status Code 201 - Created
Response Body {

"sessionld": "79276c31-c58c-4e79-aebe-fedla25ebcal”,

"reason": "JobStarted",
"jobGraph": {
"vertices": [
21,
22
1,
"edges": [
{
"source": 21,
"target": 22
}
]
b
"id' 2
"jobs": {
"data": [
{
id 21
b
{
id 22

NOTE: To re-run the job against its currently specified outputs, writeSettings, and publications, you only
need the recipe ID. If you need to make changes for purposes of a specific job run, you can add
overrides to the request for the job. These overrides apply only for the current job. For more information,
see https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

To track the status of the job:

Copyright © 2022 Trifacta Inc. Page #122

® You can monitor the progress through the application.
® You can monitor progress through the st at us field by querying the specific job. For more information,
see https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroup

Checkpoint: You've run a job, generating one output in Avro format.

Step - Create writeSettings Object

Suppose you want to create another file-based output for this outputObject. You can create a second
writeSettings object, which publishes the results of the job run on the recipe to the specified location.

The following example creates settings for generating a parquet-based output.
Request:
Endpoint htt p: // ww. wr angl e- dev. exanpl e. com 3005/ v4/witeSettings/

Authentication = Required

Method POST

Request Body {

“delint: ", ",

"path": "hdfs://hadoop: 50070/ trifactal/ queryResul ts/adm n@xanpl e. coni PCS_r 03. pqt ",
"action": "create",

"format": "pqt",

"conpression": "none",

"header": fal se,
"asSingleFile": false,
"prefix": null,
"suffix": "_increnent",
"hasQuot es": fal se,
"out put Cbj ect1d": 4

Response:
Status Code 201 - Created

Response Body {

"delint:

"idUro2,

"path": "hdfs://hadoop: 50070/ tri factal/ queryResul t s/ adnm n@xanpl e. coml PCS_r 03. pqt ",
"action": "create",

"format": "pqt",

"conpression": "none",

"header": fal se,

"asSingleFile": false,

"prefix": null,

"suffix": "_increnent",

"hasQuotes": fal se,

"updat edAt": "2018-11-13T01: 07:52. 386Z",
"createdAt": "2018-11-13T01: 07:52.386Z",
"creator": {

idh 1
}
"updater": {
"id'o 1
}

"out put Obj ect": {

Copyright © 2022 Trifacta Inc. Page #123

cURL example:

curl -X PCST \
http://ww. wr angl e-dev. exanpl e. confv4/writeSettings \
-H "aut hori zation: Basic <auth_token>" \
-H ' cache-control: no-cache' \
-H 'content-type: application/json' \
-d ' { "delint: ,
"path": "hdfs://hadoop: 50070/ trifactal queryResul ts/adm n@xanpl e. coni PCS_r 03. pqt ",
"action": "create",
"format": "pqt",
"conpression": "none",
"header": fal se,
"asSingleFile": false,
"prefix": null,
"suffix": "_increnment",
"hasQuotes": fal se,
"out put Obj ect": {
"id": 4

Relevant terms:

Term Description
URL URL and method to execute.

aut hori zat i on ' Authorization taken to pass to the platform. Basic authorization works.

NOTE: This token must be passed with each request to the platform.

cache-contr ol | Cache control setting.

content-type | HTTP content type to send. These applications use appl i cat i on/j son.

Checkpoint: You've added a new writeSettings object and associated it with your outputObiject (i d=4).
When you run the job again, the Parquet output is also generated.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createWriteSetting

Step - Get Connection ID for Publication

To generate a publication, you must identify the connection through which you are publishing the results.
Below, the request returns a single connection to Hive (i d=1).

Request:

Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ connecti ons

Authentication = Required

Copyright © 2022 Trifacta Inc. Page #124

Method GET

Request Body | None.

Response:

Status Code 200

Response Body {

cURL example:

curl -X CGET \

- K

"data":

[

"id"o1,
"host": "hadoop",
"port": 10000,
"vendor": "hive",
"parans": {
"jdbc": "hive2",
"connect StringQOptions": "",
"def aul t Dat abase": "default”
1,
"ssl": false,
"vendor Nane": "hive",
"nanme": "hive",
"description": null,
"type": "jdbc",
"isd obal": true,
"credential Type": "conf",
"credenti al sShared": true,

"uui d": "28415970- e6c4- 11e8- 82be-9947a3lecdd5",

"di sabl eTypel nference": fal se,

"createdAt": "2018-11-12T21: 44:39. 816Z",
"updat edAt": "2018-11-12T21: 44: 39. 842Z",

"credentials": [],

"creator": {
id'r 1

H

"updater": {
"id': 1

H

"wor kspace": {
"id' 1

}

1

http://ww. wr angl e- dev. exanpl e. conf v4/ connections \
Basi ¢ <aut h_t oken>" \

-H "aut hori zati on:
-H ' cache-control:

no- cache'

\

-H 'content-type: application/json'

Relevant terms:

Term

URL

aut hori zat i on ' Authorization taken to pass to the platform. Basic authorization works.

Copyright © 2022 Trifacta Inc.

Description

URL and method to execute.

Page #125

NOTE: This token must be passed with each request to the platform.

cache-control @ Cache control setting.

content-type

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/listConnections

Step - Create a Publication

Example - Hive:

HTTP content type to send. These applications use appl i cati on/j son.

You can create publications that publish table-based outputs through specified connections. In the following, a
Hive table is written out to the def aul t database through connectionld = 1. This publication is associated with
the outputObject id=4.

Request:

Endpoint
Authentication
Method

Request Body

Response:

Status Code

Response Body

htt p: // ww. wr angl e- dev. exanpl e. com 3005/ v4/ publ i cati ons

Required

PCST

"path": [

"defaul t"
1.
"t abl eNane": "nyPublishedH veTabl e",
"target Type": "hive",

"action": "create",

"out put Obj ect": {
id': 4

},

“connection": {
idUro 1

}

201 - Created

"path": [

"defaul t"
1,
"id": 3,
"tabl eNane": "nmyPubl i shedH veTabl e",
"target Type": "hive",
"action": "create",
"updat edAt": "2018-11-13T01: 25: 39. 698Z",
"createdAt": "2018-11-13T01: 25: 39. 698Z",
"creator": {

"id'ro1
o
"updater": {
"id'ro 1
}

"out put Object": {
"id": 4

Copyright © 2022 Trifacta Inc.

Page #126

"connection": {
"id':o 1
}

cURL example:

curl -X POST \
http://exanpl e. com 3005/ v4/ publications \
-H "aut horization: Basic <auth_token>" \
-H 'cache-control: no-cache' \
-H 'content-type: application/json' \
-d ' {
"path": [
"defaul t"
1.
"tabl eNanme": "nyPublishedH veTabl e",
"target Type": "hive",

"action": "create",

"out put Obj ect": {
“id': 4

I

"connection": {
idUro 1

}

Relevant terms:

Term Description
URL URL and method to execute.

aut hori zat i on Authorization taken to pass to the platform. Basic authorization works.

NOTE: This token must be passed with each request to the platform.

cache-cont r ol ' Cache control setting.

content-type | HTTP content type to send. These applications use appl i cat i on/j son.
Example - Snowflake:
In the following, a Snowflake table is updated through connectionld = 4 using an upsert action. This action
updates the values in the table based on matching column values between source and the corresponding
columns in the target table. When these key values match, the columns that you specify in the request are
updated with values from the source data. Additional options are listed under Notes below.
This publication is associated with the outputObject id=6.

Request:

Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ publ i cati ons
Authentication = Required

Method PCST

Request Body

Copyright © 2022 Trifacta Inc. Page #127

Response:

Status Code 201

Response Body {

Notes:

Property
action
connection.id

mer geJoi nKeys

col sToUpdat e

Copyright © 2022 Trifacta Inc.

"t abl eNane": "snowfl ake_t abl e_nerge",
"path": [

"tri-dev",

"deno_test"

]

arget Type": "snowf | ake",
"connectionld": 4,
"action": "upsert",
"out put Obj ectld": 6,
"runParaneters": [],
"paraneters": {

"nergeJoi nKeys": "[\"col A"]",

"col sToUpdate": "[\"colB\",\"colQ\"]",
"del et eUnmat chedRows| nTarget": "fal se",
"ext ernal Tabl eLocation": null,

"insert Checked": "true",

"isDel taTabl e": "fal se",

"i sExternal Table": "fal se",

"mat chedRowsActi on": "update”

- Created

"path": [
"defaul t"

I,

"id': 3,

"tabl eNane": "snowfl ake_t abl e_nerge",

"target Type": "snowfl ake",

"action": "upsert",

"updat edAt": "2018-11-13T01: 25: 39. 6982",

"createdAt": "2018-11-13T01: 25: 39. 698Z2",

"creator": {

"id' 1

H

"updater": {
"id' 1

L

"out put Obj ect": {
"id": 6

L

"connection": {
"id': 4

}

Description

Set this value to UPSer t to update the target table using the merge (upsert) action.

This value is in the internal identifier for the Snowflake connection through which to publish the table.

The set of one or more columns whose values are used to determine if a row in the source data that you

are publishing matches a row in the target table.

Page #128

If the join keys above do match, then the col sTo Updat € columns are updated with the values from
the source data.

NOTE: These column values are updated if Tt chedRowsAct i on is setto updat e.

del et eUnmat chedRow | Whent r ue, rows in the target table that do not match the mergeJoinKeys columns are deleted. Only
sl nTar get matching rows remain.

ext er nal Tabl eLocat This parameter can be used to include a path to the external table. Otherwise, this value is null.

ion
i nsert Checked When t r ue and the join keys do not match, the non-matching rows are written to the table.
i sDel taTabl e When t r ue, the target table is written as a delta table, which means data is stored as changes from the

previous version of the table.
mat chedRowsAct i on This parameter defines the action taken on the table when rows are matched for the join keys:

. updat € - (default) update the columns to update with the values from the source data
¢ del et e - delete the matching rows in the target

For more information, see

https://api.trifacta.com/ee/es.t/index.html#operation/createPublication

Checkpoint: You're done.

You have done the following:
1. Created an output object:
a. Embedded a writeSettings object to define an Avro output.
b. Associated the outputObject with a recipe.
2. Added another writeSettings object to the outputObiject.
3. Added a table-based publication object to the outputObject.

You can now generate results for these three different outputs whenever you run a job (create a jobgroup) for the
associated recipe.

Step - Apply Overrides

When you are publishing results to a relational source, you can optionally apply overrides to the job to redirect the
output or change the action applied to the target table. For more information, see API Task - Run Job.

Step - Apply Spark Job Overrides

You can optionally submit override values for a predefined set of Spark properties on the output object. These
overrides are applied each time that the outputobject is used to generate a set of results.

NOTE: This feature and the Spark properties available for override must be configured by a workspace
administrator. For more information, see Enable Spark Job Overrides.

Tip: You can apply Spark job overrides to the job itself, instead of applying overrides to the outputobject.
For more information, see API Task - Run Job.

Copyright © 2022 Trifacta Inc. Page #129

In the following example, an existing outputObject (id=4) is modified to include override values for the default set

of Spark overrides. Each Spark property and its value as specified as a key-value pair in the request:

Request:

Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ out put Obj ect s/ 4

Authentication = Required
Method PUT

Request Body {

"execution": "spark",
"out put Obj ect Spar kOptions": [
{
"key": "spark.driver. menory",
"val ue": "10G'
o
{
"key": "spark.executor.nenory",
"val ue": "10G'
},
{
"key": "spark.executor.cores",
"val ue": "5"
o
{
"key": "transforner.datafrane. checkpoint.threshol d",
"val ue": "450"
}
1
}
Response:
Status Code 200 - &
Response Body {
"id: 4,
"updater": {
"id'ro1
H
"updat edAt ": "2020-03-21T00: 27: 00. 937Z",
"createdAt": "2020-03-20T23: 30:42.9917"

CURL example:

curl -X PUT \

http://ww. wr angl e- dev. exanpl e. coni v4/ out put Cbj ects/ 4 \

-H "authori zation: Basic <auth_token>" \

-H ' cache-control: no-cache'

\

-H 'content-type: application/json' \

-d '
"execution": "spark",
"out put Obj ect Spar kOptions": [
{
"key": "spark.driver.nenory",
"val ue": "10G'
H

Copyright © 2022 Trifacta Inc.

Page #130

"key": "spark.executor.nenory",
"val ue": "10G'

b

{
"key": "spark.executor.cores",
"val ue": "5"

H

{
"key": "transforner.dataframe. checkpoint.threshol d",
"val ue": "450"

}

Relevant terms:

Term Description
URL URL and method to execute.

aut hori zat i on | Authorization taken to pass to the platform. Basic authorization works.

NOTE: This token must be passed with each request to the platform.

cache-control @ Cache control setting.

content-type | HTTP content type to send. These applications use appl i cati on/j son.

Copyright © 2022 Trifacta Inc. Page #131

APl Task - Manage AWS Configurations

Contents:

® Qverview
® Per-User Authentication Methods
® Basic Steps
Step - Acquire information
Step - Locate user
Step - Create awsConfig object
Step - Verify Authentication
Step - For Method 2, assign new IAM role to awsConfig object
Step - Switching Persons or Workspaces for an awsRole
Step - Switching Authentication Methods

Overview
The Designer Cloud powered by Trifacta® platform supports multiple methods of authenticating to AWS
resources. At the topmost level, authentication can be broken down into two modes: system and user.

® System mode: One set of credentials is used for each user of the platform to authenticate to AWS.
® User mode: Individual user accounts must be configured with AWS credentials.

NOTE: This section covers how to manage AWS credentials through the APIs for individual users
(user mode). When in system mode, please manage AWS configuration through the application.

Per-User Authentication Methods
To connect to AWS resources and access S3 data, the following information is required for each user, depending
on the method of authentication.

NOTE: Since instance credentials are provided at the system level, use of the instance credential
provider type in AWS configuration objects is not supported.

Method 1 - AWS Key and Secret
If users are providing key-secret combinations, the following information is required.

Item Description
key/secret (credential provider type is def aul t) The AWS key and secret for the user to authenticate

default bucket = The default S3 bucket where the user can upload data and store generated results

extra buckets = Any extra S3 buckets to which the user should have access

Method 2 - AWS IAM Role ARNs

Users can access AWS resources by assigning an awsConfig object to the account.

Tip: This method is recommended.

The following information is required:

Item Description

Copyright © 2022 Trifacta Inc. Page #132

IAM (credential provider type is t @pOr ar y) The IAM role to use to authenticate.
role

NOTE: If this information is not immediately available, a placeholder one is created when you create the configuration
object. You can assign roles later. More information is provided below.

default | The default S3 bucket where the user can upload data and store generated results
bucket

extra Any extra S3 buckets to which the user should have access
buckets

Authentication objects
For each authentication method, the above pieces of information must be provided for each user.

These pieces of information are defined in an awsConf i g object. An awsConfig object is a set of AWS
configuration properties that can be created, modified, and assigned to individual users via API.

For Method 2, the awsConfig object maps to an awsRole object. An awsRole object references an IAM role and
an awsConfig object. When you create an awsConfig object and its credential provider is set to t enpor ar y, the
awsRole object is automatically created for you:

Each awsRole object maps to a single IAM role.

Each awsRole object is mapped to an awsConfig object.

The awsConfig object is then assigned to individual users.

Through this mechanism, you have more flexibility in assigning the active role to users.

As needed, the awsConfig object can be mapped at a later time to another awsRole object through
the r ol e attribute.

This approach steps through the process for all these methods.
Platform roles
Your account must have one of the following roles:

® Workspace admin

® Trifacta admin

For more information, see

https://api.trifacta.com/ee/es.t/index.html#section/Authentication

Basic Steps
1. Choose your method of authentication.
2. Locate the internal identifier for the user to which to assign the configuration object.
3. Create an awsConf i g object, assigning the object to the user as part of the process.
4. Verify that the assignment is working.

Step - Acquire information

Acquire all of the information listed above for the awsConfig object you wish to create.

Step - Locate user

Now, you need to locate the internal identifier for the user to which you wish to assign this AWS configuration.

Copyright © 2022 Trifacta Inc. Page #133

Request:
Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ peopl e

Authentication = Required
Method GET

Request Body @ None.

Response:

Status Code 200 -

Response Body {

"data": [
{
"id": 3,
"email": "4070250@xanpl e. cont',
"name": "Test User4070250",
"ssoPrincipal": null,
"hadoopPrincipal": null,

"isAdm n": fal se,

"isDi sabl ed": false,

"f orcePasswor dChange": fal se,

"state": "active",

"l ast St at eChange": nul I,

"createdAt": "2019-04-16T16: 27:51. 1432",

"updat edAt": "2019-04-16T16: 27: 56. 630Z",

"outputHonmeDir": "/trifactal queryResults/4070250@xanpl e. cont',
"fileUpl oadPath": "/trifactaluploads",

"awsConfigld": 2

"idt 2,

"email": "32870@xanpl e. cont',

"name": "Test User32870",

"ssoPrincipal": null,

"hadoopPrinci pal ": nul I,

"isAdm n": fal se,

"isDi sabl ed": false,

"forcePasswor dChange": fal se,

"state": "active",

"l ast St at eChange": nul |,

"createdAt": "2019-04-16T16:27:19.511Z2",
"updat edAt": "2019-04-16T16: 27: 26. 703Z",
"outputHoneDir": "/trifactalqueryResul ts/32870@xanpl e. cont',
"fileUpl oadPath": "/trifactaluploads",
"awsConfigld": 1

"idto1,

"email": "<admi n_email >",

"nane": "Admnistrator",

"ssoPrincipal": null,

"hadoopPrincipal": null,

"i sAdmi n": true,

"isDi sabl ed": false,

"f orcePasswor dChange": fal se,

"state": "active",

"l ast St at eChange": nul |,

"createdAt": "2019-04-16T07: 44: 04.299Z",
"updat edAt": "2019-04-16T16: 28: 16. 379Z",
"out put HomeDir": "/trifactal queryResul ts/adm n@xanpl e. conf,
"fileUploadPath": "/trifactaluploads",
"awsConfigld": 3

Copyright © 2022 Trifacta Inc. Page #134

Checkpoint: In the above, you noticed that userld=2 is associated with awsConfig object id=1, which is
the one you are replacing. This is the user to modify. Retain this value for later.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/getPerson

Step - Create awsConfig object

Create the AWS configuration object.

NOTE: Optionally, the per sonl d value can be inserted into the request to assign the AWS configuration
object to a specific user at create time, when it is created by an admin user. If it is created by a non-
admin user, the object is assigned to the user who created it.

NOTE: For Method 2, an awsRole object is automatically created for you when you create the awsConfig
object. It is mapped to the awsConfig object.
Request:
Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ awsConfi gs

Authentication = Required
Method PCST

Request Body Method 1: AWS key-secret combination

{

"credential Provider": "default",

"personld": 2,

"key": "<ny_key>",

"secret": "<nmy_secret>",

"def aul t Bucket": "main_bucket",

"extraBuckets":["extra-bucket 1", "extra-bucket 2"]
}

Method 2: IAM role

{
"credential Provider": "tenporary",
"personld": 2,
"role":"<ny_i amrol e_obj ect>",
"def aul t Bucket": " mai n_bucket",
"extraBuckets":["extra-bucket 1", "extra-bucket2"]
}

Response for Method 2:

Status Code 201 - Created

Copyright © 2022 Trifacta Inc. Page #135

Response Body @ Method 2 example:

{
"extraBuckets": [
"extra-bucket 1",
"extra- bucket 2"

id': 6,

"def aul t Bucket": "nmin_bucket",
"credential Provider": "tenporary",

"external ld": null,

"activeRoleld":"4",

"updat edAt": "2019-04- 16T23: 06: 32. 049Z",
"createdAt": "2019-04-16T23:06: 32.047Z",
"credential": null

Checkpoint: In the above, the awsConfig object has an internal identifier (i d=6).
As part of the request, this object was assigned to user 2 per sonl d=2.

The act i veRol el d attribute indicates that the internal ID of the awsRole object that was automatically
created for you.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createAwsConfig

Step - Verify Authentication
To verify that the above configuration works:

User id=2 should login to the application.

User uploads assets through the Import Data page.

User creates a short recipe that modifies these assets.

User runs a job on that recipe to generate output to the default S3 bucket in CSV or JSON for downloading.
User verifies that the results can be downloaded.

agrwbdrE

Checkpoint: Configuration and verification is complete.

Step - For Method 2, assign new IAM role to awsConfig object

If you need to change the IAM role ARN for a user, you can modify the awsConfig object for that user with the
new role information.

NOTE: This section only applies if cr edent i al Provi der has been set to t enpor ar y for the object
and if you are using multiple IAM role ARNSs in the Designer Cloud powered by Trifacta platform .

The following request modifies the awsConfig i d=6.

Request:
Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ awsConfi gs/ 6

Authentication = Required

Method PATCH

Request Body

Copyright © 2022 Trifacta Inc. Page #136

"role":"<ny_iamrol e_object_3>"

Response:
Status Code 200 - K

Response Body {

"extraBuckets": [
"extra-bucket1",
"extra- bucket 2"

id': 6,

"def aul t Bucket": "nmin_bucket",
"credential Provider": "tenporary",

"external Il d": null,

"activeRol el d": " <awsRol el d>",

"updat edAt": "2019-04-16T23: 06: 32. 049Z",
"createdAt": "2019-04-16T23:06: 32. 047Z",
"credential": null

Checkpoint: In the above step, you assigned a new IAM role to the awsConfig object. The underlying
awsRole object is created for you and automatically assigned. For more information, see
https://api.trifacta.com/ee/es.t/index.html#operation/createAwsRole

NOTE: After you have completed the above update, the previous awsRole object still exists. If the IAM
role associated with it is no longer in use, you should delete the awsRole object. See
https://api.trifacta.com/ee/es.t/index.html#operation/deleteAwsRole

Step - Switching Persons or Workspaces for an awsRole

When you create or modify an awsRole, you can optionally pass in a person or workspace identifier. When either
value is provided, the Designer Cloud powered by Trifacta platform attempts to assign the awsRole to the
provided identifier based on the related awsConfig object.

Acquire awsRole identifier

Via awsConfig identifier

Use the following endpoint to retrieve the awsConfig object. This one uses awsConfigld=6:

Request:

Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ awsConfi gs/ 6

Authentication = Required
Method GET

Request Body | Empty.

Response:

Copyright © 2022 Trifacta Inc. Page #137

Status Code 200 - &K

Response Body {

"extraBuckets": [
"extra-bucket 1",
"extra- bucket 2"

id': 6,

"def aul t Bucket": "nmin_bucket",
"credential Provider": "tenporary",

"external ld": null,

"activeRol el d": "<awsRol el d>",

"updat edAt": "2019-04-16T23: 06: 32. 049Z",
"createdAt": "2019-04-16T23:06: 32. 047Z",
"credential": null

Acquire the value for act i veRol el d.

Via awsRoles identifier

Use the following request to retrieve all of the awsRoles:

Request:
Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ awsRol es
Authentication | Required
Method CGET

Request Body | Empty.

In the response, locate the appropriate identifier.
Reassign the awsRole

You can use the PUT method of the following endpoint to re-assign the awsRole to the specified person or
workspace. The following example reassigns awsRoleld=3 to personld=6.

Request:
Endpoint htt p: // ww. wr angl e- dev. exanpl e. com 3005/ v4/ awsRol es/ 3
Authentication | Required
Method PUT

Request Body {

"personld': 6

}

If the request is successful, the awsRole is reassigned to the person identifier.

Tip: In the above request, you can replace " per sonl d" with "wor kspacel d" to reassign the role to all
users in a workspace.

Copyright © 2022 Trifacta Inc. Page #138

Step - Switching Authentication Methods

Suppose you have created your awsConfig objects to use the AWS Key-Secret method of authenticating. You
have now created a set of IAM roles that you would like to assign to your Trifacta users.

The generalized steps for completing this task is the following:

1. Acquire the identifiers for all of the awsConfigs you wish to modified. For each awsConfig, retain the per so
nl d, so that you can map your configuration changes to individuals. See
https://api.trifacta.com/ee/es.t/index.html#operation/listAwsConfigs

a. For more information on getting your list of users, see
https://api.trifacta.com/ee/es.t/index.html#operation/getPerson
2. For each user account (per sonl d), you must identify the IAM role that you wish to assign it.
3. Use the following modification to the awsConfig object to switch to using the 1AM role for the user:

Request:
Endpoint http://ww. w angl e- dev. exanpl e. com 3005/ v4/ awsConfi gs/ <awsConfi gl d>
Authentication = Required
Method PUT

Request Body {

"credential Provider": "tenporary",
"role":"<my_i amrol e_obj ect>"

Response for Method 2:

Status Code 200 -
Response Body = Method 2 example:

{
"extraBuckets": [
"extra-bucket 1",
"extra- bucket 2"

"id": <awsConfi gl d>,

"def aul t Bucket": "nmmin_bucket",
"credential Provider": "tenporary",
"external Id": null,

"activeRol el d": " <awsRol el d>",

"updat edAt": "2019-04-16T23: 06: 32. 049Z",
"createdAt": "2019-04-16T23: 06: 32. 047Z",
"credential": null

Notes:

Item Description

credenti a Touse IAM roles, this attribute must be updated to be t enpor ary.
| Provi der

role The IAM role to assign to the configuration.

If needed, you can change the person (user) to which this awsConfig is applied. Note that the former user of the

Copyright © 2022 Trifacta Inc. Page #139

personl d configuration cannot access AWS resources until you create a new configuration object for the user's account.

acti veRol (response) Internal identifier of the awsRole object that was created for you and assigned to this awsConfig object.
eld

NOTE: The above request must be applied to each awsConfig object that you wish to remap to using an
IAM role.

Copyright © 2022 Trifacta Inc. Page #140

API Task - Wrangle Output to Python

NOTE: As of Release 9.7, Wrangle to Python conversion has been deprecated. For more information,
please see End of Life and Deprecated Features.

EXPERIMENTAL FEATURE: This feature is intended for demonstration purposes only. This
feature may be modified or removed from the Designer Cloud powered by Trifacta platform
without warning in a future release. It should not be deployed in a production environment.

Contents:

Alpha Release
Enable
Limitations
v4 OutputObjects WrangleToPython Create
® Required Permissions
® Request
® Response
® Reference

You can enable an API endpoint that converts the your recipe steps to generate a specific output into Python
Pandas code. When executed, this generated Python Pandas code applies transformations to your specified
dataset and generates the specified output.

Alpha Release

This endpoint is the beginning of enabling the Designer Cloud powered by Trifacta® platform to integrate with
pre-existing Python data pipelines.

This documentation provides information on how to explore the capabilities of the Designer Cloud powered by
Trifacta platform to generate Python code for your external data pipelines.

Enable
To enable generation of Python Pandas code, please complete the following:
Steps:
1. You apply this change through the Workspace Settings Page. For more information, see

Platform Configuration Methods.
2. Locate the following setting and set it to Enabl ed:

Wangl e to Python Conversion

3. The feature is now enabled.

Limitations

® This endpoint does not currently support multi-dataset operations.
®* The generated Python code does not yield readable columns in the output code.

Copyright © 2022 Trifacta Inc. Page #141

® Conversion of Wrangle script to Python code is supported for CSV files only.

v4 OutputObjects WrangleToPython Create

This section contains reference documentation on the API endpoint. This endpoint method is applied to a
specified outputObject. This outputObject is the result of execution of a specific recipe (wrangledDataset). That
recipe has references to its source importedDatasets and connections.

For more information on supported versions of the APIs, see
https://api.trifacta.com/ee/es.t/index.html#section/Overview/Versioning-and-Endpoint-Lifecycle.

This API enables generation of Python Pandas code for the Wrangle recipe associated with an output object.
Version: v4
Relevant terms:

Term Description

out put Ob | An outputObject is a definition of one or more types of outputs and how they are generated. It must be associated with
jects arecipe.

NOTE: An outputObject must be created for a recipe before you can run a job on it. One and only one
outputObject can be associated with a recipe.

wWriteSet AwriteSettings object defines file-based outputs within an outputObject. Settings include path, format, compression,
tings and delimiters.

pu bl i cat ' A publications object is used to specify a table-based output and is associated with an outputObject. Settings include
i ons the connection to use, path, table type, and write action to apply.

Required Permissions

NOTE: Each request to the Alteryx® Analytics Cloud must include authentication credentials. See
https://api.trifacta.com/ee/es.t/index.html#section/Authentication.

Request
Request Type: POST
Endpoint:

[v4l out put Qbj ect s/ <i d>/ wr angl eToPyt hon

Request URI - Example:

/ v4l out put bj ect s/ 3/ wr angl eToPyt hon

Request Body:
The following defines the running environment used for the outputObject.

{
}

"execution": "spark"

Copyright © 2022 Trifacta Inc. Page #142

Response

Response Status Code - Success: 200 - K
Response Body Example:

The generated response is the Python Pandas code:

{

fromtrifacta.transform functions.function_definitions inport Replace
i mport pandas as pd
i nport nunmpy as np

def run_transforms(df 0=None)
if (df0 is None)

df 0 = pd.read_csv('input.csv', skip_blank_lines=False, linetermnator="\n', dtype=str, encoding="UTF-8")
repl acel = Replace('x', 'u', False, False)
repl ace2 = Replace('x', '"u', True, False)

repl ace3 = Replace('x', 'u', True, True)

repl ace4 = Replace('x', "\\\\', True, False)

df 3 = pd. Dat aFranme({' new_columl': dfO['col 1'].appl y((l anbda x: replacel.exec(x))), 'new colum2': dfo0
["col1'].apply((lanbda x: replace2.exec(x))), 'new_colum3': dfO['col1'].apply((lanbda x: replace3.exec(x)))
'new_colum4': dfO['col1'].apply((lanmbda x: repl aced.exec(x)))})

return df 3

}

Reference

For more information , see
https://api.trifacta.com/ee/es.t/index.html#operation/getPythonScriptForOutputObjectinput

Copyright © 2022 Trifacta Inc. Page #143

APl Documentation Versions

Depending on where you access the APl documentation, you may be presented different sets of available
endpoints for the following reasons.

API| Reference Docs

Location: api.trifacta.com

At api.trifacta.com, you can select the API reference documentation for your product edition. When selected, you
can review all possible API endpoints and methods that are supported in your product edition.

This portal is available on the public Internet.

Tip: Review this content to see what is possible for your product edition.

API Deployment Docs

Location: In the Designer Cloud application , select Resources menu > API documentation.

This instance of the API documentation filters the preceding API reference documentation based on the following:
® Features that are enabled or disabled in your Trifacta deployment
® Endpoints that are accessible based on your API access token

® Any roles that may be applicable to your user account

This portal is available only for registered users of the workspace from which it is accessed.

Tip: Review this version to see the API endpoints that you can use with your current account in your
specific Trifacta deployment.

Copyright © 2022 Trifacta Inc. Page #144

Python SDK

NOTE: As of Release 9.7, Wrangle to Python conversion has been deprecated. For more information,
please see End of Life and Deprecated Features.

Contents:

® Prerequisites
® Trifacta prerequisites
® Python prerequisites
Limitations
Download and Install
Examples
Wrangle function reference
® Trifacta module functions
® WrangleFlow module functions
¢ Data profiling functions

The Trifacta® Python SDK enables you to integrate the Designer Cloud application into your Python pipelines.
When your Python environment has been integrated with the Designer Cloud application , you can leverage the
visual tools in the application to rapidly construct your transformation steps on exampled data that you upload.
When you have finished building your recipe, you can invoke a function in your Python environment to download
the recipe as Python Pandas code for use in your data pipelines.

Basic task:

1. Through your Python notebook:
a. Upload example data to your Trifacta workspace.
b. Launch the Designer Cloud application .
2. Inthe Designer Cloud application :
a. Use the transformation tools in the application to transform your example data using a series of
recipe steps.
b. Iterate on your recipe. Generate results through the Designer Cloud application to verify that you
have transformed your data correctly.
3. In your Python notebook:
a. Invoke a function to translate the recipe into Python Pandas and download it to your local Python
environment.
b. Deploy this recipe into other Python pipelines to transform other datasets as needed.

Prerequisites

Trifacta prerequisites
* A workspace administrator must enable the Python to Wrangle feature in your workspace. For more
information, see Workspace Settings Page.
® You must have a valid APl access token. For more information, see Manage API Access Tokens.

Python prerequisites

NOTE: If you receive the following error message: Per ni ssi onError: You nust setup a
trifacta configuration, use tfconfig.setup_configuration(user, pwd),thenyou
must deploy . tri f act a. py. conf in the directory where the software is located.

Copyright © 2022 Trifacta Inc. Page #145

Please see the installation instructions available at the download URL listed below.
Limitations

NOTE: This is an Alpha release. Do not use the Python SDK in a production environment.

® Some Wrangle functions and transformations are not supported by Python Pandas. Known limitations:
* NUMFORMAT function
® String comparison functions

* Transformations that use Array or Map data types are not supported for Python Pandas generation.

® Uploaded files must be in CSV file format.

Download and Install

For more information on downloading and installing the Python SDK, see https://pypi.org/project/trifacta/.

Examples

For a basic example, please see https://pypi.org/project/trifacta/.

Wrangle function reference
The following wrangling functions are available through the SDK.
Trifacta module functions

t f is an alias to the Trifacta module.

Function Description Arguments
Name
tf. Upload one ore more datasets to the Designer Cloud *datasets: Pandas DataFrames to be wrangled.
wr angl e application and create a flow for it.
(*dat as)))) It cou!d also be a tuple, where the first element in th_e
This flow is then available through the Designer Cloud tuple is a Pandas DataFrame, and second element is the
et S) application , where you can transform the dataset through the reference name (string) for the DataFrame.

user interface. See https://pypi.org/project/trifacta/.

WrangleFlow module functions

All the below functions are available for the W angl eFl ow object in your Python environment. So, you must call
them using a W angl eFl ow object.

wf is a reference to the WrangleFlow object.

Function Name Description Arguments
wf . add_dat aset s Add Pandas DataFrames *datasets: Pandas DataFrames to be added to a flow.
(*dat aset s) to a flow, where dat aset s
is a list of DataFrames. It could also be a tuple, where the first element in the tuple is a

Pandas DataFrame, and second element is the reference name
(string) for the DataFrame.

get _pandas Generates Python Pandas add_to_next_cell: Set it to True, if you're using Jupyter Notebook
(add_t o_next _cel | =Fal s code for your Wrangle and would like to add the generated Pandas code to be added to
PR, . recipe. next cell. If False, the Pandas code is returned as string.

e, recipe_name="
<ny_recipe>")

Copyright © 2022 Trifacta Inc. Page #146

wf . run_j ob(pbar=None,
executi on=' photon',
reci pe_name=None)

wf.profile
(reci pe_nanme=None)

wf . reci pe_nanes()

wf . open_profile
(reci pe_nanme=None)

Data profiling functions

Function Name

wf . sunmary
(reci pe_nane=None)

wf . dg_bars
(show_t ypes=Tr ue,
reci pe_name=None)

wf. col types
(reci pe_name=None)

wf. bars_df |ist
(reci pe_nanme=None)

wf. pdf _profile
(fil enane=None,
reci pe_name=None)

Copyright © 2022 Trifacta Inc.

Run a job for a specified
recipe.

Generate a profile for a
specified recipe.

Lists the recipe names for
the recipe present in Trifact
a flow.

Open a profile that you

have previously generated
for the specified recipe.

Description

Returns a table of summary statistics

per column

Returns the valid/invalid/missing ratio

per column

Lists the inferred data type for each

column

recipe_name: Recipe for which you want to get the Pandas code. If
not specified, the default recipe is used. Use Wf .
reci pe_names() to retrieve available recipes.

pbar: can be ignored.

execution: Running environment in Designer Cloud powered by
Trifacta platform where you want to execute the job. Possible
values: phot on or ent Spar k.

recipe_name: Recipe for which you want to execute the job. If set to
None, input is the default recipe.

recipe_name: Recipe for which you want to generate profile. If set
to None, input is the default recipe.

N/A

recipe_name: Recipe for which you want to open the profile. If set
to None, input is the default recipe.

Arguments

recipe_name: Recipe name for which you want to generate
the summary. If set to NONne, input is the default recipe.

show_types: Show column types information along with
data quality bars for the column.

recipe_name: Recipe name for which you want to generate
the data quality bar. If set to NOne, input is the default
recipe.

recipe_name: Recipe name for which you want to infer data
types for each column. If set to NONne, input is the default
recipe.

Returns a list of dataframes, one per
column, representing a bar-chart for
that column

Returns a snazzy PDF report with all
the statistics

recipe_name: Recipe name for which you want to generate
the bar-chart. If set to None, input is the default recipe.

filename: Name of the file to which PDF profile results are

written. If set to NONe, results are returned back from the

function.

recipe_name: Recipe for which you want to generate PDF
profile results. If set to None, results are generated for the
default recipe.

Page #147

alteryx | TRIFACTA

Copyright © 2022 - Trifacta, Inc.
All rights reserved.

	Developer Guide
	User-Defined Functions
	Java UDFs

	Create Custom Data Types Using RegEx
	API Reference
	Manage API Access Tokens
	API Endpoints for Designer Cloud Powered by Trifacta Enterprise
	API Tasks
	API Task - Develop a Flow
	API Task - Deploy a Flow
	API Task - Run Job
	API Task - Run Job on Dataset with Parameters
	API Task - Run Plan
	API Task - Define Deployment Import Mappings
	API Task - Run Deployment
	API Task - Publish Results
	API Task - Swap Datasets
	API Task - Manage Outputs
	API Task - Manage AWS Configurations
	API Task - Wrangle Output to Python

	API Documentation Versions

	Python SDK

