

Application User Guide
Version: 9.2
Doc Build Date: 07/29/2022

 Copyright © Trifacta Inc. 2022 - All Rights Reserved. CONFIDENTIAL

These materials (the “Documentation”) are the confidential and proprietary
information of Trifacta Inc. and may not be reproduced, modified, or distributed
without the prior written permission of Trifacta Inc.

EXCEPT AS OTHERWISE PROVIDED IN AN EXPRESS WRITTEN
AGREEMENT, TRIFACTA INC. PROVIDES THIS DOCUMENTATION AS-IS
AND WITHOUT WARRANTY AND TRIFACTA INC. DISCLAIMS ALL EXPRESS
AND IMPLIED WARRANTIES TO THE EXTENT PERMITTED, INCLUDING
WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE AND
UNDER NO CIRCUMSTANCES WILL TRIFACTA INC. BE LIABLE FOR ANY
AMOUNT GREATER THAN ONE HUNDRED DOLLARS ($100) BASED ON
ANY USE OF THE DOCUMENTATION.

For third-party license information, please select About Trifacta from the Help
menu.

1. Workflow Basics 6
1.1 Object Overview 8
1.2 Import Basics 13
1.3 Profiling Basics 14
1.4 Transform Basics 17
1.5 Sampling Basics 27
1.6 Running Job Basics 31
1.7 Export Basics 33

2. Common Tasks 34
2.1 Import Tasks 37

2.1.1 Connect to Data 38
2.1.1.1 Share a Connection 40

2.1.2 Import a File 41
2.1.2.1 Change File Encoding 42
2.1.2.2 Remove Initial Structure 43

2.1.3 Import a Table 44
2.1.3.1 Disable Type Inference 45

2.1.4 Import from Another Flow 46
2.1.5 Import Excel Data 48
2.1.6 Import Google Sheets Data 51
2.1.7 Import PDF Data 54
2.1.8 Create Dataset with Parameters 58

2.1.8.1 Parameterize Files for Import 61
2.1.8.2 Parameterize Tables for Import 68

2.1.9 Create Dataset with SQL 73
2.2 Discovery Tasks 80

2.2.1 Explore Suggestions 81
2.2.2 Add or Edit Recipe Steps 85
2.2.3 Filter Data 86
2.2.4 Locate Outliers 88
2.2.5 Compute Counts 94
2.2.6 Calculate Metrics across Columns 98
2.2.7 Compare Strings 101
2.2.8 Analyze across Multiple Columns 105
2.2.9 Parse Fixed-Width File and Infer Columns 108
2.2.10 Generate a Sample 110

2.2.10.1 Change Recipe Sample Size 116
2.3 Validation Tasks 118

2.3.1 Profile Your Source Data 119
2.3.2 Validate Your Data 121

2.3.2.1 Validate Column Values against a Dataset 128
2.3.3 Find Bad Data 135
2.3.4 Find Missing Data 140
2.3.5 Manage Null Values 146

2.4 Structuring Tasks 148
2.4.1 Initial Parsing Steps 149
2.4.2 Reshaping Steps 153
2.4.3 Split Column 154
2.4.4 Move Columns 160
2.4.5 Delete Data 164
2.4.6 Select 167
2.4.7 Create Aggregations 169
2.4.8 Nest Your Data 172
2.4.9 Unnest Your Data 175
2.4.10 Pivot Data 184
2.4.11 Unpivot Columns 192
2.4.12 Window Transformations 195
2.4.13 Working with Arrays 205
2.4.14 Working with Objects 214
2.4.15 Working with JSON v2 224

Page #3

2.4.16 Working with JSON v1 233
2.5 Cleanse Tasks 243

2.5.1 Rename Columns 244
2.5.2 Sanitize Column Names 253
2.5.3 Change Column Data Type 254
2.5.4 Copy and Paste Columns 258
2.5.5 Create Column by Example 259
2.5.6 Remove Data 261
2.5.7 Deduplicate Data 266
2.5.8 Compare Values 269
2.5.9 Replace Cell Values 271
2.5.10 Replace Values Using Patterns 273
2.5.11 Replace Groups of Values 280
2.5.12 Normalize Numeric Values 285
2.5.13 Standardize Using Patterns 291
2.5.14 Modify String Values 295
2.5.15 Manage String Lengths 306
2.5.16 Extract Values 309
2.5.17 Format Dates 318
2.5.18 Apply Conditional Transformations 325
2.5.19 Prepare Data for Machine Processing 328

2.6 Enrichment Tasks 333
2.6.1 Create New Column 337
2.6.2 Add Two Columns 339
2.6.3 Generate Primary Keys 342
2.6.4 Add Lookup Data 346
2.6.5 Append Datasets 349
2.6.6 Join Data 351

2.6.6.1 Configure Range Join 356
2.6.7 Insert Metadata 358
2.6.8 Invoke External Function 361

2.7 Publishing Tasks 363
2.7.1 Create Outputs 364

2.7.1.1 Create Output SQL Scripts 369
2.7.2 Publish Results on Demand 375
2.7.3 Reuse Recipe 376

2.8 Project Management Tasks 378
2.8.1 Take a Snapshot 379
2.8.2 Track Data Changes 381
2.8.3 Add Comments to Your Recipe 385
2.8.4 Create Target 386
2.8.5 Optimize Job Processing 388
2.8.6 Diagnose Failed Jobs 390
2.8.7 Schedule a Job 396
2.8.8 Create Branching Outputs 398
2.8.9 Build Sequence of Datasets 400
2.8.10 Fix Dependency Issues 403
2.8.11 Share a Flow 405
2.8.12 Export Flow 406
2.8.13 Import Flow 408

2.8.13.1 Reconnect Flow to Source Data 411
2.8.13.2 Reconnect Flow to Outputs 412
2.8.13.3 Define Import Mapping Rules 413

2.8.14 Create or Replace Macro 427
2.8.15 Apply a Macro 433
2.8.16 Export Macro 435
2.8.17 Import Macro 436
2.8.18 Create Flow Parameter 438
2.8.19 Flag for Review 445

Page #4

2.8.20 Manage Environment Parameters 448
2.9 Operationalization Tasks 451

2.9.1 Create Flow Webhook Task 452
2.9.2 Create a Plan 459

2.9.2.1 Create Delete Task 467
2.9.2.2 Create HTTP Task 469
2.9.2.3 Create Slack Task 478

2.9.3 Share a Plan 480
2.9.4 Export Plan 481
2.9.5 Import Plan 482

2.10 Account Management Tasks 483
2.10.1 Change Password 484
2.10.2 Configure Your Access to S3 485

3. Concepts 488
3.1 Feature Overviews 489

3.1.1 Overview of Data Export 490
3.1.2 Overview of Data Import 494
3.1.3 Overview of Storage 498
3.1.4 Overview of Predictive Transformation 503
3.1.5 Overview of the Type System 511
3.1.6 Overview of Schema Management 521
3.1.7 Overview of Standardization 525
3.1.8 Overview of Cluster Clean 530
3.1.9 Overview of Visual Profiling 534
3.1.10 Overview of Sampling 539
3.1.11 Overview of Job Execution 544

3.1.11.1 Trifacta Photon Running Environment 551
3.1.11.2 EMR Running Environment 552
3.1.11.3 Snowflake Running Environment 553
3.1.11.4 AWS Databricks Running Environment 559
3.1.11.5 Azure Databricks Running Environment 560
3.1.11.6 Hadoop Spark Running Environment 561

3.1.12 Overview of TBE 562
3.1.13 Overview of Data Quality 565
3.1.14 Overview of Sharing 570
3.1.15 Overview of Job Monitoring 576
3.1.16 Overview of Automator 582
3.1.17 Overview of Parameterization 584
3.1.18 Overview of Authorization 597
3.1.19 Overview of Operationalization 600
3.1.20 Overview of Macros 606
3.1.21 Overview of Deployment Manager 610
3.1.22 Overview of Pattern Matching 618
3.1.23 Overview of RapidTarget 622

3.2 Using Connections 625
3.2.1 Using Databases 626
3.2.2 Using HDFS 628
3.2.3 Using S3 632
3.2.4 Using SQL DW 636

Page #5

Workflow Basics
Contents:

Overview
Prerequisites
Basic Workflow

Learn the basics of how to import, wrangle, execute jobs, profile, and export your data from Trifacta®.

Overview

Trifacta® enables analysts, data specialists, and other domain experts to quickly cleanse and transform datasets
of varying sizes for use throughout the enterprise. Using an innovative set of web-based tools, you can import
complex datasets and wrangle them for use in virtually any target system. Key capabilities include:

Import from flat file, databases, or distributed storage systems
Locate and remove or modify missing or mismatched data
Unnest complex data structures
Identify statistical outliers in your data for review and management
Perform lookups from one dataset into another reference dataset
Aggregate columnar data using a variety of aggregation functions
Normalize column values for more consistent usage and statistical modeling
Merge datasets with joins
Append one dataset to another through union operations

Most of these operations can be executed with a few mouse clicks. This section provides a basic overview of
common workflows through Trifacta.

Prerequisites

Before you begin, please verify the following:

Trifacta account: You have a Trifacta account and can login.

Example data: You should use a sample set of data during this workflow.

Basic Workflow

1. Import data: Integrate data from a variety of sources of data.

Tip: When you login for the first time, you can immediately upload a dataset to begin transforming
it.

See Import Basics.
2. Profile your data: Before, during, and after you transform your data, you can use the visual profiling tools

to quickly analyze and make decisions about your data. See Profiling Basics.
3. Build transform recipes: Use the various views in the Transformer Page to build your transform recipes

and preview the results on sampled data. See Transform Basics.
4. Sample your data: In Trifacta, you create your recipes while working with a sample of your overall

dataset. As needed, you can take new samples, which can provide new perspectives and enhance
performance in complex flows. See Sampling Basics.

Copyright © 2022 Trifacta Inc. Page #6

5. Run job: Launch a job to run your recipe on the full dataset. Review results and iterate as needed. See
Running Job Basics.

6. Export results: Export the generated results data for use outside of Trifacta. See Export Basics.

Object overview: You should review the overview of the objects that are created and maintained in Trifacta.
See Object Overview.

Copyright © 2022 Trifacta Inc. Page #7

Object Overview
Contents:

Flow Structure and Objects
Flow
Imported Dataset
Recipe
Flow Example

Working with recipes
Connections
Flow Schedules
Plans

Explore the objects that you create and their relationships. Flows, imported datasets, and recipes are created to
transform your sampled data. After you build your output objects, you can run a job to transform the entire
dataset based on your recipe and deliver the results according to your output definitions.

Flow Structure and Objects

Within Trifacta®, the basic unit for organizing your work is the flow. The following diagram illustrates the
component objects of a flow and how they are related:

Copyright © 2022 Trifacta Inc. Page #8

Figure: Objects in a Flow

Flow

A flow is a container for holding one or more datasets, associated recipes and other objects. This container is a
means for packaging Trifacta objects for the following types of actions:

Creating relationships between datasets, their recipes, and other datasets.

Copying
Execution of pre-configured jobs
Creating references between recipes and external flows

Imported Dataset

Data that is imported to the platform is referenced as an imported dataset. An imported dataset is simply a
reference to the original data; the data does not exist within the platform. An imported dataset can be a reference
to a file, multiple files, database table, or other type of data.

NOTE: An imported dataset is a pointer to a source of data. It cannot be modified or stored within Trifacta.

An imported dataset can be referenced in recipes.
Imported datasets are created through the Import Data page.
For more information on the process, see Import Basics.

After you have created an imported dataset, it becomes usable after it has been added to a flow. You can do this
as part of the import process or later.

Recipe

A recipe is a user-defined sequence of steps that can be applied to transform a dataset.

A recipe object is created from an imported dataset or another recipe. You can create a recipe from a
recipe to chain together recipes.
Recipes are interpreted by Trifacta and turned into commands that can be executed against data.
When initially created, a recipe contains no steps. Recipes are augmented and modified using the various
visual tools in the Transformer page.
For more information on the process, see Transform Basics.

In a flow, the following objects are associated with each recipe, which are described below:

Outputs
References

Outputs and Publishing Destinations

Outputs contain one or more publishing destinations, which define the output format, location, and other
publishing options that are applied to the results generated from a job run on the recipe.

When you select a recipe's output object in a flow, you can:

Define the publishing destinations for outputs that are generated when the recipe is executed. Publishing
destinations specify output format, location, and other publishing actions. A single recipe can have
multiple publishing destinations.
Run an on-demand job using the specified destinations. The job is immediately queued for execution.

Copyright © 2022 Trifacta Inc. Page #9

Reference Datasets

When you select a recipe's reference object, you can add it to another flow. This object is then added as a
reference dataset in the target flow. A reference dataset is a read-only version of the output data generated from
the execution of a recipe's steps.

Flow Example

The following diagram illustrates the flexibility of object relationships within a flow.

Figure: Flow Example

Type Datasets Description

Standard job Recipe 1 Results of the job are used to create a new imported dataset (I-Dataset 2) from the Job Details page.
execution /Job 1

Create dataset from Recipe 2 Recipe 2 is created off of I-Dataset 2 and then modified. A job has been specified for it, but the
generated results /Job 2 results of the job are unused.

Chaining datasets Recipe 3 Recipe 3 is chained off of Recipe 2. The results of running jobs off of Recipe 2 include all of the
/Job 3 upstream changes as specified in I-Dataset 1/Recipe1 and I-Dataset 2/Recipe 2.

Reference dataset Recipe 4 I-Dataset 4 is created as a reference off of Recipe 3. It can have its own recipe, job, destinations, and
/Job 4 results.

Flows are created in the Flows page.

Copyright © 2022 Trifacta Inc. Page #10

Working with recipes

Recipes are edited in the Transformer page, which provides multiple methods for quickly selecting and building
recipe steps.

Samples: Within the Transformer page, you build the steps of your recipe against a sample of the dataset.

A sample is typically a subset of the entire dataset. For smaller datasets, the sample may be the entire
dataset.
As you build or modify your recipe, the results of each modification are immediately reflected in the
sampled data. So, you can rapidly iterate on the steps of your recipe within the same interface.
As needed, you can generate additional samples, which may offer different perspectives on the data.
See Sampling Basics.

Macros: As needed, you can create reusable sequences of steps that can be parameterized for use in other
recipes.

Run Jobs: When you are satisfied with the recipe that you have created in the Transformer page, you can
execute a job. A job may be composed of one or more of the following job types:

Transform job: Executes the set of recipe steps that you have defined against your sample(s), generating
the transformed set of results across the entire dataset.
Profile job: Optionally, you can choose to generate a visual profile of the results of your transform job.
This visual profile can provide important feedback on data quality and can be a key for further refinement
of your recipe.
When a job completes, you can review the resulting data and identify data that still needs fixing in the Job
Details page.
For more information on the process, see Running Job Basics.

Connections

A connection is a configuration object that provides a personal or global integration to an external datastore.
Reading data from remote sources and writing results are managed through connections.

Connections are not associated with individual datasets or flows.
Connections are not reflected in the above diagram.

Most connections can be created by individual users and shared as-needed.
Depending on the datastore, connections can be read-only, write-only, or both.
Connections are created in the Connections page.

Flow Schedules

You can associate a schedule with a flow. A schedule is a combination of one or more triggers and the outputs
that are generated from them.

NOTE: A flow can have only one schedule associated with it.

A trigger is a scheduled time of execution. When a trigger's time occurs, all of the scheduled output
destinations are queued for generation.

A schedule can have multiple triggers associated with it. Therefore, a flow can be scheduled for
execution at multiple intervals.

A scheduled destination is an output associated with a recipe. This output is generated only when the
schedule for the flow is triggered.

A scheduled destination is not tied to a specific trigger. When a trigger occurs, all scheduled
destinations in the flow are generated.
A scheduled destination generates one or more publishing actions (outputs) from the recipe when
triggered.

Copyright © 2022 Trifacta Inc. Page #11

A recipe can have only one scheduled destination.
Each recipe in a flow can have a scheduled destination.
If a flow has a trigger but no scheduled destination, nothing is generated at trigger time.

Below, you can see the object hierarchy within a schedule.

+ schedule for Flow 1
 + trigger 1
 + trigger 2
 + scheduled destination a
 + scheduled destination b

+ schedule for Flow 2
 + trigger 3
 + scheduled destination c
 + scheduled destination d

Schedules are created for a flow through Flow View page.

Plans

A plan is a sequence of triggers and tasks that can be executed across multiple flows. A plan is executed on a
snapshot of all objects at the time that the plan is triggered.

A task is an executable action that is taken as part of a plan's sequence. For example, task #1 could be to
execute a flow that imports all of your source data. Task #2 executes the flow that cleans and combines
that data. Example task types:

A flow task is the execution of the recipes in a specified flow, which result in the generation of one
or more selected outputs.

A trigger for a plan is the schedule for its execution.
A snapshot is a frozen image of the plan. This snapshot of the plan defines the objects that
are executed as part of a plan run.

An HTTP task is a request submitted by the product to a third-party server as part of the sequence
of tasks in a plan. For example, an HTTP task could be the submission of a message to a channel
in your enterprise's messaging system.

Plans are created through the Plans page.

Copyright © 2022 Trifacta Inc. Page #12

Import Basics
Trifacta® can import data from a variety of flat file formats and other distributed sources.

NOTE: Trifacta does not modify a source. Instead, a set of metadata is associated with the source data,
which enables transformation of the source. On export, a new version of the data is written to one or
more specified output destinations.

Steps:

When data is imported, a reference to it is stored by the platform as an imported dataset. The source data is not
modified. In the application, you modify the recipe associated with a dataset to transform a sample of the
imported data.

NOTE: Any user with a valid user account can import data from a local file.

1. Login to the application.
2. In the menubar, click Library. Click Import Data.
3. To add a dataset:

a. Select the connection where your source is located.
b. Upload:

i. Select Upload to upload a file from your local desktop. You can select multiple files to
upload. For this example, select only one file.

ii. Navigate and select the file or files for your source. Click Open.
c. Backend storage, such as S3:

i. Navigate and select the file or files for your source.
ii. To queue the dataset for uploading, click the Plus icon next to its name.
iii. You can select multiple files.

d. Select the Add to new flow checkbox. This option creates a new flow, which is a container object for
your Trifacta assets. Your imported dataset is added to it.

4. To begin working with your dataset, click Continue.
5. The imported dataset and its containing flow are created.
6. You can begin working with the dataset in the Transformer page. For more information, see

Transform Basics.

Tip: If you are interested, you can create a visual profile of your source data before you begin
transforming. For more information, see Profiling Basics.

Copyright © 2022 Trifacta Inc. Page #13

Profiling Basics
Contents:

Profiling Source Data
Profiling in the Application

Status Bar
Column Header
Column Histogram
Column Details - statistics and outliers
Column Browser - profiles across columns

Profiling in Job Results
Download visual profile

Trifacta® surfaces visual representations of your data for individual columns and the entire dataset and provides
mechanisms for taking immediate action on issues in the data.

Profiling Source Data

When you first load your dataset into the application, you might want to run a job to profile your dataset before
you build your recipe. The generated results and profile are accessible through the Job Details page in the Trifact
a application. This profile of your source can be useful later in seeing how your dataset has changed during
development.

Profiling in the Application

When you identify something of interest in the Trifacta application, you can select the visual representation of it,
and the platform prompts you with a set of suggested transforms to add to your recipe. These visual profiles
enable you to make quick assessments of problems, unusual patterns, and required changes to your data.

NOTE: Before your job is run, profiling information such as column statistics are exact counts of the
sample that is currently loaded. After the job is run, profiled results in the Job Results page might include
estimates for some metrics and counts, depending on the scale of the dataset.

Status Bar

The number of rows, columns, and data types in the current sample are displayed at the bottom of the page in
the status bar.

Column Header

The top of each column contains a data quality bar, which identifies the valid, mismatched, and missing values in
the column when compared against the specified data type, and column histogram, which identifies the range of
values in the column.

Copyright © 2022 Trifacta Inc. Page #14

Figure: Example Column

Data Quality Bar - missing and mismatches values

Below the name of the column, the multi-colored band indicates the valid (green), mismatched (red), and missing
(gray) values in the column, when matched against the column's data type. Click the missing or mismatched
values in a column's data quality bar. You are prompted with suggestions of transformations to fix or remove
these values.

Column Histogram

The bar chart at the top of each column in the Transformer page is called a histogram. Each column histogram
displays the count of each detected value in the column (for string data) or the count of values within a numeric
range (for number data). You can use this histogram to identify unusual values or outlier values, which can be
corrected or removed.

Column Details - statistics and outliers

In the Column Details window, you can review key statistical information on the values in a column. Displayed
statistics are based on the column's data type. Select Column Details from the drop-down for the specific column
in the data grid.

Copyright © 2022 Trifacta Inc. Page #15

Column Browser - profiles across columns

In the column browser, you can view visual histograms for each column in the dataset and make selections to
identify correlations between values in multiple columns. To open the column browser, click the Columns icon in
the Transformer bar.

Profiling in Job Results

When you run a job, you can choose to generate a visual profile based on the job results from the Run Job page.

Download visual profile

From the Profiles tab, you can download your job's visual profile to your desktop.

Copyright © 2022 Trifacta Inc. Page #16

Transform Basics

Contents:

Goal
Recommended Methods for Building Recipes
Sample
Cleanse
Modify
Enrichment
Sampling
Profile

When you edit your dataset's recipe, the Transformer page is opened, where you begin your wrangling tasks on a
sample of the dataset. Through this interface, you build your transformation recipe and see the results in real-time
as applied to the sample. When you are satisfied with what you see, you can execute a job against the entire
dataset.

Goal

Your data transformation is complete when you have done the following:

Cleansed your data of invalid, missing, or inaccurate values
Enhanced your dataset as needed with data from other datasets
Modified your dataset to constrain its values to meet the target schema
Executed job against the entire dataset
Exported the results from your dataset and recipe for use in downstream systems

Tip: Before you begin transforming, you should know the target schema that your transformed data must
match. A schema is the set of columns and their data types, which define the constraints of your dataset.
You can import this target schema as a dataset and use it during recipe development to serve as a
mapping for your transformations.

Recommended Methods for Building Recipes

Trifacta® supports the following methods for building recipes in the Transformer page. These methods are listed
in order of ease of use:

1. Select something. When you select elements of data in the Transformer page, you are prompted with a
set of suggestions for steps that you can take on the selection or patterns matching the selection. You can
select columns or one or more values within columns.

Tip: The easiest method for building recipes is to select items in the application. Over time, the
application learns from your selections and prompts you with suggestions based on your previous
use.

2. Toolbar and column menus: In the Transformer page, you can access pre-configured transformations
through the Transformer toolbar or through the column context menus.

Tip: Use the toolbar for global transformations across your dataset and the column menu for
transformations on one or more selected columns.

Copyright © 2022 Trifacta Inc. Page #17

a. When a Transformer toolbar item is selected, the Transform Builder is pre-populated with settings
and values to get you started. As needed you can modify the step to meet your needs.

b. The column menus contain the most common transformations for individual or multiple columns.
Often, no additional configuration is required.

c. Select multiple columns. Continue selecting columns to be prompted with a different set of
suggestions applicable to all of them.

3. Search and browse for transformations. Using the Search panel and the Transform Builder, you can
rapidly assemble recipe steps through a simple, menu-driven interface. When you choose to add a step,
you search for your preferred transformation in the Search panel. When one is selected, the Transform
Builder is pre-populated from your selection in the Search panel.

Tip: Use the Transform Builder for performing modifications to the transformation you selected
from the Search panel or a suggestion card.

Sample

Loading very large datasets in Trifacta can overload your browser or otherwise impact performance, so the
application is designed to work on a sample of data. After you have finished your recipe working on a sample,
you execute the recipe across the entire dataset.

The default sample is the first set of rows of source data in the dataset, the number of which is determined by the
platform. For smaller datasets, the entire dataset can be used as your sample. In the Transformer page, it's listed
as Initial Data in the upper-left corner.

In some cases, the default sample might be inadequate or of the wrong type. To generate a new sample, click
the name of the sample in the upper-left corner.

NOTE: Collecting new samples requires system resources and storage. In some environments, collecting
samples incurs monetary cost.

Tip: You should consider collecting a new sample if you have included a step to change the number of
rows in your dataset or have otherwise permanently modified data (keep, delete, lookup, join, or pivot
operations). If you subsequently remove the step that made the modification, the generated sample is no
longer valid and is removed. This process limits unnecessary growth in data samples.

On the right side of the Transformer page, you can launch a new sampling job on your dataset from the Samples
panel. You may have to open it first.

Cleanse

Data cleansing tasks address issues in data quality, which can be broadly categorized as follows:

Consistency. Values that describe the same thing should agree with each other. For example, numeric
values should have the same precision. String values should be consistently structured to mean the same
thing.
Validity. Values should be constrained to the requirements of each field's data type. For example, a
DateOfSale field should be a valid date.
Reliability. Values in the same field in different records should mean the same thing. For example, the
value 15 in the Temperature field of two different records should not mean Centigrade in one record and
Fahrenheit in the other record.

When data is initially imported, it can contain multiple columns, rows, or specific values that you don't need for
your final output. Specifically, this phase can involve the following basic activities:

Copyright © 2022 Trifacta Inc. Page #18

Remove unused columns
Address missing and mismatched data
Change data types
Improve consistency, validity, and reliability of the data

NOTE: An imported dataset requires about 15 rows to properly infer column data types and the row, if
any, to use for column headers.

First recipe steps:

When a dataset sample is first loaded into the Transformer page, Trifacta attempts to split out the unstructured
data to form regular, tabular data. If your data appears to contain a header row, it can be used for the titles of the
columns.

Figure: Transformer page

In the above image, some initial parsing steps have been applied to structure the data into tabular format, but
these steps are not added as formal parts of the recipe. They are hidden from view in the recipe. By default,
these steps are automatically added to the recipe when you permit the application to detect the structure of the
imported data.

The data resulting from these initial transforms is displayed in the data grid.

Your recipe is displayed in the Recipe panel on the right side. You might have to open this panel to see it.
When you select items in the data grid, suggestion cards are displayed for you to begin building transform
steps.
These suggestions can be modified to build more complex or subtle commands in the Transform Builder.
Don't forget to use the Transformer toolbar, which pre-configures the Transform Builder with the
configuration required for a useful transformation.
You can use the column menu to apply changes to an individual column.

Use a row to create headers:

In most cases, the names of your columns are inferred from the first row of the data in the dataset. If you need to
specify a different row, please complete the following:

1. Click the Search icon in the menu bar.

Copyright © 2022 Trifacta Inc. Page #19

2. In the Search panel textbox, type: header
3. The transformation is displayed in the Transform Builder. Specify the following properties:

Transformation Name Rename columns

Parameter: Option Use row as header

Parameter: Row 1

4. If you need to specify a different row to use, you can specify a specific row number to use in the Row
textbox.

5. To add this or any transform in development to your recipe, click Add. This button is disabled if the step is
invalid.

Generate metadata:

On the left side of the data grid, you might notice a set of black dots. If you hover over one of these, the original
row number from the source data is listed. Since the data transformation process can change the number of rows
or their order, you might want to retain the original order of the rows.

Tip: Some operations, such as unions and joins, can invalidate source row number information. To
capture this data into your dataset, it's best to add this transformation early in your recipe.

To retain the original row numbers in a column called, rowId, please complete the following:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula $sourcerownumber

Parameter: New column rowId
name

You can use a similar transformation to generate the full path and filename to file-based sources:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula $filepath

Parameter: New column filepath
name

Delete unused columns:

Your data might contain columns that are not of use to you, so it's in your interest to remove them to simplify the
dataset. To delete a column, click the caret next to the column's title and select Delete.

Tip: If you are unsure of whether to delete the column, you can use the same caret menu to hide the
column for now. Hidden columns do appear in the output.

Tip: You can also delete multiple columns, including ranges of columns.

Copyright © 2022 Trifacta Inc. Page #20

Check column data types:

When a dataset is imported, Trifacta attempts to identify the data type of the column from the first set of rows in
the column. At times, however, type inference can be incorrect.

Tip: Before you start performing transformations on your data based on mismatched values, you should
check the data type for these columns to ensure that they are correct.

Display only columns of interest:

You can choose which columns you want to display in the data grid, which can be useful to narrow your focus to
problematic areas.

In the Status bar at the bottom of the screen, click the Eye icon.

Review data quality:

After you have removed unused data, you can examine the quality of data within each column just below the
column title.

Figure: Column header with data quality bar

The horizontal bar, known, as the data quality bar, identifies the quality of the data in the column by the following
colors:

Color Description

green These values are valid for the column data type.

red These values do not match those of the column type.

Copyright © 2022 Trifacta Inc. Page #21

gray There are no values for the column in these rows.

Tip: When you select values in the data quality bar, those values are highlighted in the sample rows, and
suggestions are displayed at the bottom of the screen in the suggestion cards to address the selected
rows.

Suggestion Cards:

Based on your selections and its knowledge of common data patterns, Trifacta prompts you with suggested
transformations. You can then select pre-configured transformations in the right panel of the Transformer page to
quickly add steps.

Tip: Where possible, you should try to create your transforms by selecting data and then selecting the
appropriate suggestion card. In some cases, you might need to modify the details of the recipe.

In the following example, the missing values in the SUBSCRIBER_AGE column have been selected, and a set of
suggestion cards is displayed.

Figure: Selecting missing values

Tip: When previewing a recipe step, you can use the checkboxes in the status bar to display only
affected rows, columns, or both, which helps you to assess the effects of your step.

Depending on the nature of the data, you might want to keep, delete, or modify the values. Since the data is
missing, the Delete card has been selected.

To accept this suggest, click Add.
You can modify the step if needed. An example is provided later.

For more background information, see Overview of Predictive Transformation.

Change data types:

Copyright © 2022 Trifacta Inc. Page #22

If a column contains a high concentration of mismatched data (red), the column might have been identified as the
wrong data type. For example, your dataset includes internal identifiers that are primarily numeric data (e.g. 1000
0022) but have occasional alphabetical characters in some values (e.g. 1000002A). The column for this data
might be typed for integer values, when it should be treated as string values.

Tip: Trifacta maintains statistical information and enable some transformation steps based upon data
type.

1. To change a column's data type, click the icon to the left of the column title.
2. Select the new data type.
3. Review the mismatched values for the column to verify that their count has dropped.

Explore column details:

As needed, you can explore details about the column's data, including statistical information such as outliers.
From the caret drop-down next to a column name, select Column Details.

Review histograms:

Just below a column's data quality bar, you can review a histogram of the values found in the column. In the
following example, the data histogram on the left applies to the ZIP column, while the one on the right applies the
WEB_CHAT_ID column.

Figure: Column data histogram

When you mouse over the categories in the histogram, you can see the corresponding value, the count of
instances in the sample's column, and the percentage of affected rows. In the left one, the bar with the greatest
number of instances has been selected; the value 21202 occurs 506 times (21.28%) in the dataset. On the right,
the darker shading indicates how rows with ZIP=21202 map to values in the WEB_CHAT_ID column.

Copyright © 2022 Trifacta Inc. Page #23

Tip: Similar to the data quality bar, you can click values in a data histogram to highlight the affected rows
and to trigger a set of suggestions. In this manner, you can use the same data quality tools to apply even
more fine-grained changes to individual values in a column.

Modify

After you have performed initial cleansing of your data, you might need to perform modifications to the data to
properly format it for the target system, specify the appropriate level of aggregation, or perform some other
modification.

In the following example, the improperly capitalized word BALTIMORE has been selected, so that you can change
it to its propercase spelling (Baltimore). Those rows are highlighted in the row data, and a set of suggestions
for how to fix has been provided in the Selection Details panel.

Figure: Selecting values to modify

Depending on the nature of your data, you might want to keep or change the values, or you can remove the
problematic rows altogether.

Tip: When you select one of the suggestion cards, the implied changes are previewed in the Transformer
page, so you can see the effects of the change. This previewing capability enables you to review and
tweak your changes before they are formally applied. You can always remove a transform step if it is
incorrect or even re-run the recipe to generate a corrected set of results, since source data is unchanged.

In this case, select the Replace transformation. However, there are a couple of minor issues with the provided
suggestion.

Since the platform has no idea about the meaning of the selection, it might initially suggest removing the
text altogether. In this case, you want to change the spelling.
In the transformation, the Find parameter value contains the pattern used to identify the selection. In this
case, it is selecting all values that are capitalized. For now, you only want to fix BALTIMORE.

Copyright © 2022 Trifacta Inc. Page #24

So, some aspects of this transform must be changed. Click Edit.

Transform Builder:

When you modify a transform step, you can make changes in the Transform Builder, which is a simple, menu-
driven interface for modifying your transformations:

Figure: Modifying steps in the Transform Builder

In the Transform Builder, you can replace the pattern with the specific string to locate: BALTIMORE. The new
value, which is currently blank, can be populated with the replacement value: Baltimore. Click Add.

The step is added to the recipe and automatically applied to the data sample displayed in the Transformer page.
You can continue to add new steps through the Transform Builder.

Enrichment

Before you deliver your data to the target system, you might need to enhance or augment the dataset with new
columns or values from other datasets.

Union datasets:

You can append a dataset of identical structure to your currently loaded one to expand the data volume. For
example, you can string together daily log data to build weeks of log information using the Union page.

Join datasets:

You can also join together two or more datasets based on a common set of values. For example, you are using
raw sales data to build a sales commission dataset:

Your sales transaction dataset contains a column for the salesman's identifier, which indicates the
employee who should receive the commission.
You might want to join your sales transaction dataset to the employee dataset, which provides information
on the employee's name and commission rate by the internal identifier.
If there is no corresponding record in the employee dataset, a commission is not rewarded, and the sales
transaction record should not be present in the commission dataset.

Copyright © 2022 Trifacta Inc. Page #25

This commission dataset is created by performing an inner join between the sales transaction dataset and the
employee dataset. In the Search panel, enter join to join data.

Lookup values:

In some cases, you might need to include or replace values in your dataset with other columns from another
dataset. For example, transactional data can reference product and customer by internal identifiers. You can
create lookups into your master data set to retrieve user-friendly versions of customer and product IDs.

NOTE: The reference data that you are using for lookups must be loaded as a dataset into Trifacta first.

To perform a lookup for a column of values, click the caret drop-down next to the column title and select Lookup...
.

Sampling

The data that you see in the Transformer page is a sample of your entire dataset.

If your dataset is small enough, the sample is the entire dataset.
For larger datasets, Trifacta auto-generates an initial data sample from the first rows of your dataset.

For larger datasets, you must learn how to generate new samples, which can provide different perspectives on
your data and, in complex flows, enhance performance.

Tip: Sampling is an important concept in Trifacta.

Profile

As part of the transformation process, you can generate and review visual profiles of individual columns and your
entire dataset. These interactive profiles can be very helpful in identifying anomalies, outliers, and other issues
with your data.

Copyright © 2022 Trifacta Inc. Page #26

Sampling Basics

Contents:

Initial Data
Take a Sample
Sampling and Memory
Sampling Considerations

Invalid samples
Best Practices

A sample is a selection of rows from your dataset, which can be used as the basis for building the transformation
steps in your recipe. The Trifacta® application automatically creates initial data samples of your data whenever
you create a new recipe for a dataset and enables you to create additional samples at any time using a variety of
sampling techniques.

Initial Data

When you create a new recipe and load it in the Transformer page, the Trifacta application displays the initial
data sample of the dataset. The initial data consists of the first X rows of the datasets, where X is determined by
the following factors:

The number of columns in the dataset
The amount of data in each cell
The maximum permitted size of each sample

Take a Sample

These first rows are displayed for you to begin your work in the Transformer page. However, you may begin to
run into limitations with this sample. For example, suppose your dataset is organized by date, with earliest dates
listed first. There may be significant changes in the data later in the time period that do not appear in the initial
sample. You may decide that you need to take a different sample that captures some of these changes.

Steps:

1. In the Transformer page, click the Eyedropper icon at the top of the page.

Copyright © 2022 Trifacta Inc. Page #27

2. The Samples panel is displayed.

Figure: Samples panel
3. At the top of the panel, you can review the Current Sample.

Tip: In some cases, then the entire dataset is displayed in the data grid. Unless you wish to use a
specific sampling technique to filter down your data, sampling may not be useful across the entire
dataset.

4. Below the current sample, you can see the available sample types. To take a new random sample:
a. Click the Random card.
b. Depending on your product edition, you may be able to select Quick Scan or Full Scan.

i. Quick Scan creates your sample by making some assumptions about the data when it scans.

Copyright © 2022 Trifacta Inc. Page #28

ii. Full Scan creates your sample by scanning across all rows of the dataset. This option can
take awhile across a large dataset.

c. Click Collect.
5. The sampling job is queued for execution. When it completes, click Load Sample.
6. The data grid is refreshed to display the rows gathered in the new random sample.

Sampling and Memory

NOTE: After you generate a sample, all steps in a recipe that occur after the step selected when you
generated the sample are executed in browser memory on the sample data and then displayed in the
data grid.

The above statement is best explained by example:

Action Sampling

1. Create a new recipe and open it in Transformer The initial sample is generated and displayed.
page.

2. Add 3 steps to your recipe. The 3 new steps are applied to the initial sample in the browser's memory.

3. Generate a new random sample. The random sample is generated. When you load the sample, it is displayed in the
data grid.

4. Add 25 steps to your recipe. The 25 new steps are applied to the random sample in the browser's memory.

5. Select one of the first 3 steps of your recipe. The initial sample is loaded and displayed.

6. Insert a new step below the current one. Now, the first 4 steps are displayed using the initial sample.

Implications:

As you add steps to your recipe without resampling, your recipe and sample consume more memory in
your browser.
When you perform complex multi-dataset operations, such as joins or unions, your recipe/sample
combination consumes a lot more memory.
If you continue adding steps:

Performance in the browser can be impacted. Basic operations such as selection of data or new
recipe steps can become slow to respond.
The browser can crash.

Sampling Considerations

Tip: When resources permit, it's a good habit to take a new sample after a few multi-dataset operations
or operations that otherwise change the number of rows in your dataset have been added to your recipe.

Other considerations:

Generating samples takes time. This is particularly true for Full Scan samples.
Sampling can cost money. In some cloud-based environments, generating a sample costs compute
resources, which can add to your computing bill.
You may need multiple samples. For long or complex recipes, you may need to take multiple samples.
Reference datasets should begin with a sample. When you create a recipe for a reference dataset, you
should start by generating a new sample for it.

Copyright © 2022 Trifacta Inc. Page #29

Invalid samples

Samples can become invalid. If your recipe steps change the number of rows or otherwise reshape your dataset
using transformations such as pivot or join in the steps leading up to where you took the current sample, your
existing sample may no longer be valid.

When the application determines that a sample is invalid:

The sample can no longer be used. It is now listed under the Unavailable tab in the Samples panel.
The application automatically reverts to the last known good sample.

NOTE: Depending on when the last known good sample was generated, this reversion could
suddenly force a large number of steps to be processed in the browser's memory.

You should consider generating a new sample immediately.

Best Practices

For more information on best practices, see
https://community.trifacta.com/s/article/Best-Practices-Managing-Samples-in-Complex-Flows.

Copyright © 2022 Trifacta Inc. Page #30

https://community.trifacta.com/s/article/Best-Practices-Managing-Samples-in-Complex-Flows

Running Job Basics
Contents:

Configure Job
Run Job
Iterate

Configure Job

When you are ready to test your recipe against the entire dataset, click Run in the Transformer page. In the Run
Job page, you specify the output formats and any compression to apply. Unless you are working with a large
dataset, compression is unneeded for this basic walkthrough.

Tip: Optionally, you can disable generating a visual profile of your results. While the visual profile is very
useful for examining issues in your recipe and iterating, it is a resource-intensive process. If you are
working with large datasets that do not require additional debugging, you can consider disabling the
profiling of your results. For more information, see Overview of Visual Profiling.

Tip: Depending on your product configuration, you may have multiple running environments available to
you. In most cases, you should choose to use the default running environment, which is selected for you
based on the size of the dataset.

For more information on the job execution options, see Run Job Page.

Run Job

To queue the specified job for execution, click Run.

The job is queued up for processing.

You can track progress in the Job Details page.

If visual profiling was enabled for the job, click the Profile tab.
When the job is completed, you can access results in the Output Destinations tab.
For more information, see Job Details Page.

Iterate

In the Profile tab of the Job Details page, you can review the effects of the transformation recipe across the entire
dataset. Statistics and data histograms provide overall visibility into the quality of your transformation recipe.

Copyright © 2022 Trifacta Inc. Page #31

Figure: Visual Profile

See Job Details Page.

Use the links in the Job Details page to resume working on your dataset sample and the related recipe,
generating jobs when you think you are done, until you have generated the appropriate dataset.

Copyright © 2022 Trifacta Inc. Page #32

Export Basics
After you have iterated on your recipe and generated a result that is to your satisfaction, you can export the
transformed data.

Steps:

1. In the left nav bar, click the Jobs icon.
2. In the Jobs page, click the job identifier to open the job in the Job Details page.
3. Click the Output Destinations tab.

Export by:

Direct file download: Click the file to download. From its righthand context menu, select Download result.

NOTE: Some file types cannot be downloaded.

Create new dataset: You can create a new dataset from a generated output. Click the file. From its
righthand context menu, select Create imported dataset.

Publish: If Trifacta® has been integrated with an external datastore, you can publish your results to a
designated target. Click Publish.

Copyright © 2022 Trifacta Inc. Page #33

Common Tasks
Contents:

Import Tasks
Discovery Tasks
Validation Tasks
Structuring Tasks
Cleanse Tasks
Enrichment Tasks
Publishing Tasks
Project Management Tasks
Operationalization Tasks
Account Management Tasks

This section contains documentation on common methods for performing your data wrangling tasks in Trifacta®.

Import Tasks

Connect to Data
Share a Connection

Import a File
Change File Encoding
Remove Initial Structure

Import a Table
Disable Type Inference

Import from Another Flow
Import Excel Data
Import Google Sheets Data
Import PDF Data
Create Dataset with Parameters

Parameterize Files for Import
Parameterize Tables for Import

Create Dataset with SQL

Discovery Tasks

Explore Suggestions
Add or Edit Recipe Steps
Filter Data
Locate Outliers
Compute Counts
Calculate Metrics across Columns
Compare Strings
Analyze across Multiple Columns
Parse Fixed-Width File and Infer Columns
Generate a Sample

Change Recipe Sample Size

Validation Tasks

Profile Your Source Data
Validate Your Data

Validate Column Values against a Dataset

Copyright © 2022 Trifacta Inc. Page #34

Find Bad Data
Find Missing Data
Manage Null Values

Structuring Tasks

Initial Parsing Steps
Reshaping Steps
Split Column
Move Columns
Delete Data
Select
Create Aggregations
Nest Your Data
Unnest Your Data
Pivot Data
Unpivot Columns
Window Transformations
Working with Arrays
Working with Objects
Working with JSON v2
Working with JSON v1

Cleanse Tasks

Rename Columns
Sanitize Column Names
Change Column Data Type
Copy and Paste Columns
Create Column by Example
Remove Data
Deduplicate Data
Compare Values
Replace Cell Values
Replace Values Using Patterns
Replace Groups of Values
Normalize Numeric Values
Standardize Using Patterns
Modify String Values
Manage String Lengths
Extract Values
Format Dates
Apply Conditional Transformations
Prepare Data for Machine Processing

Enrichment Tasks

Create New Column
Add Two Columns
Generate Primary Keys
Add Lookup Data
Append Datasets
Join Data

Configure Range Join
Insert Metadata
Invoke External Function

Copyright © 2022 Trifacta Inc. Page #35

Publishing Tasks

Create Outputs
Create Output SQL Scripts

Publish Results on Demand
Reuse Recipe

Project Management Tasks

Take a Snapshot
Track Data Changes
Add Comments to Your Recipe
Create Target
Optimize Job Processing
Diagnose Failed Jobs
Schedule a Job
Create Branching Outputs
Build Sequence of Datasets
Fix Dependency Issues
Share a Flow
Export Flow
Import Flow

Reconnect Flow to Source Data
Reconnect Flow to Outputs
Define Import Mapping Rules

Create or Replace Macro
Apply a Macro
Export Macro
Import Macro
Create Flow Parameter
Flag for Review
Manage Environment Parameters

Operationalization Tasks

Create Flow Webhook Task
Create a Plan

Create Delete Task
Create HTTP Task
Create Slack Task

Share a Plan
Export Plan
Import Plan

Account Management Tasks

Change Password
Configure Your Access to S3

Copyright © 2022 Trifacta Inc. Page #36

Import Tasks
These workflows pertain to creating imported datasets for use in the product.

An imported dataset is a reference to a source of data. It is not a copy of the data.

NOTE: Trifacta® never modifies source data.

Copyright © 2022 Trifacta Inc. Page #37

Connect to Data
Contents:

Locate Connections
Use Connections

Read-Only
Write

Create Connection
Delete Connection

When you import data into Trifacta®, you are creating a reference to a source of data; the source is never
touched. When the data is required for use, Trifacta reads a sample of the source data into the application for
your use. Data is read into the application through an object called a connection.

The following are the supported types of connection for the product:

Upload/Download: You can upload data directly from your local desktop. You can also save it locally on
export.
Base storage layer: Your deployed instance of the product is connected to a base storage layer, where
you can read sources and write your results.
Relational sources: You can read from database tables into the product.

Locate Connections

You already have a set of connections that you can use. Connections can be either read-only or read-write.

1. In the Home page, click the Connections icon in the left nav bar.
2. The currently available Connections is displayed.

In the Import Data page, your list of available connections is displayed in the left nav bar.

Use Connections

Read-Only

1. In the Import Data page, select one of the available connections.
2. Navigate through the connection to select the asset to import.
3. Select the object and click Open.
4. In the Import Data page, review the settings of the asset in the card in the right panel. Make updates as

needed.

Write

You write results through a connection by specifying a set of settings.

1. In the Run Job page, click Add Publishing Action.
2. In the left nav bar, select the connection.
3. Specify the settings for the publishing action.
4. Run the job.
5. When it successfully completes, the specified results are published through the selected connection.

Copyright © 2022 Trifacta Inc. Page #38

Create Connection

NOTE: Some connections require additional configuration outside of the application.

When a new connection is created, it is initially available only to you.

Prerequisites:

Before you create a new connection, please verify the following:

On the datastore, you have read and (optionally) write locations.
You have credentials to use to connect to this datastore. These credentials have permissions on your read
/write locations.
Some datastores require a special connection string, which must be inserted as part of the connection
object.

Read-only:

1. In the Import Data page, click the New icon in the left nav bar.
2. In the Create Connection window, specify the parameters of the connection.

Read-write:

1. In the Connections page, click Create Connection.
2. Click the connection category or search for a specific connection to create.
3. If a connection is grayed out:

a. It may already exist. Some connections types permit only one globally available connection.
b. It may not be supported in your product.
c. It may be read-only.

4. Click the name of the connection.
5. In the Create Connection window, specify the parameters of the connection.

Delete Connection

NOTE: You can delete a connection only if you are an admin or the connection owner, and the
connection is not used to import any current datasets.

Steps:

1. In the Connections page, locate the connection to remove.
2. In the context menu, select Delete....
3. The connection is deleted.

Copyright © 2022 Trifacta Inc. Page #39

Share a Connection
Contents:

Share a Connection
Make a Connection Public
Remove Sharing From a Connection

This section provides an overview of sharing connections with other users for collaboration.

You can share connections with other users to use the same connection through the Connections page.

NOTE: Access to the Connections page in the application and privileges on connections is governed by
roles in your workspace. For more information, please contact your workspace administrator.

Share a Connection

Steps:

1. From the Connections page, locate the connection to share.
2. From the context menu, select Share.
3. In the Share dialog, enter the name or email address of the user with whom you would like to share the

connection.
4. Specify the privilege level of the user to whom you are sharing. For more information on sharing privileges,

see Overview of Sharing.
5. As the owner of a connection, you can specify whether to share your credentials with other users who

have access to the connection:

NOTE: Connections that use OAuth 2.0 authentication cannot be shared with credentials.

a. Share credentials: (default) The credentials specified in the connection definition are shared to
each user of the connection.

b. Do not share credentials: The connection credentials are not shared. Each user who is shared the
connection must specify their own credentials.

6. Click Share.
7. The selected users can now see the connections in the Shared with Me tab of the Connections page and

can use the connection.

Make a Connection Public

Only an administrator can make a connection public.

Remove Sharing From a Connection

You can remove the sharing from a connection by performing the following steps:

1. From the Share dialog for connections, select the user to remove sharing.
2. From the drop-down next to the user, Select Remove.
3. The sharing for the connection is removed.

Copyright © 2022 Trifacta Inc. Page #40

Import a File
You can import one or more files into the Library or immediately add them to a flow.

NOTE: When you import a file, the data is not stored in Trifacta®. What you create is an imported
dataset, which is simply a reference to the source of the data. Trifacta never stores or modifies source
data.

Steps:

From the menubar, click Library.
In the Library page, click Import Data.
From the left sidebar in the Import Data page, select the connection where your data is located.

You must have read permissions on any directory and file that you wish to import.
Upload: Navigate your local desktop to select the file or files that you wish to upload.

Tip: You can select multiple files in the same directory for uploading at the same time.

File-based datastore: If you are uploading from a file-based backend datastore, navigate the
available directories to locate your file.

Microsoft Excel: If you are importing an Excel file that contains multiple worksheets, you
must select the worksheets to include as part of your import.
Dataset with Parameters: If you are importing multiple files with similar filenames, you can
import them as part of the same dataset using parameters or variables. In this manner, you
create a single imported dataset, which automatically includes any new files that appear in
the directory and that follow the same file naming pattern.

Some aspects of the import process can be modified. In the right panel, click Edit Settings for a file that
you have imported.

By default, the application applies a few steps to file-based imported datasets to attempt to organize
them into tabular format and hides these steps from your recipe. As needed, you can disable these
automated steps, so that the steps themselves appear in the Recipe panel.
If your file uses a different file encoding than the default encoding, you can change it for the file
during the import process.

When you are ready to complete the import process:

Tip: If present, you can click the Add to new flow checkbox, which adds the imported datasets to
an Untitled flow.

Your files are available as imported datasets.

For more information, see Import Data Page.

Copyright © 2022 Trifacta Inc. Page #41

Change File Encoding
Files are imported based on the default file encoding for Trifacta®.

The default file encoding can be configured. For more information, see Configure Global File Encoding Type.

As needed, you can override the default file encoding during the importing of individual datasets.

NOTE: All output files are written in UTF-8 encoding.

Tip: If you have already imported the dataset and need to change this setting, you can re-import the
source and change the settings. In any flows that use the previously imported version of this dataset, you
can change the input for any recipe that uses the old version to use this newly imported version in Flow
View.

Steps:

1. After you have selected or specified the file to import in the Import Data page, click Edit Settings for the
dataset card in the right panel.

2. From the drop-down, select the preferred encoding to apply to this specific file.
3. Continue the import process.

Copyright © 2022 Trifacta Inc. Page #42

Remove Initial Structure
When you import a dataset from a file, Trifacta® attempts to detect the structure of the file and to apply an initial
set of parsing steps to the data to render it in tabular form for display in the Transformer page. For example,
JSON files may be turned into a table of data as long as the structure of the data supports this structuring.

NOTE: Initial parsing steps are applied only to file-based sources of data.

These steps vary based on the file format of data that is being imported. Depending on the dataset, you may
need to modify these steps or rebuild them altogether. You can use the following steps to prevent Trifacta® from
detecting the structure and automatically hiding these steps.

Tip: You should allow the product to detect the structure first. If it does not detect the structure well, you
can experiment with disabling it and rebuilding the steps to meet your dataset requirements.

Tip: If you have already imported the dataset and need to change this setting, you can re-import the
source and change the settings. In any flows that use the previously imported version of this dataset, you
can change the input for any recipe that uses the old version to use this newly imported version in Flow
View.

NOTE: When the steps are completed, the initial parsing steps are listed in any recipe that you create
from the imported dataset. If you wish to remove them altogether, you can delete them from the recipe.

Steps:

1. After you have selected or specified the file to import in the Import Data page, click Edit Settings for the
dataset card in the right panel.

2. Deselect the Detect Structure checkbox. For more information, see File Import Settings.
3. Continue the import process by adding the dataset to a new flow.
4. When the imported dataset is added to a flow, it is listed as an unstructured dataset.
5. Select the dataset and click Add new recipe.
6. When you select the recipe, the initial parsing steps are listed in the right panel.
7. When the dataset is loaded into the Transformer page, you can modify these steps to improve the parsing

or delete them altogether.

NOTE: Any step that breaks up the data into individual rows into individual rows must be the first
step in the recipe. To create, enter Break into rows in the Search panel.

Copyright © 2022 Trifacta Inc. Page #43

Import a Table
You can import one or more tables into the Library or immediately add them to a new or existing flow.

NOTE: When you import a file, the data is not stored in Trifacta®. What you create is an imported
dataset, which is simply a reference to the source of the data. Trifacta never stores or modifies source
data.

Steps:

From the menubar, click Library.
In the Library page, click Import Data.
From the left sidebar in the Import Data page, select the connection to the relational datastore where your
data is located.
Browse the relational datastore to locate the table that you wish to import.
You must have read permissions on any database and table that you wish to import.
Create Dataset with SQL: You can apply a custom SQL statement to import from a database. For more
information, see Create Dataset with SQL.
Some aspects of the import process can be modified. In the right panel, click Edit Settings for a table that
you have imported.

The application's data types are applied to the table's columns during the import process. If needed,
you can disable type inference, so that the data types of the original source are preserved, if
possible, during import. For more information, see Disable Type Inference.

When you are ready to complete the import process:

Tip: If present, you can click the Add to new flow checkbox, which adds the imported datasets to
an Untitled flow in Flow View.

Your tables are available as imported datasets.

For more information, see Import Data Page.

Copyright © 2022 Trifacta Inc. Page #44

Disable Type Inference
When Trifacta® creates an imported dataset from a schematized source, the product applies its own type
inferencing to the columns of the imported data. Type inferencing may be reapplied during some operations, such
as the creation of samples or when data reshaping transformations are applied in the Transformer page.

If preferred, you can disable this type inferencing on the columns of your imported dataset. When the data is
imported, the original types from the source system remain. Any types that do not have a corresponding match
with the Trifacta data types must be manually typed in the application.

Methods of disabling:

Column data typing is applied to schematized sources in one of three ways:

1. Globally
2. Per-connection type inference settings override the global setting.
3. Per-file type inference settings override both global and per-connection settings.

For more information on applying global or per-connection type inference settings, see Configure Type Inference.

You can use the following steps to disable type inference applied to a specific file during the import process.

Tip: For imported datasets from relational sources, you can identify in Flow View whether type
inferencing has been applied to the dataset. When the dataset is selected in Flow View, locate the Type
Inference entry in the right panel.

Tip: If you have already imported the dataset and need to change this setting, you can re-import the
source and change the settings. In any flows that use the previously imported version of this dataset, you
can change the input for any recipe that uses the old version to use this newly imported version through
Flow View.

Steps:

1. After you have selected or specified the relational table to import in the Import Data page, click Edit
Settings for the dataset card in the right panel.

2. Deselect the Infer column data types checkbox.
3. Continue the import process.
4. When the dataset is loaded into the Transformer page, no new data typing is applied at all, unless you

manually specify the Trifacta data types for the column.

Copyright © 2022 Trifacta Inc. Page #45

Import from Another Flow
Contents:

Import Imported Dataset
Import Reference Dataset
Import Snapshot of Flow Output

You can use one of the following methods to import data from another flow into your current flow.

NOTE: When you import a file or a reference, the data is not stored in Trifacta®.

Import Imported Dataset

If another flow contains an imported dataset that you want to use, you can import it into your current flow.

NOTE: To use an imported dataset from another flow, you must have access to the dataset itself. If you
are not the owner of the flow, it must be shared with you. If the connection used to import the dataset is
not shared with you, you may have to build your own connection to the source.

Steps:

1. Open the target flow.
2. In Flow View, select Add Datasets.
3. In the Add Datasets to Flow dialog, click the Imported tab.
4. Browse the available datasets:

a. Select the one to import.
b. If you do not see it, click Import datasets. Navigate and select the dataset to import.

5. The dataset is imported into the flow.

Import Reference Dataset

For any flow, you can create a reference to a recipe in it. This reference enables the output of the recipe, after
execution, to be used elsewhere. When you import this reference into another flow, you create a reference
dataset.

NOTE: A reference dataset is a dynamic object. If the recipe that is the source of the reference changes,
then the reference dataset may change without warning. In the flow that uses the reference dataset, you
may see unexpected errors in your recipe. For more information, see Fix Dependency Issues.

Steps:

1. In the source flow in Flow View, locate the recipe whose output you wish to use in another recipe.
2. Right-click and select Add > Reference.

Copyright © 2022 Trifacta Inc. Page #46

3. The reference is created:

Figure: Reference object
4. In the right panel, click Add to Flow....
5. Select the flow to which to add the reference, or create a new one.
6. The reference is used to create the reference dataset in the target flow.

Figure: Reference dataset in a new flow

For more information, see View for Reference Datasets.

Import Snapshot of Flow Output

If you need a snapshot of data at a point in time from another flow, you can do either of the following.

NOTE: Since you are generating an output file in both of the following cases, the imported dataset that
you create from these outputs does not receive updated data.

1. Snapshot of recipe in development:
a. In the source flow, select a specific step in your recipe in the Recipe panel.
b. From the panel context menu, select Download Sample as CSV.
c. The recipe steps up to the selected step are performed on the current sample, and the current state

of the sample is download in CSV format to your local desktop.
d. Through the Import Data page, you can import this generated file.
e. For more information, see Take a Snapshot.

2. Snapshot of job results:
a. In the source flow, select your recipe in the Recipe panel.
b. Select the output object icon above the recipe.
c. In the side panel, click Run. Specify the job outputs. For best results, select a CSV or JSON output

in the Run Job page.
d. When the job completes, click the job identifier. The Job Details page opens.
e. In the Job Details page, click the Output Destinations tab. For the generated output, select Create

imported dataset from its context menu.
f. A new imported dataset is created in your Library.

g. In the target flow, add this dataset to your flow.
h. For more information, see Build Sequence of Datasets.

Copyright © 2022 Trifacta Inc. Page #47

Import Excel Data
In addition to CSV and other formats, Trifacta® can directly import Microsoft® Excel® workbooks and folders
containing workbooks.

The worksheets of a workbook can be imported as:

Individual datasets
A single dataset
A dataset with parameters

NOTE: When importing one or more Excel files as a parameterized dataset, you select
worksheets to include from the first file. If there are worksheets in other Excel files that match the
names of the worksheets that you selected, those worksheets are also imported. All worksheets
are unioned together into a single imported dataset with parameters. Pattern-based parameters
are not supported for import of Excel worksheets.

Limitations

XLSX and XLS format are supported. Other Excel-related formats, such as XLSM format, are not
supported.
Some characters, such as hashtags (#) and curly braces ({}) cannot be used in filenames. For more
information, see Supported File Formats.
Filepath and source row number information is not available from original Excel files. These references
return values from the CSV files that have been converted on the backend. For more information, see
Source Metadata References.
Source Excel files with cells bracketed by single double quotes may not be properly ingested if any
terminating quotes are missing.

Tip: You can check the data quality bars for mismatched values or, for strings, the data histogram
bars for anomalous values to see if the above issue is present. If so, deselect Detect Structure on
import. Then, use a Split rows transformation applied to the affected column to break up the
column as needed.

Macros in your Excel files are not imported.
During import, cell formulas are applied, and the output values are used in the imported dataset.

You cannot import password-protected Excel files.
Import of Excel files with protected columns or cells is not supported.
Compressed Excel files are not supported.

Conversion of large Excel files require non-linear increases in memory requirements on the Trifacta node.

If loading your Excel-based dataset in the Transformer page results in a blank screen, please take a new
sample. The file requires conversion again with each generated sampling.

NOTE: When you share a flow that contains a dataset sourced from Microsoft Excel, the user with
whom the flow is shared may receive a Could not parse error. In this case, the user does not
have access to the original sample. The workaround is to take a new sample or to run a job on the
full dataset.

Latest state of the Excel file may not be reflected in the Transformer page due to caching. When you run a
job, the platform always collects the latest version of the data and converts it to CSV for execution.

Copyright © 2022 Trifacta Inc. Page #48

Use

When Excel data is imported into Trifacta, each sheet in an imported file must be converted to a CSV and then
ingested for use.

Steps:

1. In the menu bar, click Library.
2. In the Library page, click Import Data. Select the connection to use.

Figure: Import Excel workbook

Tip: If you experience issues uploading large XLS/XLSX files, you can convert the files to CSV
files and then upload them.

3. After you select the workbook, it is uploaded and converted to CSV format and stored by the platform.
Depending on the size of the workbook, this process may take a while.

4. By default, all worksheets in the workbook are imported as individual datasets. To change how the data is
imported, click Edit in the right panel.

Figure: Import settings for Excel datasets

Copyright © 2022 Trifacta Inc. Page #49

5. Dataset creation:
a. 1 dataset per sheet: (Default) Each selected sheet in the workbook is imported as a separate

dataset.
Specify the base name of the datasets that you are creating. If you are creating a single dataset, the
name of the workbook is used.

b. Selected sheets into 1 dataset: All selected sheets in the workbook are combined and imported
as a single dataset.

NOTE: The schemas of each dataset must match. Columns must be listed in the same
order in each dataset. The column headers are taken from the first selected dataset.

c. All and future sheets into 1 dataset: If the workbook is updated periodically with new sheets that
you would like to add in the future, select this option. After initial selection of sheets, all sheets that
are added to the workbook in the future are automatically added as part of the imported dataset.

Tip: Use this option to capture future additional sheets or changes to the names of the
current sheets.

NOTE: When an imported dataset based on this option is first loaded into the Transformer
page, the data grid displays an initial sample taken from rows in the first sheet only. When
you take another sample from the Samples panel, data is collected from other sheets.

NOTE: This option is available only if you are connected to a backend file storage system.

6. Selected sheets:
a. You can select the sheets to import.

NOTE: If you are importing a folder of Excel files, data preview and initial sampling are
executed against the first file found in the folder.

b. To preview the data of an individual sheet, mouse over a dataset and click Jump to.
7. Remove special characters from column names: Select this option to remove any special characters from

the inferred column headers during import.
8. From the drop-down, you can specify how you want the application to parse the data for column headers.
9. To save changes, click Save.

10. After your datasets have been added, you can edit the name and description information for each in the
right navigation panel.

11. Optionally, you can assign the new dataset(s) to an existing flow or create a new one to contain them.

For more information, see Import Data Page.

Copyright © 2022 Trifacta Inc. Page #50

Import Google Sheets Data
Trifacta® can import Google® Sheets® spreadsheets.

The sheets of a spreadsheets can be imported as:

Individual datasets
A single dataset

Limitations:

NOTE: This integration provides access to all Google Sheets in the connecting user's account. Access
includes spreadsheets with disabled options for download, print, or copy as well as hidden sheets within
spreadsheets.

Import-only support

NOTE: After you import a Google Sheet into Trifacta, renaming the source Google Sheet or a tab
in it can break your datasets and flows. Details are below.

Creation of a dataset with parameters from Google Sheets is not supported.
Connected sheets or embedded external datasources in your Google Sheets are not supported.

Tip: If your connected sheet is linked to a table-based source, you may import that source directly
into the product.

If you have enabled Google Advanced Protection, this connection type does not work.
A Google Sheet can contain up to 5,000,000 cells. Each cell can contain up to 50,000 characters.

Trifacta supports a maximum of 25,000 characters in a cell.
Filepath and source row number information is not available from original Sheets. These references return
values from the CSV files that have been converted on the backend. For more information, see
Source Metadata References.
Source Sheets files with cells bracketed by single double quotes may not be properly ingested if any
terminating quotes are missing.

Tip: You can check the data quality bars for mismatched values or, for strings, the data histogram
bars for anomalous values to see if the above issue is present. If so, deselect Detect Structure on
import. Then, use a Split rows transformation applied to the affected column to break up the
column as needed.

If loading your Sheets-based dataset in the Transformer page results in a blank screen, please take a new
sample. The file requires conversion again with each generated sampling.
Latest state of the spreadsheet may not be reflected in the Transformer page due to caching. When you
run a job, the platform collects the latest version of the data and converts it to CSV for execution.
IMPORTRANGE function in Google Sheets is not supported for importing data from another sheet.

Process:

1. A spreadsheet can be read directly from your Google Drive.

NOTE: When you first use the Google Sheets connector, you must enable Trifacta to read all of
your Google Drive data. When the connector is used, it locates only the Google Sheets data,
including any Sheets that have been shared with you. All other data in Google Drive, including any
Microsoft® Workbooks®, is ignored. You can then select the Sheet or Sheets you wish to import.

Copyright © 2022 Trifacta Inc. Page #51

2. Sheets in a worksheet are ingested and written to Base Storage in CSV format.
3. CSV files are available for selection.
4. These CSV files are the source from which the imported datasets are created.

Steps:

1. In the menu bar, click Library.
2. In the Library page, click Import Data. Select the Google Sheets connection.

Tip: You can paste links that you gather from Google to select spreadsheets. To access a Google
Sheet, edit the path and paste the link. Use this method for publicly available Google Sheets, too.

Figure: Import Google Sheets spreadsheet
3. After you select the spreadsheet, it is uploaded and converted to CSV format and stored. Depending on

the size of the spreadsheet, this process may take a while.
4. By default, all sheets in the spreadsheet are imported as individual datasets. To change how the data is

imported, click Edit in the right panel.

Figure: Import settings for Google Sheets datasets
5. Dataset creation:

Copyright © 2022 Trifacta Inc. Page #52

a. 1 dataset per sheet: (Default) Each selected sheet in the spreadsheet is imported as a separate
dataset.
Specify the base name of the datasets that you are creating. If you are creating a single dataset, the
name of the spreadsheet is used.

b. Selected sheets into 1 dataset: All selected sheets in the spreadsheet are combined and imported
as a single dataset.

NOTE: The schemas of each dataset must match. Columns must be listed in the same
order in each dataset. The column headers are taken from the first selected dataset.

c. All and future sheets into 1 dataset: If the spreadsheet is updated periodically with new sheets
that you would like to add in the future, select this option. After initial selection of sheets, all sheets
that are added to the spreadsheet in the future are automatically added as part of the imported
dataset.

NOTE: When an imported dataset based on this option is first loaded into the Transformer
page, the data grid displays an initial sample taken from rows in the first sheet only. When
you take another sample from the Samples panel, data is collected from other sheets.

6. Selected sheets:
a. You can select the sheets to import.

NOTE: Special characters in sheet names are filtered out.

b. To preview the data of an individual sheet, mouse over a dataset and click Jump to.
7. Remove special characters from column names: Select this option to remove any special characters from

the inferred column headers during import.
8. You can apply the column headers to your datasets during import. Select the required option from the drop-

down list:

Infer header: (default) When selected, the Trifacta application infers the header based on the data
in the import.
Use first row as header: When selected, the first row is used as the column headers.
No header: When selected, the inference is ignored and column headers are defined using generic
names with no headers.

9. To save changes, click Save.
10. After your datasets have been added, you can edit the name and description information for each in the

right navigation panel.
11. Optionally, you can assign the new dataset(s) to an existing flow or create a new one to contain them.

For more information, see Import Data Page.

After import:

After you have imported the Google Sheet, you should avoid renaming the Google Sheet or any tab in it that is
part of the imported datasets. If you rename a datasource, you can see one or more of the following issues in Trif
acta:

When you open a recipe using the dataset in the Transformer page, you may receive an error that the Base
Storage path cannot be loaded.
Collecting samples in the Transformer page returns a generic error message.

Copyright © 2022 Trifacta Inc. Page #53

Import PDF Data
Contents:

Limitations
Enable
Table Import
Import Steps

NOTE: This feature is in Beta release.

Trifacta® can directly import Adobe® Acrobat® PDF files containing one or more tables.

The tables of a PDF can be imported as:

Individual datasets
A single dataset
A dataset with parameters

NOTE: When importing as a parameterized dataset, all selected tables are imported into a single
dataset.

PDF files can be uploaded from your local system.

Limitations

PDF ingest is limited to 100 MB per file.
Filepath and source row number information is not available from original PDF files. These references
return values from the CSV files that have been converted on the backend. For more information, see
Source Metadata References.
You cannot import password-protected PDF files.
Compressed PDF files are not supported.
Conversion of large PDF files require non-linear increases in memory requirements on the Trifacta node.

If loading your PDF-based dataset in the Transformer page results in a blank screen, please take a new
sample. The file requires conversion again with each generated sampling.
Latest state of the PDF file may not be reflected in the Transformer page due to caching. When you run a
job, the platform always collects the latest version of the data and converts it to CSV for execution.

Enable

This feature is disabled by default. To enable, please complete the following:

Steps:

1. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json .
For more information, see Platform Configuration Methods.

2. Locate the following parameter and set it to true:

"feature.enablePDFSupport": false,

Copyright © 2022 Trifacta Inc. Page #54

3. Add references to the PDF format to the following parameters:

"webapp.convertableExtensions": "xls,XLS,xlsx,XLSX,pdf,PDF",
"webapp.client.allowedFileExtensions": "<other_options>,pdf,PDF",

4. Save your changes and restart the platform.

Table Import

The PDF file format is a publishing format designed around visual layout of information, some of which may
include tabular data. Table data in PDF files must be detected and converted into CSV data for proper ingestion
in the platform. This ingest process occurs on the backend datastore.

To facilitate ingestion, the following requirements must be met for tables in your source PDF files:

Non-tabular data in the file is ignored.
Tables must be enclosed in a border. Each cell in the table must be bordered.
Tabular data in the PDF cannot be scanned data, which is stored as an image. Data must be written into
the file.
When a table spans multiple pages, it is ingested as two separate CSV files, which can be combined later.
If a file contains multiple tables, each table is converted as a separate dataset.

Tip: After import, separate datasets can be unioned together or integrated using as a dataset with
parameters.

Import Steps

1. In the menu bar, click Library.
2. In the Library page, click Import Data. Select the connection to use.

Figure: Import PDF file containing multiple pages
3. After you select the file, it is uploaded and converted to into individual CSV files for each page in the PDF

file and then stored by the platform. Depending on the size of the file, this process may take a while.

Copyright © 2022 Trifacta Inc. Page #55

4. By default, all pages in the PDF are imported as individual datasets. To change how the data is imported,
click Edit in the right panel.

Figure: Import settings for PDF datasets
5. Dataset creation:

a. 1 dataset per table: (Default) Each selected table in the PDF is imported as a separate dataset.
Specify the base name of the datasets that you are creating. If you are creating a single dataset, the
name of the PDF file is used.

b. Selected tables into 1 dataset: All selected tables in the PDF are combined and imported as a
single dataset.

NOTE: The schemas of each dataset must match. Columns must be listed in the same
order in each dataset. The column headers are taken from the first selected dataset.

c. All and future tables into 1 dataset: If the PDF is updated periodically with new tables that you
would like to add in the future, select this option. After initial selection of the tables to include, all
PDF pages that are added to the PDF file in the future are automatically added as part of the
imported dataset.

NOTE: This option is available only if you are connected to a backend file storage system.

NOTE: When an imported dataset based on this option is first loaded into the Transformer
page, the data grid displays an initial sample taken from rows in the first table only. When
you take another sample from the Samples panel, data is collected from other tables.

6. Selected tables:
a. You can select the tables to import. A table can be a single page, or a single table among multiple

on a page.

NOTE: If you are importing a folder of PDF files, data preview and initial sampling are
executed against the first file found in the folder.

b. To preview the data of an individual table, mouse over a dataset and click Jump to.

Copyright © 2022 Trifacta Inc. Page #56

7. Remove special characters from column names: Select this option to remove any special characters from
the inferred column headers during import.

8. You can also choose how to detect column headers from each imported table.
9. To save changes, click Save.

10. After your datasets have been added, you can edit the name and description information for each in the
right navigation panel.

11. Optionally, you can assign the new dataset(s) to an existing flow or create a new one to contain them.

For more information, see Import Data Page.

Copyright © 2022 Trifacta Inc. Page #57

Create Dataset with Parameters
Contents:

From File System
Parameterize bucket names

From Relational Sources
Edit Parameter
Apply Parameter Overrides

Apply parameter overrides for your flow
Apply parameter overrides for your job

Delete Parameter

This section provides an overview on how to parameterize relational sources and files while importing data to
your flow.

For more information on parameterization of datasets and other types of parameters, see
Overview of Parameterization.

From File System

When browsing for data on your default storage layer, you can choose to parameterize elements of the path.
Through the Import Data page, you can select elements of the path, apply one of the supported parameter types
and then create the dataset with parameters.

NOTE: When you import a file, the data is not stored in Trifacta® . What you create is an imported
dataset that is simply a reference to the source of the data. Trifacta never stores or modifies source data.

When you create a dataset with parameters in Trifacta, you can replace segments of the input path with
parameters. Suppose you have the following files that you'd like to capture through a parameterized dataset:

//source/user/me/datasets/month01/2017-01-31-file.csv
//source/user/me/datasets/month02/2017-02-28-file.csv
//source/user/me/datasets/month03/2017-03-31-file.csv
//source/user/me/datasets/month04/2017-04-30-file.csv
//source/user/me/datasets/month05/2017-05-31-file.csv
//source/user/me/datasets/month06/2017-06-30-file.csv
//source/user/me/datasets/month07/2017-07-31-file.csv
//source/user/me/datasets/month08/2017-08-31-file.csv
//source/user/me/datasets/month09/2017-09-30-file.csv
//source/user/me/datasets/month10/2017-10-31-file.csv
//source/user/me/datasets/month11/2017-11-30-file.csv
//source/user/me/datasets/month12/2017-12-31-file.csv

A parameterized reference to all of these files would look something like:

//source/user/me/datasets/month##/YYYY-MM-DD-file.csv

Through the application, you can specify the parameters to match all values for:

- You can use a wildcard or (better) a pattern to replace these values.
YYYY-MM-DD - A formatted Datetime parameter can replace these values.

For more information, see Parameterize Files for Import.

Copyright © 2022 Trifacta Inc. Page #58

Parameterize bucket names

You can create environment parameters for your bucket names.

From Relational Sources

You can create datasets from a relational source by applying parameters to the custom SQL that pulls the data
from the source. During import of database tables through relational connections, you can apply parameters to
the SQL query that you use to define the imported dataset. In some scenarios, you may need to define the table
to import using a variable parameter or to parameterize the time value associated with a table name. Using
parameters, you can define the tables, columns, and conditions of the query that you use to bring in data from a
relational database.

For more information, see Parameterize Tables for Import.

Edit Parameter

After you have created your dataset with parameters, you can edit the parameter as needed.

Steps:

1. In the left nav bar, select Library.
2. In the Library page, locate the dataset. From its context menu, select either of the following:

a. Files: Select Edit parameters. In the Edit Dataset with Parameters, click the parameter to modify
its definition.

b. Tables: Click Edit Custom SQL. In the Custom SQL window, you can modify the SQL statement,
including any parameters in it. For more information, see Create Dataset with SQL.

Apply Parameter Overrides

After you have created a parameterized dataset, you can apply overrides to the default value. These override
values can be applied in the following cases.

Case Precedence Scenario

Job 1 When you choose to execute a job, you can set a new value for the parameter, which is applied for the specified
job only.

Flow 2 If your imported dataset containing a parameter is added to a flow, you can define an override value for the
dataset's parameter through Flow View.

Whenever a job is executed on the imported dataset within the flow, the override value is applied to the dataset.

NOTE: If a job-level override is applied on top of a flow-level override, the job override value is applied
to the job.

Default 3 The default value for the parameter is used if no override is applied.

Apply parameter overrides for your flow

Steps:

1. Open the flow.
2. In Flow View, select the icon for your dataset with parameters.
3. From the context menu, select Parameter.
4. In the Manager Parameters dialog, click the Overrides tab.
5. Edit the required values, click Save.

Copyright © 2022 Trifacta Inc. Page #59

For more information, see Manage Parameters Dialog.

Apply parameter overrides for your job

You can apply parameter overrides to your job.

Steps:

1. In Flow View, select the output that you wish to generate.
2. In the right context panel, click Run Job.
3. In the Run Job page, you can specify job-level overrides at the bottom of the screen.

For more information, see Run Job Page.

Delete Parameter

Steps:

1. In the Edit Dataset with Parameters screen, select the parameter that you wish to remove.

NOTE: Before you remove parameter, you may want to take note of the default value, which may
need to be applied to the path or query after you remove the parameter.

2. In the popup, click Delete.
3. Save your changes.
4. The parameter is removed from the imported dataset definition.

Copyright © 2022 Trifacta Inc. Page #60

Parameterize Files for Import
Contents:

Structuring Your Data
Steps
Add Datetime Parameter

Extend Datetime parameter
Add Variable

Parameterize bucket names
Add Pattern Parameter

This section describes how to create datasets and replace segments by parameterizing the input paths to your
data in Trifacta .

Structuring Your Data

Each file that is included as part of the dataset with parameters should have identical structures:

Matching file formats
Matching column order, naming, and data type
Matching column headers. Each column in any row that is part of a column header in a dataset with
parameters should have a valid value that is consistent with corresponding values across all files in the
dataset.

NOTE: If your files have missing or empty values in rows that are used as headers in your recipe,
these rows may be treated as data rows during the import process, which may result in
unexpected or missing column values.

Within each column, the data format should be consistent.
For example, if the date formats change between files in the source system, you and your recipe
may not be able to manage the differences, and it is possible that data in the output may be missing.

NOTE: Avoid creating datasets with parameters where individual files or tables have differing schemas.
Either import these sources separately and then correct in the application before performing a union on
the datasets, or make corrections in the source application to standardize the schemas.

When working with datasets with parameters, it may be useful to do the following if you expect the underlying
datasets to be less than 100% consistent with each other.

Recreate the dataset with parameters, except deselect the Detect Structure option during the import step.
In the Transformer page, collect a Random Sample using a full scan. This step attempts to gather data
from multiple individual files, which may illuminate problems across the data.

Tip: If you suspect that there is a problem with a specific file or rows of data (e.g. from a specific date),
you can create a static dataset from the file in question.

Copyright © 2022 Trifacta Inc. Page #61

Steps

NOTE: Matching file path patterns in a large directory can be slow. Where possible, avoid using multiple
patterns to match a file pattern or scanning directories with a large number of files. To increase matching
speed, avoid wildcards in top-level directories and be as specific as possible with your wildcards and
patterns.

1. In the Import Data page, navigate your environment to locate one of the files or tables that you wish to
parameterize.

2. Click Create Dataset with Parameters.

Figure: Create Dataset with Parameters
3. Within the Define Parameterized Path, select a segment of text. Then select one of the following options:

Tip: For best results when parameterizing directories in your file path, include the trailing slash (/)
as part of your parameterized value.

a. Add Datetime Parameter
b. Add Variable
c. Add Pattern Parameter - wildcards and patterns
d. If you need to navigate elsewhere, select Browse.

4. Specify the parameter. Click Save.
5. Click Update matches. Verify that all of your preferred datasets are matching.

NOTE: If you are matching with more datasets than you wish, you should review your parameters.

6. Click Create.
7. The parameterized dataset is loaded.

Add Datetime Parameter

Datetime parameters require the following elements:

Format: You must specify the format of the matching date and/or time values using alphanumeric patterns. To
review a list of example formats, click Browse Date/Timestamp Patterns.

You can also create custom formats using patterns. For example, the following regex pattern matches patterns
like MM.DD.YYYY:

/[0-9][0-9]\.[0-9][0-9]\.[0-9][0-9][0-9][0-9]/

Copyright © 2022 Trifacta Inc. Page #62

Date range: Use these controls to specify the range that matching dates must fall within.

NOTE: Date range parameters are case-insensitive.

Tip: Datetime parameters that you configure here are evaluated at the time of job execution. So, now
refers to the time when the job is executed.

Time zone: The default time zone is the location of the host of the application. To change the current time zone,
click Change.

For a list of supported time zone values, see Supported Time Zone Values.

Extend Datetime parameter

A parameterized dataset can support only one Datetime parameter. If you have multiple parts of the path that
contain date information, you can create a Datetime element for each part.

Steps:

1. Within the Define Parameterized Path, select a segment of text for which to create the first part.
2. Create the Datetime parameter for this element. Remember to use the appropriate format for the part. For

example, if you have highlighted a four-digit year for the part, the date format value should be: YYYY.
3. Then, select the second element and click the Extend Datetime Parameter icon.

Figure: Click the Extend Datetime Parameter icon to create additional parts to your Datetime
parameter.

4. In the dialog, you can specify the date format of the second element of your Datetime parameter. Matches
are made on the two elements, as well as any static text in between them.

Add Variable

A variable parameter is a key-value pair that can be inserted into the path.

At execution time, the default value is applied, or you can choose to override the value.
A variable can have an empty default value.

Name: The name of the variable is used to identify its purpose.

Copyright © 2022 Trifacta Inc. Page #63

NOTE: If multiple datasets within the same flow share the same variable name, they are treated as the
same variable.

Tip: Type env. to see the environment parameters that can be applied. These parameters are available
for use by each user in the environment.

Default Value: If the variable value is not overridden at execution time, this value is inserted in the variable
location in the path.

NOTE: When you edit an imported dataset, if a variable is renamed, a new variable is created using the
new name. Any override values assigned under the old variable name for the dataset must be re-applied.
Instances of the variable and override values used in other imported datasets remain unchanged.

Parameterize bucket names

You can create environment parameters to specify your bucket names. An environment parameter is a variable
name and String value that can be referenced by all users of the environment.

NOTE: A workspace administrator or project owner can create environment parameters.

Uses:

Parameterized bucket names are very useful when you are moving flows between workspaces or projects.
When the flow is imported into a new workspace, the environment parameter references the appropriate
bucket name in the new workspace.
If you change source buckets or move data to a new storage bucket, updating the paths to your objects
can be as simple as changing the value of the environment parameter where your data is stored.

For example, suppose you have two environments: Dev and Prod. You can create an environment parameter
called env.sourceBucketName to store the name of the bucket from which all data in the workspace or project
is imported.

Environment Name Source Bucket Name Environment Parameter Value

Dev MyCo_Dev $env.sourceBucketName = 'MyCo_Dev'

Prod MyCo_Prod $env.sourceBucketName = 'MyCo_Prod'

For more information, see Environment Parameters Page.

Add Pattern Parameter

In the screen above, you can see an example of pattern-based parameterization. In this case, you are trying to
parameterize the two digits after the value: POS-r.

Copyright © 2022 Trifacta Inc. Page #64

Include nested folders

When you create a wildcard or pattern-based parameter, you have the option to scan any nested folders for
matching sources.

If disabled, the scan stops when the next slash (/) in the path is encountered. Folders are not matched.
If enabled, the scan continues to any depth of folders.

NOTE: A high number of files and folders to scan can significantly increase the time required to
load your dataset with parameters.

Example 1: all text files

Suppose your file and folder structure look like the following:

//source/user/me/datasets/thisfile.txt
//source/user/me/datasets/thatfile.txt
//source/user/me/datasets/anotherfile.csv
//source/user/me/datasets/detail/anestedfile.txt
//source/user/me/datasets/detail/anestedfile2.txt
//source/user/me/datasets/detail/anestedfile4.txt
//source/user/me/ahigherfile.txt

Since the filenames vary significantly, it may be easiest to create your pattern based on a wildcard. You create a
wildcard parameter on the first file in the //source/user/me/datasets directory:

//source/user/me/datasets/*.txt

For the specified directory, the above pattern matches on any text file (.txt). In the example, it matches on the first
two files but does not match on the CSV file.

When the Include nested folders checkbox is selected:

The first two files are matched.
The next three files inside a nested folder are matched.
The last file (ahgherfile.txt) is not matched, since it is not inside a nested folder.

Example 2: pattern-based files

Suppose your file and folder structure look like the following:

//source/user/me/datasets/file01.csv
//source/user/me/datasets/file02.csv
//source/user/me/datasets/file03.csv
//source/user/me/datasets/detail/file04.csv
//source/user/me/datasets/detail/file05.csv
//source/user/me/datasets/detail/file06.csv
//source/user/me/file07.csv

You create a pattern parameter on the first file in the //source/user/me/datasets directory with the
following pattern-based parameter:

`file{digit}+`

Copyright © 2022 Trifacta Inc. Page #65

The above pattern matches on the word file and a sequence of one or more digits. For example, suppose file
100.csv lands in the directory at some point in the future. This pattern would capture it.

In the above example, this pattern matches on the first three files, which are all in the same directory.

When the Include nested folders checkbox is selected:

The first three files are matched.
The next three files inside a nested folder are matched.
The last file (file07.csv) is not matched, since it is not inside a nested folder.

Wildcard

The easiest way to is to add a wildcard: *

A wildcard can be any value of any length, including an empty string.

Tip: Wildcard matching is very broad. If you are using wildcards, you should constrain them to a very
small part of the overall path. Some running environment may place limits on the number of files with
which you can match.

Pattern - Regular expression

Instead of a wildcard match, you could specify a regular expression match. Regular expressions are a
standardized means of expressing patterns.

Regular expressions are specified between forward slashes, as in the following:

/my_regular_expression/

NOTE: If regular expressions are poorly specified, they can create unexpected matches and results. Use
them with care.

The following regular expression matches the same two sources in the previous screen:

/_[0-9]*_[0-9]*/

The above expression matches an underscore (_) followed by any number of digits, another underscore, and any
number of digits.

Tip: In regular expressions, some characters have special meaning. To ensure that you are referencing
the literal character, you can insert a backslash (\) before the character in question.

While the above matches the two sources, it also matches any of the following:

_2_1
__1
1231231231231231235245234343

These may not be proper matches. Instead, you can add some specificity to the expression to generate a better
match:

Copyright © 2022 Trifacta Inc. Page #66

/_[0-9]{13}_[0-9]{4}/

The above pattern matches an underscore, followed by exactly 13 digits, another underscore, and then another 4
digits. This pattern matches the above two sources exactly, without introducing the possibility of matching other
numeric patterns.

Pattern - Trifacta pattern match

A Trifacta pattern is a platform-specific mechanism for specifying patterns, which is much simpler to use than
regular expressions. These simple patterns can cover much of the same range of pattern expression as regular
expressions without the same risks of expression and sometimes ugly syntax.

Trifacta patterns are specified between back-ticks, as in the following:

`my_pattern`

In the previous example, the following regular expression was used to match the proper set of files:

/_[0-9]{13}_[0-9]{4}/

In a Trifacta pattern, the above can be expressed in a simpler format:

`_{digit}{13}_{digit}{4}`

This simpler syntax is easier to parse and performs the same match as the regular expression version.

For more information on Trifacta patterns, see Text Matching.

Copyright © 2022 Trifacta Inc. Page #67

Parameterize Tables for Import
Contents:

Import Parameterized Tables
Create a custom SQL dataset
Parameterize dataset with a variable
Parameterize dataset with a timestamp

Examples
Pre-filter rows from a table
Run a weekly job on daily tables
Parameterize entire query

This section provides an overview on how to apply parameters to the tables that you import as datasets.

During import of database tables through relational connections, you can apply parameters to the SQL query that
you use to define the imported dataset. In some scenarios, you may need to define the table to import using a
variable parameter or to parameterize the time value associated with a table name. Using parameters, you can
define the specific tables that you use to bring in data from a relational database.

Following are the type of parameters you can apply for relational sources:

Timestamps: Inserts a formatted timestamp when creating a custom SQL query.

Variables: Inserts a value for the variable. This variable has a default value that you assign.

NOTE: Pattern-based parameters are not supported for relational imports.

Import Parameterized Tables

While importing data, you parameterize relational tables by creating custom SQL statements to specify the
dataset. By default, when you import a table from a relational source, Trifacta generates a SELECT * statement
to import the entire table. The Custom SQL enables you to customize the query to pull the data from the source
system.

The following are the prerequisites and procedures for parameterizing the relational sources table:

Prerequisites:

A connection must be created for your target database.
Verify that you have access to a read-only or read-write set of connections.
For more information, see Connect to Data.

Create a custom SQL dataset

You can create a custom SQL dataset through the Import Data page.

Steps:

1. In the Trifacta application, click Library in the left nav bar.
2. In the Library page, click Import Data.
3. From the left side of the Import Data page, select the relational connection from which to import.
4. Depending on the type of relational connection, you may need to select the database or schema to

browse.

Copyright © 2022 Trifacta Inc. Page #68

5. Locate the tables to import. Take note of the table name or names.
6. Click Create Dataset with SQL. The Create Dataset with SQL window is displayed.

In this window, you specify the SELECT statement to retrieve the data from a table or tables that you specify.

NOTE: When specifying a SQL statement for your database, you are constructing a direct query of the
database. You must use the syntax required by the database vendor.

For more information on creating datasets with SQL, see Create Dataset with SQL.

Parameterize dataset with a variable

A variable parameter enables you to insert variable into the query statement used to define your dataset. You can
replace or highlight elements of the query to add parameters.

How to use variables:

When a job is executed, the currently specified variable value is passed to the running environment. By
default, the value that you specify as part of the dataset creation process is provided.
You can override this value:

You can specify an override for a variable parameter through Flow View.
For any specific job run, you can specify an override value through the Run Job page.

In this manner, you can specify the exact data that you wish to retrieve at the flow- or job-level.

Steps:

1. Create a custom dataset using SQL. For more information, see Create a Custom SQL Dataset above.
2. In the Create Dataset with SQL window, enter a SELECT* statement to retrieve data from the specified

table. Click Validate SQL to verify that the query is properly specified.
3. Now, highlight the part of the query that you wish to parameterize. Click the Variable icon.

Figure: Define Variable Parameter
4. In the Variable dialog, enter the following details:

Tip: Type env. to see the environment parameters that can be applied. These parameters are
available for use by each user in the environment.

a. Name: Enter a display name for the variable.
b. Default value : Enter a default value for the parameter.

5. Click Save to save the parameter.
6. To verify that your SQL is still valid, click Validate SQL .

Copyright © 2022 Trifacta Inc. Page #69

7. If the SQL is valid, click Create Dataset.

Parameterize dataset with a timestamp

Timestamp parameters can be helpful when you want to filter datasets based on date and time format, time zone,
or exact and relative start time. Y ou can apply timestamp parameters based on the specific region or time zone
for which the data is generated.

Steps:

1. Create a custom dataset using SQL. For more information, see Create a Custom SQL Dataset above.
2. In the Create Dataset with SQL window, enter a SELECT* statement to retrieve data from the specified

table. Click Validate SQL to verify that the query is properly specified.
3. Now, highlight the part of the query that you wish to parameterize. Click the Timestamp icon.

Figure: Define Timestamp Parameter
4. In the Timestamp Parameter dialog, enter the following details:

i. Timestamp format: Specify the format for timestamp values.
1. Example: YYYY-MM-DD_hh_mm.
2. Datetime values can be expressed as either date or time elements.

ii. Timestamp value: Select the value to record in the path:
1. Exact job start date: recorded timestamp in path is the start time of the job.
2. Relative to the job start date: recorded timestamp in path is relative to the start time

of the job according to the settings that you specify here.
iii. Time zone: Click Change to change the time zone recorded in the timestamp.

1. Example: America/Los Angeles or Asia/Calcutta.
2. For more information on the available time zones, see Supported Time Zone Values.

5. Click Save to save the parameter.
6. To verify that your SQL is still valid, click Validate SQL .
7. If the SQL is valid, click Create Dataset.

Examples

In the following examples, you can see how dataset parameters can be used to pre-filter rows or parameterize
the tables to include in your dataset.

NOTE: The syntax in these examples uses PostgreSQL syntax. The syntax that you use must match the
requirements of the target database system.

Copyright © 2022 Trifacta Inc. Page #70

Pre-filter rows from a table

Suppose you have a set of orders in a single table: myOrders. From this table, you want to be able to import a
dataset that is pre-filtered for values in the customer identifier (custId) column. The following might be a query
that you use for the customerOrders dataset to retrieve the orders for custId=0001 from the myOrders table
in the transactions database:

SELECT "custId","ordDate","prodId","ordQty","unitPrice" FROM "transactions"."myOrders" WHERE "custId" = "0001"

Tip: This example uses a variable parameter.

Steps:

In this case, you can do the following:

1. In the Create Dataset with SQL window, specify the above query. Click Validate SQL to verify that it works.
2. Now, highlight the value 0001.
3. Select the Variable icon.
4. Specify your variable:

a. Name: myCustId
b. Default Value: 0001

5. Click Save.
6. Before you create the dataset, validate the SQL.

Using the parameter:

When the job is executed, the customerOrders dataset is pre-filtered to retrieve the data for custId=00
01 by default.
You can override this variable value as needed:

At the flow level, you can define an override for the myCustId variable. For example, you can set
the variable value to: 0002. Whenever a job is run on this imported dataset, the value 0002 is
passed to the running environment, which retrieves only the rows in the table where custId=0002.
When you run the job through the application, you can specify an override to the variable. This
override takes precedence over the flow that was set at the flow level. So, for a specific run, you
can set the value to 0003, generating results for custId=0003 only.
Then, the next time that a job is run from the flow using the dataset, the flow override value (0002)
is used.

Run a weekly job on daily tables

Suppose you have a database that captures log data into separate tables for each date. Each table is named
according to the following pattern:

20201101-ServerLogs
20201102-ServerLogs
20201103-ServerLogs
20201104-ServerLogs
20201105-ServerLogs

Once per week, you want to run a job to ingest and process the log entries from the preceding week.

The following could be a query that you use to retrieve all columns from a single file:

SELECT * FROM "logs"."20201101-ServerLogs"

Copyright © 2022 Trifacta Inc. Page #71

Tip: This example uses a timestamp parameter.

Steps:

In this case, you can do the following:

1. In the Create Dataset with SQL window, specify the above query. Click Validate SQL to verify that it works.
2. Now, highlight the value 20201101 .
3. Select the Timestamp icon.
4. Specify your variable:

a. Timestamp Format: YYYYMMDD
b. Timestamp Value: Relative to job start date

i. Select minus, 7, days.
5. Click Save.
6. Before you create the dataset, validate the SQL.

Using the parameter:

When the job is executed, the imported dataset includes all of the tables whose timestamp format is within 7 days
of the time when the job was started.

You may need to modify the time zone setting on the Timestamp parameter if the log files were recorded
using a different time zone.
Typically, jobs created on a dataset like this one are executed according to a schedule.

For scheduled jobs, the value that is used for the job start date is the timestamp for when the job
was scheduled to execute. It's possible that delays in starting the job could create a difference in
the timestamps.
For more information, see Schedule a Job.

Parameterize entire query

You can turn the entire query of your custom SQL statement into a parameter. When you create your dataset with
SQL, instead of entering any SQL in the window, create a variable parameter. For example, your parameter could
be like the following:

Name: selectCustomersTable
Value:

SELECT * from "MDM"."customers"

If the SQL validates, then you can create the imported dataset using only this parameter.

How to use this parameter:

By default, when the dataset is imported, all of the columns from the customers table are imported.
As needed, you can configure overrides at the flow- or job-level to, for example, import only select
columns. In the override, you specify the list of columns to gather only the data required for your needs.

Tip: This example uses a variable parameter.

Copyright © 2022 Trifacta Inc. Page #72

Create Dataset with SQL
Contents:

Limitations
General
Single Statement
Multi-Statement

Enable
Use

Create with Variables
Create with timestamp parameter
SQL Validation

SQL Syntax
Troubleshooting

Snowflake

As needed, you can insert custom SQL statements as part of the data import process. These custom SQL
statements allow you to pre-filter the rows and columns of relational source data within the database, where
performance is faster. This query method can also be used for wider operations on relational sources from within
Trifacta®.

Limitations

General

All queries are blindly executed. It is your responsibility to ensure that they are appropriate.
Queries like DELETE and DROP can destroy data in the database. Please use caution.

NOTE: Column names in custom SQL statements are case-sensitive. Case mismatches between SQL
statement and your datasource can cause jobs to fail.

SQL statements are stored as part of the query instance for the object. If the same query is being made
across multiple users using private connections, the SQL must be shared and entered by individual users.

NOTE: If a dataset created from custom SQL is shared, collaborators are not permitted to edit the
custom SQL.

Each statement must be terminated with a semi-colon (;) and a newline:

SELECT * FROM myDB.myTable;

SQL statements must be valid for the syntax of the target relational system.
If you modify the custom SQL statement when reading from a source, all samples generated based on the
previous SQL are invalidated.
Declared variables are not supported.
Common Table Expressions (CTEs) are not supported.
For each SQL statement, all columns must have an explicit name. Example:

Copyright © 2022 Trifacta Inc. Page #73

Function references such as:

UPPER(col)

Must be specified as:

UPPER(col) as col_name

When using custom SQL to read from a Hive view, the results of a nested function are saved to a
temporary name, unless explicitly aliased.

If aliases are not used, the temporary column names can cause jobs to fail, on Spark in
particular.
For more information, see Hive Connections.

Single Statement

The following limitations apply to creating datasets from a single statement.

1. All single-statement SQL queries must begin with a SELECT statement.
2. Selecting columns with the same name, even with "*", is not supported and generates an ambiguous

column name error.

Tip: You should use fully qualified column names or proper aliasing. See Column Aliasing below.

3. Users are encouraged to provide fully qualified path to table being used. Example:

SELECT "id", "value" FROM "public"."my_table";

4. You should use proper escaping in SQL.

Multi-Statement

These limitations apply to creating datasets using a sequence of multiple SQL statements.

NOTE: Use of multiple SQL statements must be enabled. See Enable Custom SQL Query.

1. Repeatable: When using multi-statements, you must verify that the statements are repeatable without
failure. These statements are run multiple times during validation, datasets creation, data preview, and
opening the dataset in the Transformer page.

NOTE: To ensure repeatability, any creation or deletion of data in the database must occur before
the final required SELECT statement.

2. Line Termination: Each statement must terminate with a semi-colon and a new line. Example:

SELECT * FROM transactions.orders;
SELECT custId,custName FROM master.customers;

3. Validation: All statements are run immediately when validating or creating dataset.

Copyright © 2022 Trifacta Inc. Page #74

NOTE: No DROP or DELETE checking is done prior to statement execution. Statements are the
responsibility of the user.

4. SELECT requirement: In a multi-statement execution, the last statement must be a SELECT statement.
5. Database transactions: All statements are run in a transaction. DDL statements in most dialects

(vendors) can't be run within a transaction and might be automatically committed by the driver.

Enable

Steps:

1. You apply this change through the Workspace Settings Page. For more information, see
Platform Configuration Methods.

2. Locate the following setting:

Enable custom SQL Query

Setting Description

enabled Set to true to enable the ability to create datasets using customized SQL statements. By default, this feature is
enabled.

Use

To use, please complete the following steps.

Steps:

1. In the Library page, click Import Data.
2. In the Import Data page, select a connection.
3. Within your source, locate the table from which you wish to import. Do not select the table.
4. Click the Preview icon to review the columns in the dataset.

Tip: You may wish to copy the database, table name, and column names to a text editor to
facilitate generating your SQL statement.

5. Click Create Dataset with SQL. Enter or paste your SQL statement.

Through the custom SQL interface, it is possible to enter SQL statements that can delete
data, change table schemas, or otherwise corrupt the targeted database. Please use this
feature with caution.

NOTE: If this button is disabled and you have enabled the custom SQL feature, the connection
that you are using may lack credentials. Please review the connection definition.

Copyright © 2022 Trifacta Inc. Page #75

Figure: Create Dataset with SQL dialog

a. To test the SQL, click Validate SQL. For details, see below.
b. To apply the SQL to the import process, click Create Dataset.

6. The customized source is added to the right panel. To re-edit, click Custom SQL.
7. Complete the other steps to define your imported dataset.
8. When the data is imported, it is altered or filtered based on your SQL statement.

Create with Variables

If parameterization has been enabled, you can specify variables as part of your SQL statement. Suppose you had
table names like the following:

publish_create_all_types_97912510
publish_create_all_types_97944183
publish_create_all_types_14202824

You can insert an inline variable as part of your custom SQL to capture all of these variations.

Copyright © 2022 Trifacta Inc. Page #76

Figure: Insert variables in your custom SQL

In the above, custom SQL has been added to match the first example table. When the value is highlighted and
the icon is clicked, the highlighted value is specified as the default value.

Tip: Type env. to see the environment parameters that can be applied. These parameters are available
for use by each user in the environment.

Provide a name for the variable, and click Save.

Through the Run Job page, you can specify overrides for the default value, so the same job definition can be
used across all matching tables without much modification.

Create with timestamp parameter

You can insert a timestamp parameter into your custom SQL. These parameters are used to describe timestamp
formats for matching timestamps relative to the start of the job at the time of execution.

NOTE: A SQL timestamp parameter only describes the formatting of a timestamp value. It cannot be
used to describe actual values. For example, you cannot insert fixed values for the month to
parameterize your input using this method. Instead, parameterize the input using multiple input variables,
as described in the previous section.

NOTE: Values for seconds in a SQL timestamp parameter are not supported. The finest supported
granularity is at the minutes level.

NOTE: When the dataset is created, the current date is used for comparison, instead of the job execution
date.

In the following example, the timestamp parameter has been specified as YYYY-MM-DD:

SELECT * FROM <YYYY-MM-DD> ;

If the job executes on May 28th, 2019, then this parameter resolves as 2019-05-28 and gathers data from that
table.

Copyright © 2022 Trifacta Inc. Page #77

Figure: Insert timestamp parameter

Steps:

1. Click the Clock icon in the custom SQL dialog.
2. Timestamp format: You can specify the format of the timestamp using supported characters.

Tip: The list and definition of available tokens is available in the help popover.

3. Timestamp value: Choose whether the timestamp parameter is to match the exact start time or a time
relative to the start of the job.

Tip: You can use relative timestamp parameters to collect data from the preceding week, for
example. This relative timestamp allows you to execute weekly jobs for the preceding week's data.

4. To indicate that the timestamps are from a timezone different from the system timezone, click Change.
5. To save the specified timestamp parameter, click Save.

SQL Validation

You cannot create a SQL-based dataset if any of your SQL statements do not pass validation. Errors must be
corrected in the SQL or in the underlying database.

All SELECT statements are planned, which includes syntactical validation. However, these statements are
not executed. Validation should be a matter of a few seconds.

For multi-line statements, all non-SELECT statements are planned and executed. The final SELECT statem
ent is only planned.

NOTE: For multi-line SQL statements, validation may take longer to complete if the non-SELECT
statements require significant time to execute.

Copyright © 2022 Trifacta Inc. Page #78

SQL Syntax

For more information on SQL syntax and supported variations, see Supported SQL Syntax.

Troubleshooting

Snowflake

Selecting time zone data returns null values in profiling and fails in publishing

When you import a column from Snowflake that contains time zone information, you may see the following
behavior:

Sampled data appears to import correctly into the Transformer page for the TIMESTAMP-based column.
When a job is run, the visual profile for the output column based on this data indicates null values.
When the data is published back to Snowflake, the publishing job fails.

The above issue is caused by the following:

When data is imported into the Transformer page, it is automatically converted to UTC timezone during the
JDBC ingestion step for displaying the sample in the application. This ingestion process is called by the
application and outside of the application's control.

During this ingestion process, some auto-recognition and conversion to UTC of Datetime values is
applied to the sample for display.
Example: You design a recipe step to parse the following Datetime format: 2020-10-11 12:13:
14., which has been auto-converted to UTC.

When a job is run:
The application instructs Snowflake to unload the entire dataset from Snowflake and write it the
target location, bypassing this automatic conversion process.
The recipe that was created to handle the data in the sample does not properly handle the data that
is directly unloaded from Snowflake.
In the previous example: The Datetime parsing in your recipe may receive an input that looks very
different from what you parsed in the displayed sample: 2020-10-11 14:13:14 CEST.

Solution:

For a time stamp with a time zone, you must wrap your reference to it like the following:

TO_TIMESTAMP(CONVERT_TIMEZONE('UTC', <timestamp_column_or_function>))

Suppose your query was the following:

SELECT *, CURRENT_TIMESTAMP() AS current_time FROM MY_TABLE;

To address this issue, the query needs to be rewritten as follows:

SELECT *, TO_TIMESTAMP(CONVERT_TIMEZONE('UTC', CURRENT_TIMESTAMP())) AS current_time FROM MY_TABLE;

When the above wrapper function is applied, the data is imported normally and validated and published as
expected.

Copyright © 2022 Trifacta Inc. Page #79

Discovery Tasks
Use various tools and techniques to identify patterns, anomalies, inconsistencies, and other issues in your
datasets.

Copyright © 2022 Trifacta Inc. Page #80

Explore Suggestions
Contents:

Select Something
Suggestion Cards
Decide on the Suggestion
Modify Suggestion
Previews
Iterate

When you make selections in the Transformer page, Trifacta® responds by posting a set of suggestions for
transformations to apply to the selected data in the sample. You can experiment with these suggestions to see
what properly transformations your data.

Select Something

Selection Hints:

As you move the cursor around the Transformer page, the cursor changes when it is over a selectable data
element.

Icon Description

Value or values can be selected.

Column or columns can be selected.

In the data grid:

You may select categories of values in a column's data quality bar: Valid, Mismatched, and Missing.
You may select one or more values in a column's histogram. Use SHIFT or CTRL to select multiple values.
Click a column for column-based operations. Click additional columns to add to your selection. Click a
selected column to deselect.
Select a whole or partial cell value to prompt suggestions for managing that specific string of data.

Tip: If you CTRL-select multiple partial values in a column of numeric data, the suggestion cards
apply to the pattern that matches your selected strings. This does not apply to string data.

In the Column Browser or Column Details:

Select categories of values in the data quality bar.
Select one or more values in a column's histogram.

Copyright © 2022 Trifacta Inc. Page #81

NOTE: Some complex transformations, such as joins and unions, cannot be suggested based on
selection of values in the data grid.

Suggestion Cards

Based on your selections, relevant suggestions appear in suggestion cards:

Figure: Suggestion Cards

In the suggestion cards, the label at the top identifies the transformation type that is being recommended,
followed by a brief preview of how the selection might transform the data.

Tip: A suggestion card may contain multiple variants for each suggestion. For example, in the previous
image the extract suggestion has many variants, which can be selected and reviewed by selecting the
dots at the bottom of the card.

Copyright © 2022 Trifacta Inc. Page #82

Additional suggestions may be available. Try horizontal scrolling the set of cards to reveal new
suggestions.

Decide on the Suggestion

Before you decide on the suggestion to follow, you can do one of the following:

Select the suggestion to use. After a suggestion is selected, the changes to the data are previewed in
the Transformer page immediately. If there are multiple variants for the suggestion, verify that you are
selecting the most appropriate one.
Select additional columns or values in the Transformer page. A different pattern-based set of
suggestions is presented to you. Make your transformation selection.
Modify the suggestion. You may need to customize the suggestion to meet more specific requirements.
Start over. If you discover that you have selected the wrong example data, click Cancel. Start again.

Modify Suggestion

To make the suggestion work for your specific use, you might need to modify the step. For example, for the
selected text, you might need to define a replacement value, which Trifacta may not be able to guess. Click Edit.
The Transform Builder is displayed, where you can edit the details of the transformation.

Previews

As soon as you select a suggestion card, the changes are previewed in the Data Grid:

Figure: Previewed suggestion

In this manner, you can review the change before it is applied to the sample.

Copyright © 2022 Trifacta Inc. Page #83

Tip: You can use the checkboxes in the status bar to display only the rows, columns, or both that are
affected by the previewed transformation.

Iterate

Experiment away! Things to keep in mind:

If you select the wrong thing, you can always cancel the recipe step. Start again.
To delete a step that has already been added, select the step in the Recipe panel and click the Trash icon
to delete it.
To step back a number of steps in the recipe, select the recipe to which you want to revert and start adding
steps. Note that any added steps may invalidate the subsequent steps in your recipe.
You can always undo and redo your most recent actions. Use the buttons on the top of the Recipe panel.
An executed recipe does not change the source, so you can always step back to your recipe in the
Transformer page and revert or modify recipe steps.

Copyright © 2022 Trifacta Inc. Page #84

Add or Edit Recipe Steps
You can add or edit steps in your recipe through the Recipe panel, which is available on the right side of the
Transformer page.

Steps:

To add or edit steps in your recipe, do the following:

1. If it's not already opened, open the recipe panel:

Figure: Recipe Panel
2. Edit a step:

a. Select the step in the recipe.
b. Click the Pencil icon.
c. Skip the next step.

3. Add a step:
a. In the recipe, select the step next to where you would like to add the step.
b. Select Insert step before or Insert step after from the drop-down menu.

4. To specify a step, you can:
a. Select something in the data grid. A set of suggestions is provided to you in the Selection Details

panel.
b. Enter some text in the Search panel. For the selected transformation, specify required and optional

parameters in the Transform Builder to see a preview of the transform.
5. After you have specified your step:

a. To add it to the recipe as it is currently specified, click Add. The step is inserted in the proper
location.

b. To modify it, click Edit. You can edit the step in the Transform Builder.

Copyright © 2022 Trifacta Inc. Page #85

Filter Data
Contents:

Filter Dataset
Filter Data Grid

Toggle display of columns
Filter the data grid
Filter during previews

In the Transformer page, you can filter data from display in the data grid or from the dataset permanently.

Filter Dataset

You can apply various tools to remove columns of data and rows based on conditions you define. For more
information on how to permanently remove rows and columns of data from the sample and the dataset, see
Remove Data.

Filter Data Grid

You can make selections in the data grid interface to filter the sampled data that is displayed in the data grid.

Depending on your current tasks, you may want to hide columns or rows of the sample, so that you can focus on
the task at hand.

The displayed sample for smaller datasets may be the full dataset.
Columns or filtered rows that are hidden from view are not removed from the dataset. They are included in
any output. Please note that hidden columns can be affected by recipe steps. You should get in the habit
of reviewing the Visible Columns panel and the Filters panel before running a job.

NOTE: Data grid filters do not remove any data. They can be used to hide data that is not important for
the task at hand. The hidden data is still part of the sample and the full dataset.

Toggle display of columns

To toggle display of a single column in the data grid, select the drop-down next to the column name. Then,
select Edit column > Hide.
To show a hidden column, click the Eye icon in the status bar at the bottom of the page. In the Visible
Columns panel, click the Eye icon next to the column name. The column is displayed again in the data grid
or column browser.

Tip: You can use the Visible Columns panel to toggle the display of single columns or multiple
columns at the same time.

You can also hide one or more columns through the Column Browser:
In the Transformer page, click the Columns icon in the toolbar.
In the Column Browser, select the column or columns to hide. From the Actions drop-down, select E
dit > Hide.
Hidden columns must be resurfaced through the Visible Columns panel.

Copyright © 2022 Trifacta Inc. Page #86

Filter the data grid

In the data grid panel, you can apply row- or column-based filters. At the top of the data grid, click Filters. In the
Filter panel:

Columns: Search for individual columns or filter columns of a specific type. Filtered columns are
displayed, and the rest are hidden.
Rows: Highlight search term matches found in any column for a row.

Filter during previews

When you are constructing transforms, the expected results are previewed in the data grid. As needed, you can
narrow the display to only the affected rows, columns, or both. Select the appropriate checkbox or checkboxes in
the status bar at the bottom of the Transformer page.

Copyright © 2022 Trifacta Inc. Page #87

Locate Outliers
Contents:

Single-column outliers
Data Histogram
Column Details
Tune standard deviation calculations
Custom functions

Methods for fixing single-column outliers

Before you begin performing analytics on a dataset, it is important to identify and recognize outlier data patterns
and values.

Unusual values or patterns in the data can be sources for the following:

Missing data.
Bad data.
Poorly formatted data
Mismeasured data
Data that skews statistics

This section provides guidance in how to locate these patterns of data in individual columns.

Single-column outliers

For assessing anomalies in individual columns, Trifacta® provides visual features and statistical information to
quickly locate them.

Copyright © 2022 Trifacta Inc. Page #88

Data Histogram

You can use the data quality bar and histogram to locate unusual values in your column data. The following
example illustrates a dataset that contains two columns with outlier data. The first two rows are outliers with the
subsequent rows to be consistently patterned data:Click to download the Dataset-Outliers.csv example data.

Figure: Numeric and string anomalies

Numeric data

The col-numbers column contains 100 random values 0-10, and singleton values -100 and 100.

In the histogram, you can see the outliers at the extremes of the graph. Note the slight visual distinction between
the two extreme values and the values next to them, which are not represented in the column data.

Tip: In a histogram for numeric data, the spread between the extreme values and the more frequent
values is a visual cue for outliers.

For numeric data, the range of values is displayed as part of the histogram. In this dataset, the extreme values
are singletons. If a dataset contains more instances of outlier values, you should investigate further.

NOTE: In numeric datasets, a high count of outlier values may be statistically significant. You should
review those values and related data in other columns before you perform operations to change or
remove those rows.

Significant counts of unusual values

Copyright © 2022 Trifacta Inc. Page #89

When your data contains a significant number of specific values, you should review them to see if the values
have meaning. They may be placeholders for missing values.

For numeric data, you should be skeptical of occurrences of the following values:

Suspicious value Reason

-1 In system generated data, -1 is often an indicator of a failed result of some kind.

0 Some systems will fill missing numeric values with the number 0. You should verify the meaning of the value of 0
in your dataset.

555-#### In the United States, the phone number prefix 555 never corresponds to a person's phone number. These
informational phone numbers and should not be considered as valid values for individuals' data.

65535 In older versions of Microsoft Excel, 65,535 was the maximum number of rows permitted in a single sheet.

NOTE: 65,536 is 216, which is the maximum number of data bits in a 16-bit system.

2147483647 This value is the largest positive integer that can be stored in an int datatype by 32-bit systems, which are still
sources of data. If you see these values, the source system may have been unable to represent the true value and
wrote this value instead.

4294967295 This value is the largest raw value that can be stored in 32-bit systems. If you see these values, the source system
may have been unable to represent the true value and wrote this value instead.

January 1st, This value is the earliest date recognized by Microsoft Excel. The true date may not be accurately represented in
your data.1900

January 1st, This value is the earliest date recognized by Microsoft Excel for Macintosh.

1904

00:00:00 UTC This value is the earliest recognized date in UTC timestamp values. UTC timestamps are recorded as the number
of milliseconds since this moment in time, stored as a signed 32-bit integer. Since datetime values may beon January
represented in many different formats, you should identify these values for the date formats in your dataset.1, 1970

03:14:07 UTC This value is the latest recognized date in UTC timestamp values. Since datetime values may be represented in
many different formats, you should identify these values for the date formats in your dataset.on Tuesday,

19 January This limit is generally known as the "Year 2038" problem.
2038

String data

The col-strings column contains approximately 25 values for orange, red, green, yellow, and two
instances of supercalifragilisticexpialidocious.

NOTE: For string-based data, outliers can be identified as strings with a low count of instances. These
are the shorter stacks in the histogram.

Column Details

In the Column Details panel, you can review detailed statistics on the values in the currently selected column,
including data on outliers. In the Transformer page, select Column Details from a column's drop-down.

Tip: In the Column Details panel, you can select specific outlier values, prompting suggestions, which
enables you to take action on values identified by the platform as outliers.

Copyright © 2022 Trifacta Inc. Page #90

Figure: Outliers in the Column Details

Column Detail Statistics

The Column Details panel provides information on the following:

Count of valid, mismatched, and missing values
Count of value instances
Min, max, and average
Outlier values. See below.
Lowest and highest quartiles
Standard deviation

NOTE: For string-based data types, these statistics pertain to string length.

Tip: Any green bar in the Column Details panel can be selected to prompt for suggestions on actions,
including values in Outliers, Value Histogram, and Frequent Values graphs. Multi-select values as
needed.

Outliers

Trifacta uses a special set of computations to identify values that it designates as outliers.

For more information on these computations and other calculations in the Column Details panel, see
Column Statistics Reference.

Tune standard deviation calculations

Although standard deviation information is available in the Column Details, you may want to generate your own
standard deviation calculation. For example, the following transform generates a new column which computes the
number of standard deviations that a column value is from the average value for the column:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula (col_numbers - AVERAGE(col_numbers)) / STDEV
(col_numbers)

Copyright © 2022 Trifacta Inc. Page #91

You can then compute your own outlier function, using something like the following, which assumes that the
above derived column has been renamed col_numbers_stdev and identifies outliers greater than 4 standard
deviations from the average:

Transformation Name New formula

Parameter: Formula Single row formula
type

Parameter: Formula ABS(col_numbers_stdev)> 4

The above function generates boolean values in a new column, setting the value to true if the absolute value of
the standard deviation for the col_numbers_stdev is more than 4. You can then perform operations based on
the values written to this column or leave the column in place for downstream analytics tools.

The variance function is also supported.

Custom functions

If necessary, developers can build their own custom functions in their preferred programming language and then
import them into the platform. See User-Defined Functions.

Methods for fixing single-column outliers

After you have identified the values that are outliers in your column, you must determine if those values are valid
or invalid for your dataset. For example, a value of 0 may be a valid measurement, or it may be a value that was
inserted for lack of a valid value.

For invalid values:

Fix the values. The fix may require converting the values to be valid for the column's data type. For
example, on import, values for 0 and 1 may be written as false or true. The following steps converts
them back to numeric values:

Transformation Name Edit column with formula

Parameter: Columns col_numbers

Parameter: Formula IF((col_numbers == 'false'),'0',
col_numbers)

Transformation Name Edit column with formula

Parameter: Columns col_numbers

Parameter: Formula IF((col_numbers == 'true'),'1',col_numbers)

Delete the rows. If the removal of these records does not skew your data, you can create a simple delete
statement. For example, the following deletes rows where the value in the col_numbers column is less
than 25:

Transformation Name Filter rows

Copyright © 2022 Trifacta Inc. Page #92

Parameter: Condition Custom formula

Parameter: Type of formula Custom single

Parameter: Condition col_numbers < 25

Parameter: Action Delete matching rows

For valid values:

Let them be. If the data is valid, do not remove it unless you have an explicit reason for doing so.
Convert to more meaningful values. You can use the set transform to change outlier values to values
that are valid for purposes of analysis.

NOTE: Please be aware that changing of values may impact the validity of your statistical analysis.

Example of overwriting values where values in the col_numbers column that are below 25 are set to the
average value for the column. Otherwise, use the current value:

Transformation Name Edit column with formula

Parameter: Columns col_numbers

Parameter: Formula IF((col_numbers < 25), AVERAGE(col_numbers),
col_numbers)

Copyright © 2022 Trifacta Inc. Page #93

Compute Counts
Contents:

Important Note on Counts
Visual Profiling

Row and Column Counts
Computed row counts

Count by Pattern
Count pattern or text
Count between patterns

Count Functions
Aggregated counts
Conditional count functions

Trifacta® supports computation of counts of rows, columns, and ad-hoc values within your data, so that you can
make assessments of the quality, consistency, and statistical validity of your data.

Important Note on Counts

Any computed counts that you see in the Transformer page are computed from the displayed
sample.

These computed counts reflect the entire dataset, only if the data grid is displaying the full dataset:

Figure: Data grid sample is the full dataset.

When the job is executed, however, any computations of counts are applied across the entire dataset.

Visual Profiling

When you run a job, you can enable the profiling of the job results, which renders a visual profile and some
statistics on the dataset. This profile is available for review through the application. For more information, see
Overview of Visual Profiling.

Row and Column Counts

In the status bar at the bottom of the data grid, you can review the current count of rows and columns in the
displayed sample.

Tip: The row and column counts in the status bar may be useful for comparing the changes to these
metrics between steps. For example, you can click step 2 in your recipe and then review these metrics.
When you click step 3, these metrics may change.

Row counts: Depending on your method of sampling, the row counts may change. For more information, see
Overview of Sampling.

Copyright © 2022 Trifacta Inc. Page #94

Column counts: By default, all columns in the panel are displayed. Column counts should change only if you
delete or hide them.

Computed row counts

You can use the following functions to identify and compute the row counts in your dataset.

Function Description
Name

COUNT Generates the count of rows in the dataset. Generated value is of Integer type.
Function

Tip Typically, this function is used as part of an aggregation, in which rows are grouped according to shared values
in other columns. This function can also be applied without grouping, which is called a flat aggregate. More
information on how to apply aggregated counts is below.

ROWNUM Generates a new column containing the row number as sorted by the order parameter and optionally grouped by the gro
BER up parameter.
Function

SOURCER Returns the row number of the current row as it appeared in the original source dataset before any steps had been applied.
OWNUMBE
R Function

NOTE: This function may fail to return results if the original source row information is not available. For example, if
you have performed a join between multiple datasets, the source row number information cannot be computed.
Similarly, if you compute this function and then perform a join, the results may not make sense.

Tip: You can pair this function later with the MIN or MAX functions to compute the highest and lowest row number
information.

Count by Pattern

These transformations allow you to compute counts of literals or patterns in a cell's values. Then, you can
perform calculations on this new column of values to compute metrics across the dataset.

Count pattern or text

The following example computes the number of references in the tweet column for My Company:

Transformation Name Count matches

Parameter: Option Text or pattern

Parameter: Text or pattern to 'My Company'
count

Parameter: New column name tweetCompanyReferences

Suppose, however, that the company has multiple ways in which it is reference. It could be:

My Company
My Co
My Company, Inc.

You can modify the above transformation to use a Pattern to capture these variations:

Transformation Name Count matches

Copyright © 2022 Trifacta Inc. Page #95

Parameter: Option Text or pattern

Parameter: Text or pattern to `(My Company|My Co|My Company, Inc.)`
count

Parameter: New column name tweetCompanyReferences

If needed, you can use the following to add up all of the counts in tweetCompanyReferences to determine the
total number.

NOTE: Keep in mind that this sum reflects only the sum of values in the sample in the data grid. When
you run a job containing this calculation, it is applied across all rows in the dataset.

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula SUM(tweetCompanyReferences)

Parameter: New column sum_tweetCompanyReferences
name

Count between patterns

You can also collect counts of values between two patterns within a cell's value. In this manner, you can analyze
a more constrained substring of the cell value.

The following transformation calculates the URLs in each row of the msgText column, assuming that the URL
begins with http:// or https:// and ends with .com or .net:

Transformation Name Count matches

Parameter: Option Between two delimiters

Parameter: Starting pattern `(http\:\/\/|https\:\/\/)`

Parameter: Include as part of the Selected
match

Parameter: Ending pattern `(\.com|\.net)`

Parameter: Includes as part of Selected
the match

Parameter: Ignore case Selected

Parameter: New column name countURLs

Count Functions

Aggregated counts

You can perform calculations based on groups that you define as part of the calculation. These groupings, called
aggregations, are powerful tools for delivering insightful analysis on your data.

In the following example, several aggregated computations, including the COUNT function are performed on
transactional data, which is grouped by region (regionId) and product (prodId):

Copyright © 2022 Trifacta Inc. Page #96

http://or
https://and
https://com|\.net

Transformation Name Group by

Parameter: Group by 1 regionId

Parameter: Group by 2 prodId

Parameter: Values 1 SUM(sales)

Parameter: Values 2 COUNT()

Parameter: Type Group by as new column(s)

NOTE: The above calculation inserts two new columns into the dataset. Alternatively, you can choose to
do a full replacement of the dataset with these aggregated counts. For more information, see Pivot Data.

Conditional count functions

You can use a set of functions that count occurrences, based on conditions. In the following list of functions:

Some of the conditions are implicit in the function itself. For example, COUNTA counts values that are non-
null.
Some conditions are specified as part of the function. For example, COUNTIF tabulates counts provided a
specified condition is met.

Function Name Description

COUNTIF Function Generates the count of rows in each group that meet a specific condition. Generated value is of Integer type.

COUNTA Function Generates the count of non-null rows in a specified column, optionally counted by group. Generated value is of
Integer type.

COUNTAIF Function Generates the count of non-null values for rows in each group that meet a specific condition.

COUNTDISTINCT Generates the count of distinct values in a specified column, optionally counted by group. Generated value is
Function of Integer type.

COUNTDISTINCTIF Generates the count of distinct non-null values for rows in each group that meet a specific condition.
Function

The following transformation counts the rows where the length of msgText is longer than 140 characters,
grouped by userId:

Transformation Name Group by

Parameter: Group by 1 userId

Parameter: Values 1 COUNTIF(LEN(msgText)>140)

Parameter: Type Group by as new column(s)

Copyright © 2022 Trifacta Inc. Page #97

Calculate Metrics across Columns
You can use a variety of mathematical and statistical functions to calculate metrics within a column.

To calculate metrics across columns, you can use a generalized version of the following example.

Source:

Your dataset tracks swimmer performance across multiple heats in a race, and you would like to calculate best,
worst, and average times in seconds across all three heats. Here's the data:

Racer Heat1 Heat2 Heat3

Racer X 37.22 38.22 37.61

Racer Y 41.33 DQ 38.04

Racer Z 39.27 39.04 38.85

In the above data, Racer Y was disqualified (DQ) in Heat 2.

Transformation:

To compute the metrics, you must bundle the data into an array, break out the array into separate rows, and then
calculate your metrics by grouping. Here are the steps:

1. When the data is imported, you may need to create a header for each row:

Transformation Name Rename columns with a row

Parameter: Option Use row as header

Parameter: Row 1

2. The columns containing heat time data may need to be retyped. From the drop-down next to each column
name, select Decimal type.

3. The DQ value in the Heat2 column is invalid data for Decimal type. You can use the following
transformation to turn it into a missing value. For purposes of calculating averages, you may or may not
want to turn invalid data into zeroes or blanks. In this case, replacing the data as 0.00 causes improper
calculations for the metrics.

Transformation Name Replace text or patterns

Parameter: Column Heat2

Parameter: Find 'DQ'

Parameter: Replace with ''

4. Use the following to gather all of the heat data into two columns:

Transformation Name Unpivot columns

Parameter: Columns Heat1,Heat2,Heat3

Parameter: Group size 1

Copyright © 2022 Trifacta Inc. Page #98

5. You can now rename the two columns. Rename key to HeatNum and value to HeatTime.
6. You may want to delete the rows that have a missing value for HeatTime:

Transformation Name Delete rows

Parameter: Condition ISMISSING([value])

7. You can now perform calculations on this column. The following transformations calculate minimum,
average (mean), and maximum times for each racer:

Transformation Name New formula

Parameter: Formula type Multiple row formula

Parameter: Formula MIN(HeatTime)

Parameter: Group rows by Racer

Parameter: New column 'BestTime'
name

Transformation Name New formula

Parameter: Formula type Multiple row formula

Parameter: Formula AVERAGE(HeatTime)

Parameter: Group rows by Racer

Parameter: New column 'AvgTime'
name

Transformation Name New formula

Parameter: Formula type Multiple row formula

Parameter: Formula MAX(HeatTime)

Parameter: Group rows by Racer

Parameter: New column 'WorstTime'
name

8. To make the data look better, you might want to reformat the values in the AvgTime column to two
decimal points:

Transformation Name Edit column with formula

Parameter: Columns AvgTime

Parameter: Formula NUMFORMAT(AvgTime, '##.00')

Results:

Copyright © 2022 Trifacta Inc. Page #99

After you use the Move transformation to re-organize your columns, the dataset should look like the following:

Racer HeatNum HeatTime BestTime WorstTime AvgTime

Racer X Heat1 37.22 37.22 38.22 37.68

Racer X Heat2 38.22 37.22 38.22 37.68

Racer X Heat3 37.61 37.22 38.22 37.68

Racer Y Heat1 41.33 38.04 41.33 39.69

Racer Y Heat3 38.04 38.04 41.33 39.69

Racer Z Heat1 39.27 38.85 39.27 39.05

Racer Z Heat2 39.04 38.85 39.27 39.05

Racer Z Heat3 38.85 38.85 39.27 39.05

Copyright © 2022 Trifacta Inc. Page #100

Compare Strings
Contents:

Find Substrings
Compare String Ends by Pattern
Match Strings

Exact matching
Doublemetaphone matching

Compare Strings

Unlike other types of data, text data has very few restrictions on the kinds of values that appear in a cell. In the
application, this data is typically inferred as String data type. As a result, finding string values that mean the same
thing can be a challenge, as minor differences in their content or structure can invalidate a match.

This section provides some methods for comparing strings.

Some target systems may impose limits on the lengths of imported values. For more information on
managing the lengths of your strings, see Manage String Lengths.

Find Substrings

You can use the following functions to locate sub-strings that are part of a column's value.

Function Description
Name

LEFT Matches the leftmost set of characters in a string, as specified by parameter. The string can be specified as a column
Function reference or a string literal.

RIGHT Matches the right set of characters in a string, as specified by parameter. The string can be specified as a column
Function reference or a string literal.

FIND Function Returns the index value in the input string where a specified matching string is located in provided column, string literal, or
function returning a string. Search is conducted left-to-right.

RIGHTFIND Matches the right set of characters in a string, as specified by parameter. The string can be specified as a column
Function reference or a string literal.

SUBSTRING Matches some or all of a string, based on the user-defined starting and ending index values within the string.
Function

The following transformation checks the left five values of the lowercase version of the ProdId column to see if it
matches xxxx-. If the value is detected, then the ProdName value is set to NO_NAME:

Transformation Name Edit with formula

Parameter: Columns ProdName

Parameter: Formula IF(LEFT(LOWER(ProdId,5))=='xxxx-','NO_NAME' ,ProdName)

Compare String Ends by Pattern

You can use the STARTSWITH and ENDSWITH functions to determine if a string begins or ends with a specified
pattern.

Copyright © 2022 Trifacta Inc. Page #101

Tip: These functions are most useful for performing pattern-based checks on strings. For string literals,
you can use the LEFT and RIGHT functions. See below.

The following transformation inserts the value error in the custCodeStatus column if the custCode value
begins with six digits in a row:

Transformation Name Edit with formula

Parameter: Columns custCodeStatus

Parameter: Formula IF(STARTSWITH(custCode,`{digit}{6}`), 'error',custCodeStatus)

Function Description
Name

STARTSWIT Returns true if the leftmost set of characters of a column of values matches a pattern. The source value can be any data
H Function type, and the pattern can be a Pattern , regular expression, or a string.

ENDSWITH Returns true if the rightmost set of characters of a column of values matches a pattern. The source value can be any
Function data type, and the pattern can be a Pattern , regular expression, or a string.

Match Strings

Exact matching

You can use the EXACT function to compare if two strings are exact matches. String inputs can be literals, column
references, or expressions that evaluate to strings.

NOTE: The EXACT function evaluates for exact matches. Whitespace or capitalization differences return f
alse.

You can nest function expressions inside of the EXACT reference to eliminate common and perhaps not useful
differences between strings. In the following transformation, a value of true is inserted into the matches column,
if colA and colB are exact matches, after whitespace and case differences have been removed:

Transformation New formula
Name

Parameter: IF(EXACT(LOWER(REMOVEWHITESPACE(colA)))==EXACT(LOWER
Formula (REMOVEWHITESPACE(colB))),'true','false')

Parameter: New matches
column name

Doublemetaphone matching

The platform also supports the doublemetaphone algorithm for fuzzy matching. This algorithm provides
mechanism for proximity matching; the DOUBLEMETAPHONEEQUALS function supports an optional second
parameter to define the strength of the algorithm.

This algorithm works by generating two separate encodings for each string: a primary encoding and a secondary
encoding. You can experiment with these encodings using the DOUBLEMETAPHONE function. See
DOUBLEMETAPHONE Function.

This algorithm can be applied to compare two strings, as in the following transformation.

Transformation Name New formula

Copyright © 2022 Trifacta Inc. Page #102

Parameter: Formula DOUBLEMETAPHONEEQUALS(colA,colB,'strong')

Parameter: New column matches
name

The first two parameters of the function are the string literals, column references, or functions returning
strings to compare.
The third parameter is optional. It determines the level of matching required to return true. Options:

Match threshold Description

'strong' Both primary encodings must match.

'normal' At least one primary encoding must match either of the other string's encodings

'weak' A primary or secondary encoding from each can match.

For more information, see DOUBLEMETAPHONEEQUALS Function.

Compare Strings

For string values, you can use the string comparison functions to check how strings compare using Latin collation
settings.

Tip: Any column can be converted to String data type to use these functions.

Collation refers to the organizing of written content into a standardized order. String comparison functions utilize
collation rules for Latin. A summary of the rules:

Comparisons are case-sensitive.
Uppercase letters are greater than lowercase versions of the same letter.
However, lowercase letters that are later in the alphabet are greater than the uppercase version of
the previous letter.

Two strings are equal if they match identically.
If two strings are identical except that the second string contains one additional character at the
end, the second string is greater.

A normalized version of a letter is the unaccented, lowercase version of the letter. In string comparison, it
is the lowest value of all of its variants.

a is less than .
However, when compared to b, a = .
The set of Latin normalized characters contains more than 26 characters.

This table illustrates some generalized rules of Latin collation.

Order Description Lesser Example Greater Example

1 whitespace (space) (return)

2 Punctuation ' @

3 Digits 1 2

4 Letters a A

5 A b

Resources:

Copyright © 2022 Trifacta Inc. Page #103

NOTE: In the following set of charts (linked below), the values at the top of the page are lower than the
values listed lower on the page. Similarly, the charts listed in the left nav bar are listed in ascending order.

For more information on the applicable collation rules, see http://www.unicode.org/charts/collation/.

Available functions:

STRINGLESSTHAN Function
STRINGLESSTHANEQUAL Function
STRINGGREATERTHAN Function
STRINGGREATERTHANEQUAL Function

Copyright © 2022 Trifacta Inc. Page #104

http://www.unicode.org/charts/collation/

Analyze across Multiple Columns
This section describes some techniques for performing analysis across data stored in multiple columns.

For example, you may want to analyze combinations of height and weight. Some options:

Consolidate dimensions to a single metric. For example, height and weight can be combined using a
BMI (body mass index) calculation. Then, use available outlier analysis capabilities in Trifacta®. Below,
you can review a method for bringing together similar data from multiple columns into a single column for
easier analysis.
Flag outlier values of individual columns, perhaps giving each column a weighting factor (e.g. 0.5).
Sum the outliers and their weights together.
Defer analysis until the data has arrived in the target system.

Build a custom function in another programming language. See User-Defined Functions.

If you have homogeneous data across multiple columns, such as multiple individual events recorded in a single
row, you can use a different method to calculate metrics. See Calculate Metrics across Columns.

In some cases, you may need to identify outliers across multiple columns of data. For example, you have a
dataset containing scores from three separate tests taken by a set of individuals. Your columns may look like the
following:

LastName
FirstName
TestScore1
TestScore2
TestScore3

You can download the Dataset-TestScores.csv dataset.

Most calculations, such as standard deviation, work for a single column of data. To perform analysis across all
three columns, you must reshape the above dataset to look like the following:

LastName
FirstName
TestNumber
TestScore

This steps below outline the workflow for this example. The full recipe is provided at the bottom of this section.

Steps:

1. Load the TestScores dataset into the Transformer page. It should already be split out into five separate
columns.

2. The three columns listed side by side are data that has been organized in a pivot table. To break down this
data, you must unpivot the data, which breaks down the data into a key column (containing TestScore1,
TestScore2, TestScore1) and a value column, which contains individual test scores.

Transformation Name Unpivot columns

Parameter: Columns TestScore1,TestScore2,TestScore3

Parameter: Group size 1

3. Rename the generated column of test scores to TestScore.
4. The numeric information in the key column values can be extracted using the following:

Transformation Name Extract text or pattern

Copyright © 2022 Trifacta Inc. Page #105

Parameter: Column to extract key
from

Parameter: Option Custom text or pattern

Parameter: Text to extract `{digit}`

5. The key2 column contains just the numeric data now. Rename this column to TestNumber. You can
delete the key column now.

6. The dataset does not contain a primary key, which field containing a unique identifier for each row. The
combination of last name, first name, and test number is a unique identifier for each row in the dataset:

Transformation Name Merge columns

Parameter: Columns LastName,FirstName,TestNumber

Parameter: Separator '-'

7. Rename the new column to TestID. Typically, primary keys are listed as the first field in a dataset. You
might want to move the column before the LastName column.

8. You may have noticed that the data is still organized by name (first and last) and test number, so that an
individual's tests are scattered throughout the dataset. To reorganize the information, you can re-
aggregate the data using the following:

Transformation Name Pivot table

Parameter: Row labels LastName,FirstName,TestNumber,TestID

Parameter: Values SUM(TestScore)

Parameter: Max number of 1
columns to create

Tip: The above retains all instances of tests that have been taken. If you are only interested in the
average test score, you can remove the TestNumber and TestID groupings and the change the
SUM function to AVERAGE. In the results, you have one average for each test taker.

9. You may want to rename the aggregation column. Your final dataset should look like the following:

Copyright © 2022 Trifacta Inc. Page #106

Figure: Single column of test scores

Now that your columns of data have been consolidated to a single column, you can use the single-column
transforms and functions to perform analysis, such as locating outliers.

Copyright © 2022 Trifacta Inc. Page #107

Parse Fixed-Width File and Infer Columns
For datasets that have a fixed width for each row, determining the column breaks can be more challenging, due
to the uncertain number of spaces and tabs between each data element. With enhanced pattern matching, the
application can help you identify the appropriate locations to break columns and then trim down the data to
eliminate the whitespace padding.

Steps:

1. Import your fixed-width dataset through the application and begin wrangling.
2. The data should now look similar to the following:

Figure: Fixed-width dataset after import
3. From the drop-down to the right of the column name, select Column Details.
4. In the Column Details panel, click the Patterns tab.
5. Click in the All Patterns area.

NOTE: Selecting a specific pattern token will generate suggestions for only that particular token.

NOTE: If the application has inferred that the dataset is fixed-width, then the All Patterns area is
the only available selection. If the dataset is not inferred as fixed-width, you should see multiple
categories of patterns.

6. From the suggestion cards, click the Split one.
7. Close the Column Details panel.
8. In the Transform preview window, verify that the column splits look ok.

a.
b.

c.

If a column contains multiple columns of data, click Edit.
Verify that you are splitting based on position numbers, which means that column splits are done
based on the number of characters from the left side of each line.
Your recipe step might look similar to the following:

Transformation
Name

Split columns by positions

Parameter:
Column to split

column1

Parameter:
Option

By positions

Parameter:
Positions

7, 67, 117, 167, 217, 221, 239, 251, 253, 303, 315,
317, 329, 341, 391, 400, 512, 560, 610, 630, 650, 660

Copyright © 2022 Trifacta Inc. Page #108

d. In the list of values for positions, insert a new position number for the column or columns that
contain multiple columns of data.

e. Verify your changes in the Transform Preview panel.
9. Click Add.

10. Verify that the columns are split correctly.
11. You can use the following step to remove the whitespace from each cell value.

Transformation Name Edit column with formula

Parameter: Column *

Parameter: Formula TRIM($col)

12. Click Add.

Copyright © 2022 Trifacta Inc. Page #109

Generate a Sample
Contents:

When to Take a New Sample
Change Sample Size

Limitations
Collect a New Sample

Example - Random sample
Example - Filter-based sample
Example - Anomaly-based sample
Cancel Sample

Load Sample
Delete Sample
Invalid Samples
Collected Samples
Review Sample Jobs
Best Practices

When you transform your data in the Transformer page, you are performing these transformations on a sample of
the total dataset. As needed, you can generate new samples using a variety of algorithms to acquire other slices
of your data.

The initial data sample is collected from the initial rows of the dataset. Whenever you create a recipe and open
the dataset in the Transformer page, Trifacta application automatically generates the initial sample.

By default, the initial sample is the first 10 MB of your dataset.
The size of the sample can be modified by an administrator.
For file-based sources, the initial sample is taken from a limited number of files.

By default, this limit is set to 50 files.
The maximum number of files from which a sample can be generated can be defined by an
administrator.

If your dataset is less than 10 MB, then the entire dataset may be loaded as an initial sample.
For datasets larger than 10 MB, the first 10MB of rows are loaded into the Transformer page.

Tip: On the Transformer page, this first sample is listed as Initial Data. For more information on how this
special sampling type is generated, see Overview of Sampling.

When to Take a New Sample

The initial sample allows you to get started immediately building your recipe steps. However, your recipe and
dataset may require additional samples. For example:

If you have a very long dataset with many rows, there may be statistically significant values that are not
part of the first 10MB of data. The recipe steps that you create may not affect those rows properly, since
you have not seen any data from them.
If you have a very wide dataset with many columns, you may need to take additional filter-based samples
to focus on the separate segments of your data. For example, if your dataset contains mismatched or
missing values, you may consider taking an Anamoly-based sample that can look for mismatched, or
missing, or both values in your dataset.
As you add steps in your recipe, the current state of the Transformer page is rendered based on the
currently valid sample (initial sample, in this case) plus all of the recipe steps between the step where the
sample was taken and your current step. All of these steps must be rendered in the browser. As you add
more recipe steps without taking a sample, browser performance is affected.

Copyright © 2022 Trifacta Inc. Page #110

Tip: You should utilize sampling as much as possible to improve the browser performance and to get
good coverage of the samples across recipes.

NOTE: Generation of a new sample is executed as a job. Quick scan jobs are executed through Trifacta
Photon on the Trifacta node, while Full scan jobs are executed on an available clustered running
environment. Depending on your deployment, there may be costs associated with generating a sample.

You can generate a new sample when:

You are working with complex and wide datasets.
You have complex flows.
Your dataset has a bad data or outliers that may require a different sample.
You have datasets with more than 10 MB of data.
You have added one or more multi-dataset operations with steps, such as a join, union, pivot, or lookup.

Change Sample Size

If you are encountering low-memory conditions related to sampling or wish to improve the performance of the
sampling process, you can adjust the size of the samples that are displayed in the browser for your current
recipe. For more information, see Change Recipe Sample Size.

Limitations

Advanced sampling options are available only with a full scan of the dataset.
Undo/redo do not change the sample state, even if the sample becomes invalid.

When a new sample is generated, sort transformations are not preserved for some type of outputs. Sort
transformations must be reapplied.

When executed on the Trifacta Photon running environment, samples taken from a dataset with
parameters are limited to a maximum of 50 files.

Collect a New Sample

You can use the existing loaded sample, or you can collect a new sample to use.

Steps:

1. In the Transformer page, click the Eyedropper icon at the top of the page.
2. From the Samples panel, select the required type of sample. For more information, see Sample Types.
3. In the Collect new sample panel, select either Quick or Full scan.

a. Quick: Creates a sample by partial scanning of the dataset and yields quicker results.

Tip: Quick scan samples are executed by default in the Trifacta Photon running
environment. If that environment is not available, the Trifacta application may attempt to run
the Quick Scan job on an available clustered running environment.

b. Full: Creates a sample by scanning the full dataset. This method takes a longer time depending on
the size of the dataset.

Tip: Full scan samples are executed in the cluster running environment.

Copyright © 2022 Trifacta Inc. Page #111

4. Click Collect to collect the sample. A sample job ID is generated for each sample you collect. When the
sample is available, the Load Sample message is displayed in the Transformer page.

5. To load the sample, click Load Sample.

Example - Random sample

Random samples can be generated from a quick or full scan of your dataset.

Tip: A random sample is a fast way to get another randomized slice of your dataset. Often, this can be a
first sample to generate after loading a new dataset into the Transformer page.

Steps:

1. In the Transformer page, click the Eyedropper icon at the top of the page.
2. From the Samples panel, select Filter-based sample.
3. In the Collect new sample panel, select the type of scan: Quick or Full.
4. Click Collect.
5. When sample collection is complete, a confirmation message is displayed. Click Load sample.
6. The random sample is loaded into the Transformer page.

Example - Filter-based sample

The Filter-based sample is helpful when you want to filter the data based on specific values or formulas. The
following example filters the required values in the Region column for calculating discounts, and then generates
a random sample from the matching rows only. For example, you may have a dataset with many values for Region
 such as Atlantic, North East, West Coast and want to calculate discounts only for North East region, you can
collect a Filter-based sample.

Steps:

1. In the Transformer page, click the Eyedropper icon at the top of the page.
2. From the Samples panel, select Filter-based sample.
3. In the Collect new sample panel, enter the following details:

a. From the Scan column, select Quick. For more information, see "Collect a New Sample" above.
b. In the Filter field, enter Region == 'North East'.

4. Click Collect. A confirmation message is displayed.
5. Click Load sample. The Filter-based sample is loaded with only the North East values for the Region c

olumn.

Example - Anomaly-based sample

If your dataset has missing values or mismatched values, you can use Anomaly-based sample type to filter the
missing values. The following example is based on the missing values in a Discount column. When you apply
the Anomaly-based sample, the sample displays only rows that have missing values for the Discount column.

Steps:

1. In the Transformer page, click the Eyedropper icon at the top of the page.
2. From the Samples panel, select Anomaly-based sample.
3. In the Collect new sample panel, enter the following details:

a. From the Scan column, select Quick. For more information, see "Collect a New Sample" above.
b. Select the required column: Discount.
c. From the anomaly type, select Find missing values only.

4. Click Collect. A confirmation message is displayed.
5. Click Load sample. The Anomaly-based sample is loaded with the missing values for the Discount

column.

Copyright © 2022 Trifacta Inc. Page #112

Cancel Sample

To cancel a sample collection, click the X next to the progress bar. The interrupted sample is listed as unavailable
in the Collected samples panel.

Load Sample

You can create as many samples as required based on your dataset. All collected samples are available in the
Collected samples panels, where you can review and load them as required.

Steps:

1. In the Samples panel, click See all collected samples.
2. From the Collected samples panel, select the required sample from the Available tab. For more

information, see "Collected Samples" below.

NOTE: Samples listed under the Unavailable tab are invalid for the current state of your recipe.
You cannot select these samples for use.

3. If you want to edit the sample name, click the Pencil icon against the sample.

Delete Sample

After you have created a sample, you cannot delete it through the application.

NOTE: Trifacta does not support deletion of samples after they have been created. For more information,
contact your IT administrator.

Invalid Samples

NOTE: Samples are valid based on the state of your flow and recipe at the step where the sample was
collected.

Whenever you add or modify a step to the recipe, Trifacta verifies if the current sample is valid. The current
sample can become invalid if you add a new step before the step where the sample was created. For example, if
you have created a sample in 30th step and if you add a new step that breaks the sample before the 30th step,
then the sample becomes invalid.

After the sample becomes invalid, the Transformer page reverts to the recently collected sample that is valid.

NOTE: If the sample is reverted to an earlier sample, then more steps between when that sample was
generated and your current location in the recipe are generated in the browser's memory. Browser
performance may be impacted.

NOTE: If you modify a SQL statement for an imported dataset, any samples based on the old SQL
statement are invalidated.

Collected Samples

The collected samples store the details of your samples collected for your dataset. In the Samples panel, click Se
e all collected samples link.

Copyright © 2022 Trifacta Inc. Page #113

Figure: Collected samples

The collected samples contain the following tabs:

Available: Displays the available samples that can be used. You can click Load to load the required
sample.
Unavailable: Displays the invalid samples, which cannot be selected for use. If subsequent steps make a
sample valid again, it is moved to the Available tab.
All: Displays both the available and unavailable samples.

You can click the sample name to view the sample details.

Figure: Sample details

Load: Click Load to load the sample.
Rename: Click Rename to rename the sample

Copyright © 2022 Trifacta Inc. Page #114

Review Sample Jobs

You can review and manage all of your samples like transformation jobs. For more information, see
Sample Jobs Page.

Best Practices

For more information on best practices, troubleshooting, and browser crashes, see
https://community.trifacta.com/s/article/Best-Practices-Managing-Samples-in-Complex-Flows.

Copyright © 2022 Trifacta Inc. Page #115

https://community.trifacta.com/s/article/Best-Practices-Managing-Samples-in-Complex-Flows

Change Recipe Sample Size
By default, samples displayed in the Trifacta® application can be up to 10 MB in size. In some cases, you may
want to increase or decrease the size of samples displayed in the browser to include more data or to prevent
browser or Trifacta Photon memory issues.

NOTE: Samples are still generated using the preset limit and stored in full on the base storage layer. This
setting changes the volume of the data delivered to the browser.

NOTE: Trifacta administrators can increase the maximum size of the Trifacta Photon samples up to 40
MB. For more information, see Configure Application Limits.

This size reflects the maximum permitted size of a sample that is delivered to the browser. If the available data is
less than the maximum permitted size, then the actual sample size may be smaller.

When this setting is reduced, the sample currently loaded in the browser is immediately reduced to the
new maximum size. Other available samples for the recipe are resized when they are reloaded.
If you raise the maximum sample size, the volume of the currently loaded sample can be expanded to the
maximum size, if the data is available in the sample.

NOTE: Maximum sample sizes are configured on a per-recipe basis. Changes to your sample size affect
sample sizes in downstream recipes. For example, if the maximum sample size on Recipe A is set to
5MB, any sample from Recipe A that is used in Recipe B, which is downstream of Recipe A, is also
constrained to 5MB in maximum size. However, Recipe B may have a different maximum sample size, so
you can generate a new sample in Recipe B to acquire a different-sized sample.

Steps:

1. In the Transformer page, click the name of the sample in the top menu.
2. The Sample Indicator is displayed
3. In the Sample Indicator, click Edit.
4. Use the slider bar to change the maximum size of samples delivered to the browser for this recipe:

Figure: Set sample size

NOTE: The range of the slider indicates that maximum available data for the sample. For example,
if the sample is 7 MB then the slider shows a maximum of 7 MB.

Copyright © 2022 Trifacta Inc. Page #116

NOTE: A warning message may displayed if the sample size exceeds the recommended size.

NOTE: For datasources that are uncompressed or converted when ingested to the backend, the
actual storage size may exceed the specified maximum limit.

Tip: The Trifacta application provides a recommendation for the new sample size. You should set
your sample size to this value or a smaller value.

5. To apply your changes, click Save.
6. The current sample is immediately updated to reflect the new maximum sample size. The size of all

subsequent samples that are delivered to the browser for this recipe are capped at this new maximum
size. Samples are still generated at the preset size in backend storage.

For more information, see Sample Indicator.

Copyright © 2022 Trifacta Inc. Page #117

Validation Tasks
You can detect issues in your data or validate it against source or target schemas.

Copyright © 2022 Trifacta Inc. Page #118

Profile Your Source Data
You might want to execute a profile of the data that you imported from the source. As soon as you create a
recipe from a source, you can execute a job to profile the dataset.

By profiling the data as soon as you load it into the Transformer page, you can assess the following:

Identify problems in the source and potentially correct them in the source system.
Create a baseline to evaluate the data wrangling work you do in Trifacta®.
Identify mismatched or missing values.

Tip: You can also use this technique to generate an output of your source data, which is useful if you do
not have read access to the source outside of Trifacta.

Steps:

1. In the Import Data page, create an imported dataset from your source. Add it to a flow.
2. In Flow View, create a recipe for your imported dataset.
3. In Flow View, edit the newly created recipe. It is opened in the Transformer page.
4. If needed, add a header step to your dataset.
5. Click Run.
6. In the Run Job page, select the following options:

a. If you have the option of selecting a running environment, select the default one. This option may
not be available in your product.

b. CSV format (you need at least one format to generate your dataset's profile).
c. Select to profile results.

7. Click Run.
8. When the results are generated, click the Profile tab in the Job Details page.
9. A profile of your dataset is displayed.

In the generated profile, you can identify:

Missing or mismatched values in each column
Statistical break-out by quartile
Beginning dataset size and baseline job execution speed

Tip: You can download the profile and output for review.

For more information, see Job Details Page.

Preserve Source Visual Profile

If you wish to preserve the capability of running a profile or gathering results from your source, you can do the
following:

1. In Flow View, select the recipe that was used to create the source profile.
2. Rename this recipe to something like, SourceData.
3. Create an output off of this recipe. Run the job to create the visual profile.
4. Select the recipe again. Now, click Add New Recipe.
5. Edit this new recipe and build out your transformation steps.
6. Whenever you need to regenerate the profile for the source, select the SourceData recipe and select the

output from it. Then, run a job for it.

Tip: This technique is useful if you are replacing the source dataset with refreshed data on a
periodic basis.

Copyright © 2022 Trifacta Inc. Page #119

Copyright © 2022 Trifacta Inc. Page #120

Validate Your Data
Contents:

Before You Begin
Verify downstream requirements
Identify important fields
Profile your source data
Generate a new random sample

Transformations vs. Data Quality Rules
Validate Consistency

Mismatched values
Outlying values
Data range checks
Duplicate rows
Uniqueness checks
Permitted character checks

Validate Completeness
Missing values
Null values
Validate data against other data

After Transformation
Generate output profile
Decisions

The process of cleansing, enhancing, and transforming your data can introduce significant changes to it, some of
which might not be intended. This page provides some tips and techniques for validating your dataset, from start
to finish for your data wrangling efforts.

Data validation can be broken down into the following categories:

Consistency - Does your data fit into expected values for it? Do field values match the data type for the
column? Are values within acceptable ranges? Are rows unique? Duplicated?
Completeness - Are all expected values included in your data? Are some fields missing values? Are there
expected values that are not present in the dataset?

Before You Begin

Before you begin building your data pipeline, you should identify your standards for data quality.

NOTE: Depending on your source system, you might be able to generate data quality reports from within
it. These reports can be used as the basis for validating your work in Trifacta®.

If your source system does not enable generation of these reports, you should consider profiling your
dataset as soon as you load your data into Trifacta.

Verify downstream requirements

Before you begin modifying your dataset, you should review the columns and ranges of values in those columns
that are expected by the downstream consumer of your dataset. A quick review can provide guidance to identify
the key areas of your dataset that require end-to-end validation.

Copyright © 2022 Trifacta Inc. Page #121

Identify important fields

For datasets with many columns, it might be problematic to apply consistent validation across all columns. In
these situations, you might need to decide the columns whose consistency, completeness, and accuracy are
most important.

Profile your source data

Before you get started building your recipe on your dataset, it might be a good idea to create a visual profile of
your source data. This process involves creating a minimal recipe on a dataset after you have loaded into the
Transformer page. Then, you run a job to generate a profile of the data, which can be used as a baseline for
validating the data and as an assistant in debugging the origin of any data problems you discover.

Visual profiling also generates statistics on the values in each column in the dataset. You can use this statistical
information to assess overall data quality of the source data. This visual profile information is part of the record for
the job, which remains in the system after execution.

Generate a new random sample

When a dataset is first loaded into the Transformer, the default sampling collects the first N rows of data,
depending on the size and density of each row. However, your dataset might contain variations in the data that
are not present in this first sample. New samples can be generated through the Samples panel.

Transformations vs. Data Quality Rules

You can perform data quality rules through the following general methods:

1. Transformations: You can verify the quality of your data by creating transformations to check values for
consistency and completeness and, if needed, taking action on the data itself for deviations.

a. Transformations are built in the Transformer page to add steps to your recipe.

Tip: If you need to take actions in the data itself based on data quality checks, it may be
better to use a transformation.

2. Data quality rules: You can create data quality rules, which are persistent checks of columnar data
against rules that you define. You can perform a variety of checks that exist outside of the recipe, so as
you transform your data, the data quality rules automatically show the effects of your transformations on
the overall quality of your data.

a. Data quality rules are not recipe steps. They exist outside of recipes and persist in the Transformer
page to help you to build steps to transform your data.

b. Data quality rules are built in the Data Quality Rules panel in the Transformer page.
c. For more information, see Overview of Data Quality.

Tip: If you are attempting to transform the data to get all values in a column to pass one or
more data quality checks, use data quality rules.

Examples of both types of data quality checks are provided below.

Validate Consistency

Trifacta provides useful features for checking that your data is consistent across its rows. With a few recipe steps,
you can create custom validation checks to verify values.

Copyright © 2022 Trifacta Inc. Page #122

Mismatched values

In the data quality bar at the top of a column, you can review the valid (green), mismatched (red), and missing
(gray) values.

When you click the red bar:

The rows that contain mismatched values are highlighted in the data grid.
The application provides suggestions in the form of suggestion cards for ways that you can transform your
data.

Transformation:

Maybe you are unsure of what to do with your data. If you would like to examine all of the rows together, you can
insert a transformation like the following in your recipe.

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula ismismatched(Primary_Website_or_URL, ['Url'])

Parameter: New column mismatched_Primary_Website_or_URL
name

The above checks the values in the Primary_Website_or_URL column against the Url data type. If the value
in the source column is not a valid URL, then the new column value is true.

Data quality rule:

The following data quality rule checks the Primary_Website_or_URL column against the Url data type:

Data Quality Rule Valid

Parameter: Column Primary_Website_or_URL

Parameter: Data 'Url'
type

Outlying values

Through the Column Details panel, you can review statistical information about individual columns. To open,
select Column Details... from a column's drop-down menu.

In the Summary area, you can review the count of Outlier values. In Trifacta, an outlier is defined as any value
that is more than 4 standard deviations from the mean for the set of column values.

The Column Details panel also contains:

Counts of valid, unique, mismatched, and missing values.
Breakdowns by quartile and information on maximum, minimum, and mean values.

Available statistics depend on the data type for the column.

Copyright © 2022 Trifacta Inc. Page #123

Data range checks

Standard deviation ranges

For example, your range of values does not match the application's definition of an outlier, and you need to
identify values that are more than 5 standard deviations from the mean.

You can create your custom transforms to evaluate standard deviations from mean for a specific column. For
more information, see Locate Outliers.

Fixed value ranges

Transformation:

If you need to test a column of values compared to two fixed values, you can use the following transformation.
This one tests evaluates a column value. If the value in Rating column is less than 10 or greater than 90, then
the generated column value is true.

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula ((Rating < 10) || (Rating > 90))

Parameter: New column Outlier_Rating
name

Data quality rule:

The following data quality rule performs the same evaluation as the previous transformation yet persists in the
Transformer page.

Data Quality Rule Formula

Parameter: Formula ((Rating < 10) || (Rating > 90))

Parameter: Group rows (empty)
by

Duplicate rows

Entire rows can be tested for duplication. The deduplicate transform allows you to remove identical rows. Note
that whitespace and case differences are evaluated as different rows.

Uniqueness checks

For an individual column, the Column Details panel contains an indicator of the number of unique values in the
column. If this value does not match the count of values and the count of rows in the sample, then some values
are duplicated. Remember that these counts apply to just the sample in the Transformer page and may not be
consistent measures across the entire dataset.

You can perform ad-hoc tests for uniqueness of individual values.

Data quality rule:

The following data quality rule verifies that all of the values in the custId column are unique:

Data Quality Rule Unique

Copyright © 2022 Trifacta Inc. Page #124

Parameter: Column custId

Permitted character checks

You can test for the presence of permitted characters in individual columns by using a regular expression test.

Transformation:

The following transformation evaluates to true if all of the characters in a column field are alphanumeric or the
space character:

Transformation Name New formula

Parameter: Formula Single row formula
type

Parameter: Formula MATCHES(MarketName, /^[a-zA-Z0-9]*$/)

You can add additional permitted characters inside the square brackets. For more information, see Text Matching.

Data quality rule:

This data quality performs the same test as the above transformation:

Data Quality Rule Match

Parameter: Column MarketName

Parameter: Matches /^[a-zA-Z0-9]*$/
pattern

Validate Completeness

Trifacta provides easy methods for identifying if cells are missing values or contain null values. You can also
create lookups to identify if values are not represented in your dataset.

Missing values

At the top of each column, the data quality bar includes a gray bar indicating the number of cells in the column
that do not contain values. This set of values includes missing values.

Click the gray bar to prompt for a set of suggestion cards for handling those values.

Null values

While null values are categorized with missing values, they are not the same thing. In some cases, it might be
important to distinguish the actual null values within your dataset, and several Wrangle can assist in finding
them.

Validate data against other data

You can also test if your dataset contains at least one instance of a set of values.

For example, your dataset contains businesses throughout the United States. You might want to check to see if
each state is represented in your dataset.

Steps:

Copyright © 2022 Trifacta Inc. Page #125

1. Create a reference dataset that contains a single instance of each item you are checking. In this example,
it'd be a simple CSV file with the name of each state on a separate line.

Tip: To your second dataset, you might want to add a second column containing the value true,
which allows you to keep separate validation data from the columns that you join.

2. Add this CSV file as a new dataset to your flow.
3. Open your source dataset. In the Search panel, enter join datasets.
4. In the Join window:

a. Select the reference dataset you just created. Click Accept. Click Next.
b. Select the type of join to perform:

i. Right outer join: Select this join type if you want to delete rows in your source dataset that
do not have a key value in the reference dataset. In the example, all rows that do not have a
value in the State column would be removed from the generated dataset.

ii. Full outer join: Select this type to preserve all data, including the rows in the source that do
not contain key values.

c. Select the two fields that you want to use to join. In the example, you would select the two fields that
identify state values. Click Next.

d. Select the fields that you want to include in the final dataset. Click Review.
e. Click Add to Recipe.

5. The generated dataset includes all of the fields you specified.
6. For one of your key values, click the gray bar and select the link for the number of affected rows, which

loads them into the data grid. Review the missing values in each key column.
7. To remove these rows, select the missing value category in the data quality bar for the appropriate column

and apply a delete statement.
8. The generated command should look like the following:

Transformation Name Delete rows

Parameter: Condition ISMISSING([State])

For a detailed example, see Validate Column Values against a Dataset.

After Transformation

Generate output profile

After you have completed your recipe, you should generate a profile with your executed job. You can open this
profile and the profile you created for the source data in separate browser tabs to evaluate how consistent and
complete your data remains from beginning to end of the wrangling process.

NOTE: The statistical information in the generated profile should be compared to the statistics generated
from the source, so that you can identify if your changes have introduced unwanted changes to these
values.

Decisions

After you have performed your data validation checks, you might need to make some decisions about how to
address any issues you might have encountered:

Some problems in the data might have been generated in the source system. If you plan to use additional
sources from this system, you should try to get these issues corrected in the source and, if necessary,
have your source data regenerated.

Copyright © 2022 Trifacta Inc. Page #126

Some data quality issues can be ignored. For the sake of downstream consumers of the data, you might
want to annotate your dataset with information about possible issues. Be sure to inform consumers on how
to identify this information.

Copyright © 2022 Trifacta Inc. Page #127

Validate Column Values against a Dataset
Contents:

Example
Prepare Validation Dataset
Import Validation Dataset
Join with Validation Dataset
Triage Invalid Data

Insert error messages
Delete invalid rows
Update validation dataset with new values
Standardize invalid data

When needed, you can validate a column of values against a pre-defined set of values maintained in a separate
dataset. This method of data validation is most useful for String-based data that does not easily map to a specific
pattern of values.

Tip: This method is a suitable replacement for custom data types maintained using a dictionary file.

Overview

This method of validation is completed through the following general steps:

1. Prepare your validation dataset. Create a dataset containing the unique values against which you wish
to validate.

2. Import your validation dataset. After you have prepared the dataset externally, you should import it into
the Trifacta application.

3. Join your data to your validation dataset. You perform a join from the dataset you're wrangling to the
validation dataset that you imported. Validation errors should be identifiable as missing values in the
validation column.

4. Triage defects as necessary. For rows that cannot be resolved, additional wrangling may be necessary.
5. Standardize data. You can use the Standardize tool to review the differences between invalid data and

valid data.

Example

This approach is best demonstrated by example. Below, you can see a set of orders for product.

productName customerName Qty totalSales

Product ADA Customer ABC 2 26

Product AEV Customer DEF 4 100

Product DXL Customer EFG 6 42

Product EDM Customer ABC 1 26

Product JTO Customer DEF 3 75

Product JUB Customer EFG 5 35

Product NRS Customer ABC 6 26

product NSE Customer DEF 8 200

Product ZZZ Customer EFG 10 80

Copyright © 2022 Trifacta Inc. Page #128

Notes:

You can see that this set of orders is spread across 10 different products for three different customers.
In the productName column, there is a mismatch in capitalization.
The final productName value (Product ZZZ) does not exist.

The product names in this list must be validated against a dataset containing the list of all available products. This
list is 100 product names long.

You can use the links below to download these datasets as CSV files for exploration in your project or
workspace.

Dataset-ProductNames.csv
Dataset-ProductNames-Orders.csv

Prepare Validation Dataset

If you haven't done so already, you should prepare your validation dataset for use in the Trifacta application.
Below, you can see the first 10 rows of the ProductNames dataset:

productName

Product ADA

Product AEV

Product ANH

Product ARA

Product ARM

Product AUJ

Product BAD

Product BAP

Product BEI

Product BEZ

Notes:

A column header is provided in the dataset. This is helpful for identifying the column to use later as the join
key.
You may wish to enter a validation column, simply contains the value TRUE.

Tip: If your dataset does not contain this column, you can create a new formula within the
Transform Builder to insert this value. This step is covered later.

Import Validation Dataset

If you have prepared your dataset, you must import into in the application.

Steps:

1. In the Trifacta application, click Library.
2. Click Import Data.
3. Navigate to the file or files to import.

Copyright © 2022 Trifacta Inc. Page #129

Tip: If you are using the example files, you can right-click them above, download them to your
desktop, and then drag and drop them into the Import Data page.

4. Import the file as a new dataset.

Tip: If you are using the example datasets, you can call it Reference-ProductNames.

5. It may be helpful to import the file into a new file and create a recipe from it.

For the example dataset, there is a single column of values. To make this dataset useful as a validation dataset,
add the following transformation, which adds a second column called validation containing the value true for
each row.

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula 'true'

Parameter: New column validation
name

The example reference dataset now looks like the following:

productName validation

Product ADA TRUE

Product AEV TRUE

Product ANH TRUE

Product ARA TRUE

Product ARM TRUE

Product AUJ TRUE

Product BAD TRUE

Product BAP TRUE

Product BEI TRUE

Product BEZ TRUE

Join with Validation Dataset

Now you can join your existing dataset with the new validation dataset. A join performs a comparison of the
column values in one dataset compared to the column values in another dataset. Where matches are detected,
columns and values of the joined-in dataset are inserted into the source dataset. For more information on joins,
see Join Types.

Steps:

1. Edit the recipe of the source dataset.
2. As a new step for the recipe, enter join datasets in the Search panel.
3. Select the source of the joined-in data:

a. If you created a recipe and added steps (as in the example), then click the Recipes in current flow
tab.

b. If you imported a clean dataset, then click one of the Datasets tabs.

Copyright © 2022 Trifacta Inc. Page #130

4. For Join type, select Left.

Tip: A left join includes all rows from the left (source) dataset and only the matching rows from the
right dataset for a specified set of column values (join keys) in the left dataset. If a column value
in the left dataset does not exist in the right dataset, then null values are listed for that row's entry
for all columns imported from the right dataset.

5. For the Join keys, select the column containing values to check from the left (source) dataset and then
column containing the reference values in the right dataset.

Tip: In the example datasets, both of these columns are called ProductNames, which assists the
join tool in identifying the join key columns.

6. Under Join Keys, hover over one of the column names. Then, click the Pencil icon.

Figure: Edit join keys
7. When you edit the join keys, you can specify the Condition, which defines the type of comparison that is

performed to determine a match.
8. The other options allow you to fine-tune how matching is performed. In particular, the Ignore case option

is off, which means that by default, joins are case-sensitive. So, product 01 does not match to Product
01.

Tip: In the example data, you can see that the product NSE entry does not have a match, which
is due to differences in case. If Ignore case is enabled, then this entry may find a match. However,
you may wish to maintain case-sensitive searches to ensure that you can clean up the data
correctly.

9. Click Save and continue.
10. Click Next.

Copyright © 2022 Trifacta Inc. Page #131

11. Select all columns, and click Review.

Figure: Review join

Tip: In the example, you can see that two rows failed to match.

12. Click Add to recipe.

Triage Invalid Data

You should now have a dataset containing all columns from both datasets.

Tip: In the example dataset, a second column called validation was added. This column contains null
values for the mismatched rows. So, you can delete the duplicate ProductName column, which contains
null values in two rows.

You can make some decisions on how to triage the invalid values in the ProductNames column.

Insert error messages

You can use a transformation to replace the null values in the validation column with a meaningful message:

Transformation Name Edit column with formula

Parameter: Columns validation

Parameter: Formula IF ($col == NULL(),'Error - invalid Product
Name','ok')

The transformation replaces the null values with Error - invalid Product Name and writes ok for the
other rows.

Delete invalid rows

If the entire row of data is invalid because of the invalid value, then you simply delete the row. This transformation
deletes rows, where the validation column contains a null value:

Transformation Name Filter rows

Parameter: Condition Custom formula

Copyright © 2022 Trifacta Inc. Page #132

Parameter: Type of formula Custom single

Parameter: Condition (validation == NULL())

Parameter: Action Delete matching rows

Update validation dataset with new values

If you discover that some of the mismatched rows should be part of your validation dataset, you can follow these
general steps to add them.

Steps:

1. In Flow View, add a new recipe off of the recipe where the join occurs.
2. Edit this new recipe.
3. Insert this transformation to filter the dataset down to the rows containing the new values:

Transformation Name Filter rows

Parameter: Condition Custom formula

Parameter: Type of formula Custom single

Parameter: Condition (validation == NULL())

Parameter: Action Keep matching rows

4. You can then delete all columns except (in the example) the ProductName column. From the column
menu of the ProductName column, select Delete others.

5. You should now have a single column containing the missing values. You can create a union between this
dataset and the validation dataset to add the values. See Append Datasets.

6. Run a job on this recipe to generate the output file.
7. This output file can then be used to replace the source data. In Flow View, select the imported dataset.

From the context panel, open the More menu and select Replace.

Standardize invalid data

You can standardize values in join key column for your source data, which may address some of the invalid
data. The Standardization tool attempts to cluster similar values together within the column, so that you can try to
identify if your values in your source dataset can be matched to values in the target dataset.

Tip: After you have identified issues, this step may be best to apply before the join. By applying it before
the join, some or all of the mismatched value issues may be addressed.

For your source column, you can select Standardize from the column menu.

In the example, the ProductNames column values are being standardized. In this case, the lower case product
NSE value has been corrected to be Product NSE.

Copyright © 2022 Trifacta Inc. Page #133

Figure: Standardize join key values

For more information, see Overview of Cluster Clean.

Copyright © 2022 Trifacta Inc. Page #134

Find Bad Data
Contents:

Locate mismatched values
Methods for fixing mismatched data

Mismatched values in transform code
Trim data
Set values using other columns
Use functions to fix mismatched values
Bad data typing

You might encounter problems with how data has been structured or formatted that you must fix prior to providing
the content to your target system. You can use the methods in this section to locate problems with the content or
data typing of your data.

Locate mismatched values

When Trifacta® evaluates a dataset sample, it interprets the values in a column against its expectations for the
values. Based on the column's specified data type and internal pattern matching, values are categorized as valid,
mismatched, or missing. These value categories are represented in a slender bar at the top of each column.

A mismatched value is any value that seems to be of a different data type than the type specified for the
column. For example, if the value San Francisco appears in a column of Zip Code type, it would be
marked as a mismatched value.

In the data quality bar, mismatched values are identified in red:

Tip: Before you start performing transformations on your data based on mismatched values, you should
verify the data type for these columns to ensure that they are correct. The type against which values are
checked is displayed to the upper left of the data quality bar. Below, the data type is ZIP for U.S. Zip
code data.

Figure: Mismatched values in red

Mismatched values can be sourced from a variety of issues:

Values may be miskeyed into the source system.
The source system may introduce errors in output, particularly if the data is generated for export using a
customized structure.
Incorrect use of column delimiters may create offsets among fields in individual rows.
Data may be badly structured across a set of rows.
The column may be assigned the wrong data type.

Copyright © 2022 Trifacta Inc. Page #135

Tip: When cleaning up bad data, you should look to work from bigger problems to smaller problems. If a
higher percentage of a column's values have been categorized as mismatched data, it may indicate a
wider problem with the data. In affected rows, verify if other columns' values are also mismatched. These
rows should be reviewed and fixed first. When fixed, other mismatches may be fixed in other rows, too.

To locate data:

NOTE: Remember that you are working on a sample of your data. For small datasets, the Initial Data
sample includes all rows of the dataset and is unsampled.

From the Transformer page, click the mismatched values in a column's data quality bar to see their count,
highlight them in the rows of the data grid, and trigger a set of suggestions for your review.
To refine the data grid view, click the Show Only Affected Rows checkbox in the status bar at the bottom of
the screen. Only the rows that are affected by the previewed transform are displayed.

Tip: This step highlights specific values that are mismatched. You can take note of individual
values.

To locate a specific value, click the Filters icon on the right side of the screen. In the Rows tab, enter the
specific value to locate. Rows containing this value are highlighted. Back in the data grid, you can select
one of these highlighted values to be prompted for suggestions.

Methods for fixing mismatched data

When you discover mismatched data in your dataset, you have the following basic methods of fixing it:

1. Change the data type. If the percentage of mismatched rows is significant, you may need to change the
data type for a better match.

2. Replace the values with constant values. This method works if it is clear to you that the values should
be a single, consistent value. Select the mismatched values in the column, and then select one of the
highlighted mismatched values. Use the replace transform to change the mismatched values to
corrected values.

Tip: One easy way to fix isolated problems with mismatched values is to highlight a mismatched
value in the data grid. A new set of suggestions is displayed. You can select the replace
suggestion and then modify it to include the replacement value.

3. Set values with other columns' values. You can use the set transform to fix mismatched values by
replacing them with the corresponding values from other columns.

4. Use functions. Data can be fixed by using a function in conjunction with the set transform to replace
mismatched values.

5. Delete rows. Select the mismatched values and use the delete transform to remove the problematic
rows.

6. Hide the column for now. You can remove the column from display if you want to focus on other things.
Select Hide from the column drop-down. Note that hidden columns appear in any generated output.

7. Delete the column. If the column data is unnecessary or otherwise unusable, you can delete the entire
column from your dataset. Select Delete from the column drop-down.

Tip: Delete unnecessary columns as early as possible. Less data is easier to work with in the application
and improves job execution performance.

Copyright © 2022 Trifacta Inc. Page #136

NOTE: You might need to review and fixed mismatched data problems multiple times in your dataset. For
example, if you unnest the data, additional mismatches might be discovered. Similarly, joins and lookups
can reveal mismatches in data typing.

Mismatched values in transform code

In your transforms, mismatched data can be identified references as in the following:

Transformation Edit column with formula
Name

Parameter: Columns postal_code

Parameter: Formula IF(ISMISMATCHED(postal_code, ['Zipcode']),'00000',
postal_code)

Note that the single quotes are important around the value, which identifies the value as a constant.

Tip: In the above, note that the value Zipcode identifies the data type that is used for matching the
column values. In this case, for greater specificity, you might want to identify the mismatched values in
the column against the data type Integer, since all U.S. postal codes are positive integers. For more
information on how to explicitly reference data types in your steps, see Valid Data Type Strings.

Trim data

To trim whitespace out of a column, use the following transformation:

Transformation Name Edit column with formula

Parameter: Columns column1

Parameter: Formula TRIM($col)

The $col token is a reference to the column name to which the formula is being applied. For more information,
see Source Metadata References.

This step may increase the number of missing values (for values that contain only whitespace characters) and
the number of instances of matching values (for values that have spaces before and after an alphanumeric value).

You can modify the above transformation to trim leading and trailing spaces across all columns in your dataset.
The wildcard (*) applies the formula to all columns in the dataset.

Transformation Name Edit column with formula

Parameter: Columns *

Parameter: Formula TRIM($col)

You can extend the above transformation further by removing any leading or trailing single- and double-quote
marks using the TRIMQUOTES function wrapped around the TRIM reference:

Tip: Keep in mind that nested functions are evaluated from the inside out. In this case, the TRIM function
is evaluated first, which removes any surrounding whitespace. Then, the TRIMQUOTES function is applied.

Transformation Name Edit column with formula

Copyright © 2022 Trifacta Inc. Page #137

Parameter: Columns *

Parameter: Formula TRIMQUOTES(TRIM($col))

Set values using other columns

You can use values from other columns to replace mismatched values in your current column. Using the previous
example, mismatched postal codes are replaced by the corresponding value in the parent entity's postal code
column (parent_postal_code):

Transformation Edit column with formula
Name

Parameter: Columns parent_postal_code

Parameter: Formula IF(ISMISMATCHED(postal_code, ['Zipcode']),'00000',
postal_code)

Use functions to fix mismatched values

In your transforms, you can insert a predefined function to replace mismatched data values. In the following
example, the value for mismatched values in the score column are computed as the average of all values in the
column:

Transformation Name Edit column with formula

Parameter: Columns score

Parameter: Formula IF(ISMISMATCHED(score, ['Decimal']),AVERAGE(score),
score)

Tip: You can also use the IFMISMATCHED function to test for mismatched values. Unlike the above
construction, however, IFMISMATCHED does not support an else clause when the value does match the
listed data type.

Bad data typing

Tip: Particularly for dates, data is often easiest to manage as String data type. Trifacta has a number of
functions that you can deploy to manage strings. After the data has been properly formatted, you can
change it to the proper data type. If you change data type immediately, you may have some challenges in
reformatting and augmenting it. Do this step last.

For columns that have a high percentage of mismatched values, the column's data type may have been mis-
assigned. In the following example, a column containing data on precipitation in inches has been mis-typed as
Boolean data:

Copyright © 2022 Trifacta Inc. Page #138

Figure: Mis-typed column data type

To change a column's data type, click the type identifier at the top of the column and select a new type. In this
case, you would select Decimal.

NOTE: After you change the type, review the data quality bar again. If there are still mismatched values,
review them to see if you can categorize the source of the mismatch.

As you can see in the previous example, the precipitation column contains values set to T, which may be short for
true. When the data type is set to Decimal, these values now register as mismatched data. To fix, you can
replace all T values with 1.0 using the set transform.

Select an instance of T in the column and click the Set suggestion card. Click Modify. For the value in the
transform, enter 1.0. Your transform should look like the following:

Transformation
Name

Edit column with formula

Parameter:
Columns

PrecipitationIn

Parameter:
Formula

IFMATCHES([PrecipitationIn], `{start}{bool}{end}`),'1.0',
PrecipitationIn)

Tip: If possible, you should review and refer to an available schema of your dataset, as generated from
the source system. If the data has also been mis-typed in the source system, you should fix it there as
well, so any future exports from that system show the correct type.

Copyright © 2022 Trifacta Inc. Page #139

Find Missing Data
Contents:

Locate missing values
Methods for fixing missing data
Insert constants for missing values
Copy values from another column
Use functions to populate missing values
Manage Missing Metadata

Example - Change Type
Example - Insert Year
Example - Insert Timezone

When data is imported from another system, you might discover that some values are missing in it. In some
cases, these values simply contain no content. In other cases, these values are non-existent. Depending on how
the missing values entered the data, you may end up processing them in different ways. This section describes
how to identify and manage missing data in your datasets.

NOTE: If you are unsure of the meaning of a column of data that contains missing values, you should
attempt to review the source data or contact the individual who generated the data to identify why values
may be missing and how to effectively manage them in Trifacta® and downstream systems.

Locate missing values

When your dataset sample is evaluated, each column is validated against the column's type definition. Based on
that validation, values in the column are categorized as valid, mismatched, or missing. These values are
categorized in the data quality bar at the top of each column.

A missing value is any value that either contains no content or is non-existent.
An example of a non-existent value is a cell in a column of integers that has no value in it. In this
special case, the missing value is called a null value.
Null values are converted to missing values during import.

Values that are spaces (one or more presses of the SPACEBAR) or tabs (one or more presses of the TAB
key) are not missing values.

Tip: To trim whitespace out of a column, use the following transformation:

Transformation Name Edit column with formula

Parameter: Columns column1

Parameter: Formula TRIM(column1)

This step may increase the number of missing values (for values that contain only whitespace
characters) and the number of instances of matching values (for values that have spaces before
and after an alphanumeric value).

Return (\n) and newline (\l) are considered missing.

In the data quality bar, missing values are identified in gray:

Copyright © 2022 Trifacta Inc. Page #140

Figure: Missing values in gray

Tip: From the Transformer page, click the missing values in a column to see their count, highlight them in
the rows of the data grid, and trigger a set of suggestions for your review.

Missing values can be sourced from a variety of issues:

Values may be miskeyed into the source system.
The source system may enable optional fields that do not contain values. For example, U.S. zip codes can
contain a second, four-digit qualifier for the base 5-digit zip code (an extended Zip+4 code). This second
value may not be required and may therefore be missing.
For columns of generated values, a computation may not be possible from the source data, which may
indicate problems with other column data.
A set of missing values within a row may indicate a problem with the entire record.
The source system may introduce errors in output, particularly if the data is generated using a customized
structure.

Tip: When cleaning up missing data, you should look to work from bigger problems to smaller problems.
If a higher percentage of a column's values have been categorized as missing data, you should look
across affected rows to see if it's a wider problem. If other records look ok, you should consider deleting
the column or figuring out how to manage the missing values, including populating them.

Data may also be considered missing if you don't have sufficient information about the data. For example,
timestamps that do not have a timezone identifier may not be usable in the target system.

Methods for fixing missing data

When you discover mismatched data in your dataset, you have the following basic methods of fixing it:

1. Identify if the column values are required.

a. Check the target system to determine if the field must have a value. If values are not required, don't
worry about it. Consider deleting the column.

b. Remember that null values imported into Trifacta are exported as missing values, which are easier
to consume in most systems.

c. Check the column header and data type to determine if values are required. For example, in
transactional data, a field called coupon_code requires data only if every transaction is processed
with one.

d. If it's available, check the source system to see if it requires entry into the field. If an entry is
required and your data contains missing values, then there is an issue in how the data was
exported from the source system.

2. Insert a constant value. You can replace a missing value with a constant, which may make it easier to
locate more important issues in the application.

3. Use a function. Particularly if the missing data can be computed, you can use one of the available
functions to populate the missing values.

4. Copy values from another column. If a value from another column or a modified form of it can be used
for the missing value, you can use the set transform to overwrite the missing values.

Copyright © 2022 Trifacta Inc. Page #141

5. Delete rows. Select the missing values bar and use the delete transform to remove the problematic
rows.

NOTE: Since missing data may not be an explicit problem, you should avoid deleting rows or the
column itself until other options have been reviewed.

6. Hide the column for now. You can remove the column from display if you want to focus on other things.
Select Hide from the column drop-down. Note that hidden columns still appear in any generated output.

7. Delete the column. If the column data is unnecessary or otherwise unusable, you can delete the entire
column from your dataset. Select Delete from the column drop-down.

Tip: Delete unnecessary columns as early as possible. Less data is easier to work with in the
application and increases job execution performance.

Insert constants for missing values

NOTE: Generally speaking, inserting constants in place of missing values is not a recommended
practice, especially if downstream consuming applications and individuals may not be known. In
particular, you should not replace missing numeric values with a fixed numeric value, which will skew
analysis. Use this method only if your entire data chain is aware of the constants.

Steps:

1. Click the gray missing values segment of the data quality bar for the column to fix.

Tip: Select a missing value in the data grid. Then, select the replace suggestion and then modify
it to include the replacement value.

2. In the suggestion cards, click the set suggestion.
3. By default, this transform sets the missing value to be a null value. Click Edit.
4. You might seem something like the following:

Transformation Name Edit column with formula

Parameter: Columns country

Parameter: Formula IF(ISMISSING([country]),NULL(),country)

5. The missing data is identified using the row:ISMISSING reference. To apply a constant, replace the NULL
() reference with a constant value, as in the following:

Transformation Name Edit column with formula

Parameter: Columns country

Parameter: Formula IF(ISMISSING([country]),'USA',country)

Note that the single quotes around the value are required, since it identifies the value as a constant.
6. Click Add.

Tip: You can also use the IFMISSING function to test for empty values. Unlike the above construction,
however, IFMISSING does not support an else clause when the value is present.

Copyright © 2022 Trifacta Inc. Page #142

Copy values from another column

You can populate missing values with values from another column. In the following example, the nickname
column is populated with the value of first_name if it is missing:

Transformation Name Edit column with formula

Parameter: Columns nickname

Parameter: Formula IF(ISMISSING([nickname]),first_name,nickname)

Use functions to populate missing values

Particularly for numeric data, you can use functions to populate missing values. In the following example, missing
values for the unit_price column are derived from a computation of the weight_kg column and the price
column:

Tip: Be careful using functions such as averages to compute missing values. These computations may
factor outliers that have not yet been removed or may fail to account for local trends relative to the data.
Study the values and their meaning in the column before performing replacements. When in doubt, a
median value may be your best best, assuming outliers and spurious data have been properly addressed.

Transformation Name Edit column with formula

Parameter: Columns unit_price

Parameter: Formula IF(ISMISSING([unit_price]),(price / weight_kg),
unit_price)

Manage Missing Metadata

In some cases, a column may contain valid values, but the meaning of those values is missing from the data. For
example, your data contains the following Timestamp information:

Timestamp

19 May 02:45:38

19 May 02:42:24

19 May 02:41:33

This timestamp information may be considered problematic for the following reasons:

The format may be incorrect for the target system.
There is no year information. If the target system contains multi-year datasets, it may cause issues. The
month element should be interpretable by Trifacta.
There is no timezone information. In what timezone were these entries recorded?

The following examples demonstrate how to insert this information into your timestamps.

Example - Change Type

On import, timestamp data may be classified as String data. For now, this is ok.

Copyright © 2022 Trifacta Inc. Page #143

Tip: Particularly for dates, data is often easiest to manage as String data type. Trifacta has a number of
functions that you can deploy to manage strings. After the data has been properly formatted, you can
change it to the proper data type. If you change data type immediately, you may have some challenges in
reformatting and augmenting it. Do this step last.

After you have added back missing elements, you can change the data type to Date/Time through the data type
drop-down for the column.

Before you begin reformatting your data, you should identify the target date format to which you want to match
your timestamps. From the data type drop-down, select Date/Time. The dialog shows the following supported
date formats:

Tip: When wrangling your data, you should start with the target structure or format of your data and work
back to your source. This principle applies to both column management and overall dataset management.

Figure: Available Date/Time formats

NOTE: Each available option has a set of sub-options in the displayed drop-down.

In this timestamp example, the target format is the following:

dd-mm-yy hh:mm:ss (dd*shortMonth*yyyy*HH:MM:SS)

Copyright © 2022 Trifacta Inc. Page #144

Example - Insert Year

The easiest way to handle the insertion of year information is to split out the timestamp data into separate
components and then to merge back the content together with the inserted year information. Since the above
timestamp data essentially contains three separate fields (Day of Month, Month, and Time), you can use a split
command to break this information into three separate columns. Highlight one of the spaces between Day of
Month and Month and select the split suggestion. The Wrangle step should look similar to the following:

Transformation Name Split column on delimiter

Parameter: Column column1

Parameter: Option By delimiter

Parameter: Delimiter ' '

Parameter: Number of columns 2
to create

Now, your data should be stored in three separate columns.

Tip: You may notice that new data types have been applied to the generated columns. The data may be
easier to handle if all column types are converted to String type for now.

The next step involves merging all of these columns back into a single field, augmented with the appropriate year
information. Select the columns in the order in which you would like to see them in the new timestamp field. In
this case, you can select them in the order that they were originally listed. When all three columns are selected,
choose the merge suggestion.

You may notice that the data has been formatted without spaces (19May02:45:38), and there is no year
information yet. You can create new columns containing a year value (myYear) then merge the columns together:

Transformation Name Merge columns

Parameter: Columns column2, myYear, column3, column4

Parameter: Separator ' '

After you have inserted the year information and merged the columns, you should be able to change the column
data type to the appropriate version of Date/Time.

Example - Insert Timezone

Timestamps do not natively support different timezones, so this information must be stored in a separate column.
For U.S. data, timezones can be determined based on the zip code.

NOTE: If missing metadata is not supported as part of the value in the target system, you can insert the
metadata as a separate column and then apply the metadata to the data inside the target system.

Copyright © 2022 Trifacta Inc. Page #145

Manage Null Values
Contents:

Important notes on null values
Locate null values
High percentage of nulls
Null values in transformations
Write null values

In general terms, a null value is a definition that points to nothing. A container for a value, such as a row-column
combination or a variable, exists, but the container points to no actual value.

Important notes on null values

NOTE: In the platform, null values are a subset of the category identifying missing values. For technical
reasons, however, Trifacta® displays null values as missing values and visually treats them as the same.
Internally, they are understood to be different values.

Implications:

Null values are visually represented as missing values.
In the data quality bar, null and missing values are represented in the dark bar (missing values).

Computationally, they are different types of values.
Most functions applied to null and missing values return the same results.

For example, the ISMISSING function returns true for null and missing values.
However, the ISNULL function returns true for a null value and false for a missing value.
See below.

If you use a function to generate null values, they are displayed as missing values, although they
are recorded as nulls.

For example, the following transform generates a column of null values, which are
represented as missing values in the data quality bar.

Transformation Name New formula

Parameter: Formula NULL()

Parameter: New column nulls
name

When a set of results is generated, both null and missing values are written as missing values, unless the
output format has a specific schema associated with it.

NOTE: When a recipe containing a user-defined function is applied to text data, any null characters
cause records to be truncated when the job is run on Trifacta Photon. In these cases, please execute the
job in the Spark running environment.

Locate null values

Null values are displayed with missing values in the Missing values category of the data quality bar (in gray).

Copyright © 2022 Trifacta Inc. Page #146

You can use the following transform to distinguish between null and missing values. This transform generates a
new column of values, which are set to true if the value in isActive is a null value:

Transformation Name New formula

Parameter: Formula ISNULL(isActive)

Parameter: New column nulls2
name

High percentage of nulls

On import, if a column has a high enough percentage of null values, the platform may retype the column as a Str
ing column, which may yield mismatched values in addition to the missing values that were imported from null
values.

Null values in transformations

Functions:

Applying a null value as an input to a scalar function returns a null value, propagating the null value.
In aggregate or window functions, null values are ignored, as a single null value could corrupt an entire
column of calculations.

Transforms:

In a join, a null value in one dataset never matches with a null value in another dataset. Rows with null
values in join key columns are never included in the output. See Join Types.

Write null values

If needed, you can write a null value to a set of data. In the following example, all missing values in a column are
replaced by nulls, using the NULL function.

NOTE: The NULL function is typically used to pass null values into functions that have been designed to
specifically address them.

The following example tests all columns in the range between column1 and column255 for whether a missing
value is detected. If so, a null value is written. Otherwise, the column value is written back to the column:

Transformation Name Edit column with formula

Parameter: Columns column1~column255

Parameter: Formula IF(ISMISSING([$col]), null(), $col)

The above transform writes null values, but these values are converted to missing values on export.

Copyright © 2022 Trifacta Inc. Page #147

Structuring Tasks
These tasks describe different methods for changing the shape of your data. Some of these tasks are applied on
data import, while others can be managed through a single transformation in your recipe.

Tip: Some transformations may add or remove data, and the source data is lost. To retain the original
data, you may choose to create chains or branching sets of recipes before your apply restructuring steps.
For more information, see Create Branching Outputs.

Copyright © 2022 Trifacta Inc. Page #148

Initial Parsing Steps
Contents:

File Encoding
Automatic Structure Detection
Overview
Splitting Columns
Header Row
Converted data

Excel
JSON

Database Tables
Known Issues
Troubleshooting

Fixing parsing issues from structured source after recipe has been created

When a dataset is initially loaded into the Transformer page, one or more steps may be automatically added to
the new recipe in order to assist in parsing the data. The added steps are based on the type of data that is being
loaded and the ability of the application to recognize the structure of the data.

File Encoding

When a text file is used as an imported dataset, Trifacta® assumes that the imported files are encoded in UTF-8,
by default.

NOTE: Assessing the file encoding type based on parsing an input file is not an accurate method.
Instead, Trifacta assumes that the file is encoded in the default encoding. If it is not, the Trifacta
application should be prompted with the appropriate encoding type.

NOTE: In some cases, imported files are not properly parsed due to issues with encryption types or
encryption keys in the source datastore. For more information, please contact your datastore
administrator.

As needed, you can change the encoding to use when parsing individual files. In the Import Data page, click Edit
Settings in the right-hand panel.

Automatic Structure Detection

NOTE: By default, these steps do not appear in the recipe panel due to automatic structure detection. If
you are having issues with the initial structuring of your dataset, you may choose to re-import the dataset
with Detect structure disabled. Then, you can review this section to identify how to manually structure
your data.

This section provides information on how to apply initial parsing steps to unstructured imported datasets. These
steps should be applied through the recipe panel.

NOTE: Imported datasets whose schema has not been detected are labeled, unstructured datasets.
These datasets are marked in the application. When a recipe for this dataset is first loaded into the
Transformer page, the structuring steps are added as the first steps to the associated recipe, where they
can be modified as needed.

Copyright © 2022 Trifacta Inc. Page #149

Overview

When data is first loaded, it is initially contained in a single column, so the initial steps apply to column1.

Step 1: Split the rows. In most cases, the first step added to your recipe is a Splitrows transformation, which
breaks up the individual rows based on a consistently recognized pattern at the end of each line. Often, this
value is a carriage return or a carriage return-new line. These values are written in Wrangle as \r and \r\n,
respectively. See the example below.

NOTE: The maximum permitted length of any individual record on input is 20 MB.

Step 2: Split the columns. Next, the application attempts to break up individual rows into columns.

If the dataset contains no schema, the Split Column transformation used. This transformation attempts to
find a single consistent pattern or a sequence of patterns in row data to demarcate the end of individual
values (fields).

NOTE: Avoid creating datasets that are wider than 1000 columns. Performance can degrade
significantly on very wide datasets.

If the dataset contains a schema, that information is used to demarcate the columns in the dataset.

When the above steps have been successfully completed, the data can be displayed in tabular format in the data
grid.

Step 3: Add column headers. If the first row of data contains a recognizable set of column names, a Rename
Columns with Rows transformation might be applied, which turns the first row of values into the names of the
columns.

Example recipe:

1. Transformation Name Split into rows

Parameter: Column column1

Parameter: Split on \r

Parameter: Ignore matches \"
between

Parameter: Quote escape \"
character

2. Transformation Name Split column

Parameter: Column column1

Parameter: Option on pattern

Parameter: Match pattern ','

Parameter: Number of matches 9

Parameter: Ignore matches \"
between

Copyright © 2022 Trifacta Inc. Page #150

3. Transformation Name Add header

Parameter: Row number 1

After these steps are completed, the data type of each column is inferred from the data in the sample. See
Supported Data Types.

Splitting Columns

When you import a dataset, the application can automatically split your column into separate columns based on
one or more delimiters.

NOTE: Avoid importing datasets that are wider than 1000 columns. Particularly with previewing
transformations in the data grid, very wide datasets can consume a significant amount of memory, which
can cause browser crashes. Depending on your local environment, you may be able to work with these
wide datasets. However, if the dataset is joined with other datasets or shared with other users, crashes
can occur.

Tip: If you select the delimiter in a column with a very large number of delimiters, any suggestion card
limits the split to a maximum of 250 columns. You can edit the suggested transformation to increase the
number of split columns as needed. Increasing the limit can impact browser performance.

Header Row

When a dataset is imported, the application may infer the names of your columns from the first row of the dataset.

Tip: Avoid importing data that contains missing or empty values in the first row. These gaps can cause
problems in your headers.

In some cases, the application may be unable to create this header row. Instead, the columns are titled co
lumn1, column2, column3 and so on.
If the column names are split across multiple rows in your dataset, you may need to modify the column
naming transformation step.

Converted data

Some formats, such as binary data or JSON, are converted to a format that is natively understood by the product
before the data is available for sampling and transformation.

Excel

Microsoft Excel files are internally converted to CSV files and then loaded into the Transformer page. CSV files
are treated using the general parsing steps. See previous section.

JSON

If 80% of the records in an imported dataset are valid JSON objects, then the data is parsed as JSON through a
conversion process.

Notes:

For JSON files, it is important to import them in unstructured format.

Copyright © 2022 Trifacta Inc. Page #151

Trifacta® requires that JSON files be submitted with one valid JSON object per line.
Multi-line JSON import is not supported.
Consistently malformed JSON objects or objects that overlap linebreaks might cause import to fail.

For more information, see Working with JSON v2.

Database Tables

Properly formatted database tables with a provided schema should not require any initial parsing steps.

Known Issues

Some characters in imported datasets, such as NUL (ASCII character 0) characters, may cause problems
with recognizing line breaks. If initial parsing is having trouble with line breaks, you may need to fix the
issue in the source data prior to import, since the Splitrows transformation must be the first step in your
recipe.

Troubleshooting

Fixing parsing issues from structured source after recipe has been created

If you discover that your dataset has issues related to initial parsing of a structured source after you have started
creating your recipe, you can use the following steps to attempt to rectify the problem.

Steps:

1. Open the flow containing your recipe.
2. Select the imported dataset. From the context menu, select Remove structure....
3. For the imported dataset, click Add new recipe.
4. Make any changes to the initial parsing steps in this recipe.
5. Select the recipe you were initially modifying. From its context menu, select the new recipe as its source.

The new initial parsing steps are now inserted into recipe flow before the recipe steps in development.

Copyright © 2022 Trifacta Inc. Page #152

Reshaping Steps
Recipe steps can change the number of rows in the dataset and apply wider impacts to your dataset and its
samples.

These reshaping steps include the following transformations:

Transformation Documentation

Splitrows Initial Parsing Steps

Expand Arrays into Rows Working with Arrays

Filter Rows (keep or delete) Remove Data

Pivot Table Pivot Data

Unpivot Columns Unpivot Columns

Join Datasets Join Window

Union Datasets Union Page

Select Lookup from the column menu Lookup Wizard

Remove Duplicate Rows Remove Data

Samples:

When one of these transformations is applied and rows are removed from your dataset:

Any samples generated before the step was added are invalidated and cannot be used.
If you edit steps in your recipe before this added transformation, any samples that you generated after the
step are invalidated and cannot be used.

A valid initial sample is always available for use.

For more information, see Samples Panel.

Copyright © 2022 Trifacta Inc. Page #153

Split Column
Contents:

Split by Delimiter
Split on single delimiter
Split column by multiple delimiters
Split column between delimiters

Split by Position
Split column by positions
Split columns between positions
Split column at regular interval

Encoding Issues
Splitting Rows

For many recipes, the first step is to split data from a single column into multiple columns. This section describes
the various methods that can be used for splitting a single column into one or more columns, based on character-
or pattern-matching or position within the column's values.

Split by Delimiter

When data is initially imported into Trifacta®, data in each row may be split on a single delimiter. In the following
example, you can see that the tab key is a single clear delimiter:

<IMSI^MSIDN^IMEI> DATETTIME/TIMEZONE OFFSET/DURATION MSWCNT:BASCNT^BASTRA CALL_TYPE
/CORRESP_IDN/DISCONNECT REASON
<310170097665881^13011330554^011808005351311> 2014-12-12T00:06:13/-5/1.55 MSC001:
BSC002^BTS783 MOT/00000000000:11
<310170097665881^13011330554^011808005351311> 2014-12-12T02:27:26/-5/0.00 MSC001:
BSC002^BTS783 SMS/00000000000:
<310-170-097665881^13011330554^011808005351311> 2014-12-12T03:24:20/-5/0 MSC001:
BSC001^BTS783 SMS/00000000000:

However, when this data is imported, it may be rendered in the data grid in the following structure:

column2 column3 column4 column5

<IMSI^MSIDN^IMEI> DATETTIME/TIMEZONE MSWCNT: CALL_TYPE/CORRESP_IDN:
OFFSET/DURATION BASCNT^BASTRA DISCONNECT REASON

<310170097665881^13011330554^0118 2014-12-12T00:06:13/-5 MSC001: MOT/00000000000:11
08005351311> /1.55 BSC002^BTS783

<310170097665881^13011330554^0118 2014-12-12T02:27:26/-5 MSC001: SMS/00000000000:
08005351311> /0.00 BSC002^BTS783

<310-170- 2014-12-12T03:24:20/-5 MSC001: SMS/00000000000:
097665881^13011330554^01180800535 /0 BSC001^BTS783
1311>

Notes:

When the data is first imported, all of it is contained in a single column named column1. The application
automatically splits the columns on the tab character for you and removes the original column1.

Copyright © 2022 Trifacta Inc. Page #154

https://2014-12-12T02:27:26/-5/0.00
https://2014-12-12T00:06:13/-5/1.55

Tip: This auto-split does not appear in your recipe by default. For most formats, a set of initial
steps is automatically applied to the dataset. Optionally, you can review and modify these steps,
but you must deselect Detect Structure during the import.

Because the application was unable to determine clear headers for each column's data, generic ones are
used. So, before you apply a header to your data, you must split out the data within each column.
The delimiters within each column vary.

column2 uses the caret, while column3 uses the forward slash.
column4 and column5 use multiple delimiters.

There is sparseness in the data. Note that in column5, the second row contains the value 11 at the end,
while the other two data rows do not have this value.

Split on single delimiter

For column2, you can split the column into separate columns based on the caret delimiter:

Transformation Name Split by delimiter

Parameter: Column column2

Parameter: Option By delimiter

Parameter: Delimiter '^'

Parameter: Number of columns 2
to create

NOTE: The Number of columns to create value reflects the total number of new columns to generate.

Results:

Below is how the data in column2 is transformed:

column1 column6 column7

<IMSI MSIDN IMEI>

<310170097665881 13011330554 011808005351311>

<310170097665881 13011330554 011808005351311>

<310-170- 13011330554 011808005351311>
097665881

Since column1 was unused as a name, it re-appears here. column6 and column7 are the next available
generic column names.
There is a small bit of cleanup to do in column1 and column7 to remove the symbols at the beginning and
end of these column values. You can do this cleanup before the split in the original column2 if desired.

For column3, suppose that you want to keep the DATETIME and TIMEZONE OFFSET values in the same
column, preserving the forward slash to demarcate these two values. The DURATION values are to be split into a
separate column:

Transformation Name Split by delimiter

Parameter: Column column2

Copyright © 2022 Trifacta Inc. Page #155

Parameter: Option By delimiter

Parameter: Delimiter '/'

Parameter: Start to split `/(-{digit}|{digit})`
after

The above uses Patterns , which are simplified versions of regular expressions for matching patterns.
In this case, the expression is the following:

`/(-{digit}|{digit})`

For the Start to split after value, the above indicates that the application should start to look for
matches on the delimiter (forward slash) only after the above pattern has been detected in the
column values.
In this case, the pattern describes values that appear after a forward slash and could be a negative
digit or a positive digit, which matches the pattern for the TIMEZONE OFFSET values in the column.
For more information on how to use Patterns , see Text Matching.

Since you are splitting the column into two columns, you do not need to specify the number of new
columns to create. The default is 1.

Split column by multiple delimiters

After splitting column3, the data resembled the following:

column3

DATETTIME/TIMEZONE
OFFSET

2014-12-12T00:06:13/-5

2014-12-12T02:27:26/-5

2014-12-12T03:24:20/-5

Suppose you want to break down the components of this date-time data into separate columns for year, month,
day, hour, minute, second, and offset. The following could be use to do so:

Transformation Name Split by delimiter

Parameter: Column column2

Parameter: Option By multiple delimiters

Parameter: Delimiter 1 '-'

Parameter: Delimiter 2 '-'

Parameter: Delimiter 3 'T'

Parameter: Delimiter 4 ':'

Parameter: Delimiter 5 ':'

Parameter: Delimiter 6 '/'

Each delimiter is entered on a separate row.
Delimiters are processed in the listed order.

Copyright © 2022 Trifacta Inc. Page #156

Split column between delimiters

Suppose that for column4, you want to split the column such that the middle part section is removed. You could
use the previous transformation and then delete the middle column. You can also use the following
transformation, which identifies that starting and editing delimiters that demarcate the separator between fields,
effectively removing the middle column:

Transformation Name Split by delimiter

Parameter: Column column4

Parameter: Option By two delimiters

Parameter: Start delimiter ':'

Parameter: Include as part of Selected
split

Parameter: End delimiter '^'

Parameter: Include as part of Selected
split

The separator between the columns is all of the content between the forward slashes. This content is
removed from the dataset.
The two selected options include the forward slashes as part of the separator, which removes them from
the dataset.

Split by Position

You can also perform column splits based on numerical positions in column values. These splitting options are
useful for highly regular data that is of consistent length.

Tip: When specifying numeric positions, you do not have to list the positions in numeric order. You can
now do faster iteration since you can add new positions as needed when previewing the transformation.

Suppose you have the following coordination information in three dimensions (x, y, and z). Note that the data is
very regular, with leading zeroes for values that are less than 1000.

column1

POSXPOSYPOSZ

000100040001

012405210555

100220046554

202056789011

379274329832

Split column by positions

The above data could be split based on positions within a column's value:

Transformation Name Split by character position

Parameter: Column column1

Copyright © 2022 Trifacta Inc. Page #157

Parameter: Option By positions

Parameter: Position 1 4

Parameter: Position 2 8

Results:

column2 column3 column4

POSX POSY POSZ

0001 0004 0001

0124 0521 0555

1002 2004 6554

2020 5678 9011

3792 7432 9832

Split columns between positions

Suppose that you wish to split the above source data such that the middle column is removed:

Transformation Name Split by character position

Parameter: Column column1

Parameter: Option Between two positions

Parameter: Position 1 4

Parameter: Position 2 8

Results:

column2 column3

POSX POSZ

0001 0001

0124 0555

1002 6554

2020 9011

3792 9832

Split column at regular interval

The above transformation could be simplified even further, since the splits happen at regular intervals:

Transformation Name Split by character position

Parameter: Column column1

Parameter: Option At regular interval

Parameter: Interval 4

Parameter: Number of times to 2

Copyright © 2022 Trifacta Inc. Page #158

split

Results:

The results would be the same as the first example.

Encoding Issues

If you are attempting to split columns based on non-ASCII characters that appear in the dataset, your
transformations may fail.

In these cases, you should change the encoding that is applied to the dataset.

Steps:

1. In the Import Data page, select the dataset to import.
2. When the dataset card appears in the right column, click the Edit Settings link.
3. From the drop-down, select a more appropriate encoding to apply to the file.
4. Import the data and wrangle.
5. Try your split transformation on the dataset.

Splitting Rows

When a dataset is imported, the application attempts to split the data into individual rows, based on any available
end of line delimiters. This transformation is performed automatically and is not included in your initial set of
steps.

If the data is not consistently formatted, the rows may not be properly split. If so, you can disable the automatic
splitting of rows.

Steps:

1. In the Import Data page, select the dataset to import.
2. When the dataset card appears in the right column, click the Edit Settings link.
3. Deselect the Detect Structure checkbox.
4. Import the data and wrangle.

The steps used to detect structure are listed as the first steps of your recipe, which allows you to modify them as
needed.

Copyright © 2022 Trifacta Inc. Page #159

Move Columns
Contents:

Cut and Paste Columns
Move using Column Menus
Move using Column Icons
Move using Transform Builder

Move multiple columns
Move range of columns
Move set of columns

Move using RapidTarget

You can move or reorder individual columns or multiple columns through multiple methods.

Cut and Paste Columns

To move an individual column or multiple columns, perform the following:

Steps:

1. Select an individual column or select multiple columns. For example, select Column B and select Cut from
the column menu.

2. Navigate to the location where you want to paste the column then select Paste > (Paste before or Paste
after) from the column menu.

In the following example, you can see what happens when Column B is moved after Column D.

Source:

Column A Column B Column C Column D

Cell A.1 Cell B.1 Cell C.1 Cell D.1

Cell A. 2 Cell B.2 Cell C.2 Cell D.2

Results:

Column A Column C Column D Column B

Cell A.1 Cell C.1 Cell D.1 Cell B.1

Cell A. 2 Cell C.2 Cell D.2 Cell B.2

Move using Column Menus

You can use the Move option from the drop-down caret of the column context menu to move an individual
column or multiple columns.

To move an individual column or multiple columns, perform the following:

Steps:

1. To select an individual column, click its column header. To select multiple columns:
a. You can SHIFT-click a range of columns.

Copyright © 2022 Trifacta Inc. Page #160

b. To select multiple discrete columns, press CTRL COMMAND + click./
2. Select Move from the column menu of one of the selected columns. Choose one of the following options to

move a column:

to beginning: Moves the column to the beginning of the dataset.
to end: Moves the column to the end of the dataset.
after/before: Moves the column either before or after the specified columns of the dataset.

The specified transformation is displayed in the Transform Builder. For example, the following transformation
moves Column A just after Column C:

The Column(s) option defines the method by which you specify the set of columns. In this case, Multiple simply
means that you specify each column one after another in the transformation. To add this step to your recipe, click
Add. The columns are moved.

Tip: You can use suggestion cards to explore and select the appropriate transformation to move the columns.
For more information on suggestions, see Explore Suggestions.

Move using Column Icons

Select the Column View icon in the Transformer bar to move columns in the Column Browser panel.

To move an individual column or multiple columns, perform the following:

Steps:

1. When you select an individual column or multiple columns, you are prompted with a set of suggestions.
2. Select the appropriate suggestion from the suggestion cards.
3. Edit or Add the steps, as required to move columns. For more information, see below examples.

Move using Transform Builder

In the Transform Builder, you can select one or more columns to move using finer-grained controls.

To move an individual column or multiple columns, perform the following:

Steps:

1. Enter Move columns in the Search panel of the Transform Builder.
2. Select an individual column or multiple columns, as required. The following options are available when

specifying one or more columns in a transformation:
Multiple: Select one or more columns from the drop-down list. See below example.
Range: Specify a start column and ending column. All columns inclusive are selected. See below
example.
Advanced: Specify the columns using a comma-separated list. You can combine multiple and
range options under Advanced. Ranges of columns can be specified using the tilde (~) character. S
ee below example.

3. Select the required option from the Option drop-down list.
4. Select the required column to move after or before the column.
5. Click Add. The selected columns are moved based on your inputs.

Move multiple columns

This example moves two discrete columns (Column A and ColumnC), before Column E. These columns are not
next to each other, so they can be specified using the Multiple column(s) option.

Source:

Copyright © 2022 Trifacta Inc. Page #161

Column A Column B Column C Column D Column E

Cell A.1 Cell B.1 Cell C.1 Cell D.1 Cell E.1

Cell A. 2 Cell B.2 Cell C.2 Cell D.2 Cell E. 2

Transformation:

Transformation Name Move Columns

Parameter: Column(s) Multiple

Parameter: Column A, C

Parameter: Option Before

Parameter: Column E

Results:

Column B Column D Column A Column C Column E

Cell B.1 Cell D.1 Cell A.1 Cell C.1 Cell E.1

Cell B.2 Cell D. 2 Cell A.2 Cell C.2 Cell E.2

Move range of columns

You can move a range of columns to a specified location. For example, you can move Column A through Colum
n C after Column D.

Source:

Column A Column B Column C Column D

Cell A.1 Cell B.1 Cell C.1 Cell D.1

Cell A. 2 Cell B.2 Cell C.2 Cell D.2

Transformation:

Transformation Name Move Columns

Parameter: Column(s) Range

Parameter: Column A~C

Parameter: Option After

Parameter: Column D

Results:

Column D Column A Column B Column C

Cell D.1 Cell A.1 Cell B.1 Cell C.1

Cell D. 2 Cell A.2 Cell B.2 Cell C.2

Copyright © 2022 Trifacta Inc. Page #162

Move set of columns

Using the Advanced option, you can move combinations of column ranges and discrete columns to a new
location. In the following example, ColumnA through ColumnC and ColumnE are moved after ColumnF:

Source:

Column A Column B Column C Column D Column E Column F

Cell A.1 Cell B.1 Cell C.1 Cell D.1 Cell E.1 Cell F.1

Cell A. 2 Cell B.2 Cell C.2 Cell D.2 Cell E.2 Cell F.2

Transformation:

In the transformation, you select the Advanced column(s) option where you can specify columns on a single line.

Tip: The tilde character (~) can be used to specify the range of columns between two listed columns.
Ranges and individual columns should be separated by a comma.

ColumnA~ColumnC,ColumnE

Transformation Name Move Columns

Parameter: Column(s) Advanced

Parameter: Column A~C, E

Parameter: Option After

Parameter: Column F

Results:

Column D Column F Column A Column B Column C Column E

Cell D.1 Column F.1 Cell A.1 Cell B.1 Cell C.1 Cell E.1

Cell D.2 Column F.2 Cell A.2 Cell B.2 Cell C.2 Cell E.2

For more information, see Column Reference Syntax.

Move using RapidTarget

RapidTarget allows you to associate a target set of columns with your recipe. When you specified a target, you
can often reposition your source columns with the targets by clicking in the interface. For more information, see
Overview of RapidTarget.

Copyright © 2022 Trifacta Inc. Page #163

Delete Data
Contents:

Delete Columns
By selection
Through transformation

Delete Rows
By selection
By custom conditions

A key task in cleaning up your data is to remove unwanted columns and rows, which can simplify future
transformations and improve job execution performance. Trifacta® provides multiple mechanisms for removing
data from your dataset.

Tip: When you are deleting data, you should consider if that data may have other uses in the future or for
other users. If so, you should consider doing the data removal through a separate recipe off of your
current recipe, which preserves the data for other uses in the current recipe.

Delete Columns

You can delete one or more columns based on the following:

By selection
Through transformation

Tip: When you delete through transformation steps, you have additional controls at your disposal.

By selection

You can delete a single column or multiple columns:

To delete a column from your dataset, click the column and select Delete from the column drop-down.
If you select Delete others, all other remaining columns are deleted except the selected column.

Tip: To delete multiple columns, select them in the data grid or column browser. Then select Delete from
the column menu.

The column or columns are removed from the data grid, and a new step is added to your recipe.

Through transformation

You can delete columns through the transformation steps.

Steps:

1. In the Transformer page, click Delete columns.
2. The Delete columns transformation is populated in the Transformer Builder.
3. Select one or more columns, as required:

a. Multiple: Select one or more columns from the drop-down list.
b. All: Select all columns in the dataset.

Copyright © 2022 Trifacta Inc. Page #164

NOTE: This step removes all columns in your dataset.

c. Range: Specify a start and ending columns. All columns inclusive of start and end are deleted.
d. Advanced: Specify the columns using a comma-separated list. Ranges of columns can be

specified using the tilde (~) character. Examples:

Entry Description

Store_Nbr ~ Daily Columns from Store_Nbr to Daily in the dataset are deleted.

Store_Name,Store_Manager, The following columns are deleted: Store_Name Store_Manag
Store_Nbr ~ Daily er Store_Nbr to Daily

4. From the Action area, select one of the following options:
a. Delete selected columns: Deletes only the selected columns.
b. Delete unselected columns: Deletes all other remaining columns except the selected columns.

5. To delete columns, click Add.

Example transformation:

The following transformation deletes the columns between Store_Nbr and Daily, inclusive.

Transformation Name Delete columns

Parameter: Columns Advanced

Parameter: Column Store_Nbr~Daily

Parameter: Action Delete selected columns

Delete Rows

Since rows do not have an identifying header, you must identify the rows to remove in your dataset based on a
specified condition. You can delete rows based on the following:

By selection
By custom conditions

By selection

You can delete rows by selecting values. You are prompted for data filtering suggestions when you select values
in:

column histograms
column data quality bars
cells or values within a cell

When you make a selection, select the Delete rows transformation in the context panel. The Transform Builder
contains a transformation to filter rows based on the the condition that you have selected. For example, if you
selected the value California in the State column, then the transformation is specified to filter out rows in
which State=California.

In the Transform Builder, you must decide if the transformation keeps matching rows (deleting all others) or
deletes matching rows. In the following example, rows in which State=California are selected for deletion:

Transformation Name Filter rows

Copyright © 2022 Trifacta Inc. Page #165

Parameter: Condition Custom formula

Parameter: Type of formula Custom single

Parameter: Condition State == "California"

Parameter: Action Delete matching rows

By custom conditions

You can delete a set of rows based on a condition specified in the condition column . If the conditional
expression is true , then the selected rows are deleted.

1. In the Transformer page, click the Recipe icon. The Recipe panel is displayed.
2. In the Search Transformations panel, enter Filter in.
3. In the Filter rows transformation, enter the required details:

a. Condition: Filter based on the condition type that you select in the drop-down. Some condition
types do not support specifying the condition by formula.

b. Column: The column containing the values to filter. For example, action_count.
c. Values or Formula: Specify the values or the formula used to determine the condition.

i. If these values are present, then the condition evaluates to true.
ii. The formula must evaluate to true or false.

d. Action: The action to be performed to the rows based on the specified conditions.
e. In the following example, the rows where the action_count column values fall between 1 and 10

are deleted:

Transformation Name Filter rows

Parameter: Condition Custom formula

Parameter: Type of formula Custom single

Parameter: Condition (action_count >= 1) && (action_count <= 10)

Parameter: Action Delete matching rows

Tip: You can apply logical operators such as && (logical AND) above to build more
sophisticated logical tests.

4. To add the recipe to the step, click Add. The dataset rows are filtered based on the configured
transformation.

Copyright © 2022 Trifacta Inc. Page #166

Select
You can completely replace the columns in your dataset by selecting source columns, functions computed from
the source, and constant values.

NOTE: This transformation completely replaces the existing table, which could have significant effects on
any downstream recipes or reference datasets that already exist.

Create Your Table

Steps:

1. In the Transformer page, open the Recipe panel.
2. In the recipe, locate the step where you wish to insert the transformation to create your new table.

NOTE: If your Create Table transformation renames or omits columns, references to them later in
your recipe or in other downstream objects may be broken.

3. In the search bar, enter Select. Choose the transformation.
4. In the Transform Builder, you can create the columns in order for your new table. For each column:

a. In the upper field, enter the source of the column. The source can be one of the following:
i. A column name in your source
ii. A function. Example:

POW(myBaseVal,5)

NOTE: When creating a table, aggregate and window functions are not supported.
After you have created your table, you can apply these functions are normal.

iii. A constant value. Example:

'valid'

b. In the lower field, you enter a name for the column in the new table.
5. To add a new column, click Add. Repeat the previous steps.

a. You can remove columns, if needed. Click Remove next to the column entry.
6. To create the new table when you've specified your columns, click Add.

The new table replaces your previous set of columns.

Tip: After you have created your new table, you can disable or delete the step to revert to the previous
state.

Use RapidTarget

This transformation is added to your recipe when you perform column matching between your source dataset and
a target schema. The results of your column matching work are rendered as a single Create Table transformation
in your recipe.

Tip: If you have a target schema to which you can assign to your recipe, you may find it easier to create
your new table using RapidTarget, which provides a visual interface for performing these remappings.

Copyright © 2022 Trifacta Inc. Page #167

NOTE: RapidTarget does not support inserting columns containing constants or generated by functions.
You can insert those column as a later step.

For more information, see Overview of RapidTarget.

Copyright © 2022 Trifacta Inc. Page #168

Create Aggregations
Contents:

Limitations
Example Data
Aggregating across all rows (no grouping)
Aggregate grouped-by rows
Generate new aggregation table

You can apply aggregate functions to groups of values in one or more columns to generate aggregated data.
Depending on how you configure the Group By transformation, the output of these transformations is a new table
or one or more columns in the current dataset.

Limitations

The Group By transformation does not support nested expressions. You cannot insert multiple nested
expressions in your computed value.
The Group By transformation supports aggregation functions only.

Example Data

The following table contains test score data from a set of students for four separate tests, spread over two days:

Student TestDate TestNum TestScore

Anna 09/08/2018 1 84

Ben 09/08/2018 1 71

Caleb 09/08/2018 1 76

Danielle 09/08/2018 1 87

Anna 09/08/2018 2 92

Ben 09/08/2018 2 86

Caleb 09/08/2018 2 99

Danielle 09/08/2018 2 73

Anna 09/15/2018 3 86

Ben 09/15/2018 3 99

Caleb 09/15/2018 3 86

Danielle 09/15/2018 3 80

Anna 09/15/2018 4 85

Ben 09/15/2018 4 87

Caleb 09/15/2018 4 79

Danielle 09/15/2018 4 93

Aggregating across all rows (no grouping)

You can perform basic computations across all rows of the dataset. For example, the following transformation
creates a new column containing the average test score for all students:

Copyright © 2022 Trifacta Inc. Page #169

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula ROUND(AVERAGE(Score),2)

Parameter: New column avg_TestScore
name

The above results in a new column called, average_TestScore, containing the single value 85.19, which is
the average of all students' test scores rounded to two decimal places.

NOTE: These types of aggregations are known as flat aggregations. In larger datasets, performing flat
aggregations can be computationally intensive. Be careful in computing any aggregation functions across
a large number of rows.

Aggregate grouped-by rows

For the above example data, suppose you are interested in the average score for each student. In this case, you
must compute the average (AVERAGE(TestScore)) for each student.

In the previous transformation, you used the New Formula transformation. When you are computing aggregations
across groups of values in a column, you must use the Group By transformation:

Transformation Name Group By

Parameter: Group By Student

Parameter: Values AVERAGE(TestScore)

Parameter: Type Group by as new column(s)

Note that the above transformation does not contain the rounding function. Nested expressions are not supported
in the Group By transformation. To round the values, add the following transformation as the next step:

Transformation Name Edit column with formula

Parameter: Columns average_TestScore

Parameter: Formula ROUND(average_TestScore,2)

You may wish to rename the newly generated column to something like average_TestScorePerStudent
instead.

The output data should look like the following:

Student TestDate TestNum TestScore average_TestScorePerStudent average_TestScore

Anna 09/08/2018 1 84 86.75 85.19

Ben 09/08/2018 1 71 85.75 85.19

Caleb 09/08/2018 1 76 85 85.19

Danielle 09/08/2018 1 87 83.25 85.19

Anna 09/08/2018 2 92 86.75 85.19

Ben 09/08/2018 2 86 85.75 85.19

Caleb 09/08/2018 2 99 85 85.19

Copyright © 2022 Trifacta Inc. Page #170

Danielle 09/08/2018 2 73 83.25 85.19

Anna 09/15/2018 3 86 86.75 85.19

Ben 09/15/2018 3 99 85.75 85.19

Caleb 09/15/2018 3 86 85 85.19

Danielle 09/15/2018 3 80 83.25 85.19

Anna 09/15/2018 4 85 86.75 85.19

Ben 09/15/2018 4 87 85.75 85.19

Caleb 09/15/2018 4 79 85 85.19

Danielle 09/15/2018 4 93 83.25 85.19

Generate new aggregation table

Suppose you wish to calculate the minimum, maximum, and average scores for each test. In this case, it may be
more useful to create a new table in which the student names have been removed:

Transformation Name Group By

Parameter: Group By TestNum

Parameter: Values1 MAX(TestScore)

Parameter: Values2 MIN(TestScore)

Parameter: Values3 AVERAGE(TestScore)

Parameter: Type Group by as new table

The resulting data looks like the following:

TestNum max_TestScore min_TestScore average_TestScore

1 87 71 79.5

2 99 73 87.5

3 99 80 87.75

4 93 79 86

Tip: In this case, when you replace the existing table with a completely new table, data that is not
included in the aggregation is lost. You can add columns to the list of values if you wish to bring forward
untouched columns into the new table. You may also consider building aggregation tables in a recipe that
is extended from the previous recipe, so that you can continue to work with the other columns in your
dataset.

Copyright © 2022 Trifacta Inc. Page #171

Nest Your Data
In Trifacta®, you can nest columns into arrays and objects (maps) using a variety of transformations.

Nest Columns into Array

This section provides simple examples of nesting columns into Arrays by extracting values from a column or
nesting one or more columns into an Array column.

Create by extraction:

You can create an array of values by extracting pattern-based values from a specified column. The following
transformation extracts from the msg column a list of all values where all letters are capitalized and places them
into the new acronyms column:

Transformation Name Extract matches into Array

Parameter: Column msg

Parameter: Pattern matching `{upper}+`
elements in the list

Parameter: New column name acronyms

msg acronyms

SCUBA, IMHO, is the greatest sport in the world. ["SCUBA","IMHO"]

 []

LOL, that assignment you finished is DOA. You need to fix it PDQ. ["LOL","DOA","Y","PDQ"]

Notes:

An empty input column value renders an empty array.
In the final row, the Pattern matches on the "Y" value. To fix this, you can change the Pattern matching
value to the following, which matches on two or more uppercase letters in a row:

`{upper}{upper}+`

Create by nesting:

You can create arrays by nesting together the values from multiple columns:

num1 num2 num3

11 12 13

14 15 16

17 18 19

You can nest the values in num1 and num2 into a single array and then to nest the array with num3:

NOTE: If you are nesting a multi-level array, you should nest from the lowest level to the top level.

Transformation Name Nest columns into Objects

Copyright © 2022 Trifacta Inc. Page #172

Parameter: Columns1 num1

Parameter: Columns2 num2

Parameter: Nest columns to Array

Parameter: New column nest1
name

Then, you can perform the nesting of the top-level elements:

NOTE: The order in which you list the columns to nest determines the order in which the elements
appear in the generated array.

Transformation Name Nest columns into Objects

Parameter: Columns1 nest1

Parameter: Columns2 num3

Parameter: Nest columns to Array

Parameter: New column nest2
name

In the generated columns, you notice that all values are quoted, even though these values are integers.

NOTE: Elements that are generated into arrays using a nest transformation are always rendered as
quoted values.

You can use the following transformation to remove the quotes from the nest2 column:

Transformation Name Replace text or patterns

Parameter: Column nest2

Parameter: Find '"'

Parameter: Replace (empty)

Parameter: Match all true
occurrences

num1 num2 num3 nest2

11 12 13 [[11,12],13]

14 15 16 [[14,15],16]

17 18 19 [[17,18],19]

Nest Columns into Objects

You can nest multiple columns into a single column of objects using nest transform.

This section provides a simple example of nesting columns into a new column of Object data type.

Source:

Copyright © 2022 Trifacta Inc. Page #173

In the following example, furniture product dimensions are stored in separate columns in cm.

Category Name Length_cm Width_cm Height_cm

bench Hooska 118.11 74.93 46.34

lamp Tansk 30.48 30.48 165.1

bookshelf Brock 27.94 160.02 201.93

couch Loafy 95 227 83

Transformation:

Use the nest transform to bundle the data into a single column.

Transformation Name Nest columns into Objects

Parameter: Columns Length_cm,Width_cm,Height_cm

Parameter: Nest columns to Object

Parameter: New column 'Dimensions'
name

Results:

Category Name Length_cm Width_cm Height_cm Dimensions

bench Hooska 118.11 74.93 46.34 {"Length_cm":"118.11","Width_cm":"74.93","Height_cm":"46.34"}

lamp Tansk 30.48 30.48 165.1 {"Length_cm":"30.48","Width_cm":"30.48","Height_cm":"165.1"}

bookshelf Brock 27.94 160.02 201.93 {"Length_cm":"27.94","Width_cm":"160.02","Height_cm":"201.93"}

couch Loafy 95 227 83 {"Length_cm":"95,"Width_cm":"227","Height_cm":"83"}

Copyright © 2022 Trifacta Inc. Page #174

Unnest Your Data
Contents:

Flatten Array Values into Rows
Unnest Array Values into New Columns
Flatten and Unnest Together
Unnest Object Values into New Columns
Extract a Set of Values

You can unnest Array or Object values into separate rows or columns using the following transformations.

Flatten Array Values into Rows

Array values can be flattened into individual values in separate rows.

This section describes how to flatten the values in an Array into separate rows in your dataset.

Source:

In the following example dataset, students took the same test three times, and their scores were stored in any
array in the Scores column.

LastName FirstName Scores

Adams Allen [81,87,83,79]

Burns Bonnie [98,94,92,85]

Cannon Chris [88,81,85,78]

Transformation:

When the data is imported, you might have to re-type the Scores column as an array:

Transformation Name Change column data type

Parameter: Columns Scores

Parameter: New type Array

You can now flatten the Scores column data into separate rows:

Transformation Name Expand Array into rows

Parameter: Column Scores

Results:

LastName FirstName Scores

Adams Allen 81

Adams Allen 87

Adams Allen 83

Copyright © 2022 Trifacta Inc. Page #175

Adams Allen 79

Burns Bonnie 98

Burns Bonnie 94

Burns Bonnie 92

Burns Bonnie 85

Cannon Chris 88

Cannon Chris 81

Cannon Chris 85

Cannon Chris 78

Tip: You can use aggregation functions on the above data to complete values like average, minimum,
and maximum scores. When these aggregation calculations are grouped by student, you can perform the
calculations for each student.

Unnest Array Values into New Columns

You can also split out the individual values in an array into separate columns.

This section describes how to unnest the values in an Array into separate columns in your dataset.

Source:

In the following example dataset, students took the same test three times, and their scores were stored in any
array in the Scores column.

LastName FirstName Scores

Adams Allen [81,87,83,79]

Burns Bonnie [98,94,92,85]

Cannon Chris [88,81,85,78]

Transformation:

When the data is imported, you might have to re-type the Scores column as an array:

Transformation Name Change column data type

Parameter: Columns Scores

Parameter: New type Array

You can now unnest the Scores column data into separate columns:

Transformation Name Unnest Objects into columns

Parameter: Column Scores

Parameter: Parameter: Paths to [0]
elements

Parameter: Parameter: Paths to [1]
elements

Copyright © 2022 Trifacta Inc. Page #176

Parameter: Parameter: Paths to [2]
elements

Parameter: Parameter: Paths to [3]
elements

Parameter: Remove elements true
from original

Parameter: Include original true
column name

In the above transformation:

Each path is specified in a separate row.
The [x] syntax indicates that the path is the xth element of the array.
The first element of an array is referenced using [0].

You can choose to delete the element from the original or not. Deleting the element can be a helpful way
of debugging your transformation. If all of the elements are gone, then the transformation is complete.
If you include the original column name in the output column names, you have some contextual
information for the outputs.

Results:

LastName FirstName Scores_0 Scores_1 Scores_2 Scores_3

Adams Allen 81 87 83 79

Burns Bonnie 98 94 92 85

Cannon Chris 88 81 85 78

Flatten and Unnest Together

The following example illustrates how flatten and unnest can be used together to reshape your data.

This example illustrates you to use the flatten and unnest transforms.

Source:

You have the following data on student test scores. Scores on individual scores are stored in the Scores array,
and you need to be able to track each test on a uniquely identifiable row. This example has two goals:

1. One row for each student test
2. Unique identifier for each student-score combination

LastName FirstName Scores

Adams Allen [81,87,83,79]

Burns Bonnie [98,94,92,85]

Cannon Charles [88,81,85,78]

Transformation:

When the data is imported from CSV format, you must add a header transform and remove the quotes from the S
cores column:

Transformation Name Rename column with row(s)

Copyright © 2022 Trifacta Inc. Page #177

Parameter: Option Use row(s) as column names

Parameter: Type Use a single row to name columns

Parameter: Row number 1

Transformation Name Replace text or pattern

Parameter: Column colScores

Parameter: Find '\"'

Parameter: Replace with ''

Parameter: Match all true
occurrences

Validate test date: To begin, you might want to check to see if you have the proper number of test scores for
each student. You can use the following transform to calculate the difference between the expected number of
elements in the Scores array (4) and the actual number:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula (4 - arraylen(Scores))

Parameter: New column 'numMissingTests'
name

When the transform is previewed, you can see in the sample dataset that all tests are included. You might or
might not want to include this column in the final dataset, as you might identify missing tests when the recipe is
run at scale.

Unique row identifier: The Scores array must be broken out into individual rows for each test. However, there
is no unique identifier for the row to track individual tests. In theory, you could use the combination of LastName-
FirstName-Scores values to do so, but if a student recorded the same score twice, your dataset has duplicate
rows. In the following transform, you create a parallel array called Tests, which contains an index array for the
number of values in the Scores column. Index values start at 0:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula range(0,arraylen(Scores))

Parameter: New column 'Tests'
name

Also, we will want to create an identifier for the source row using the sourcerownumber function:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula sourcerownumber()

Parameter: New column 'orderIndex'
name

Copyright © 2022 Trifacta Inc. Page #178

One row for each student test: Your data should look like the following:

LastName FirstName Scores Tests orderIndex

Adams Allen [81,87,83,79] [0,1,2,3] 2

Burns Bonnie [98,94,92,85] [0,1,2,3] 3

Cannon Charles [88,81,85,78] [0,1,2,3] 4

Now, you want to bring together the Tests and Scores arrays into a single nested array using the arrayzip fun
ction:

Transformation Name New formula

Parameter: Formula Single row formula
type

Parameter: Formula arrayzip([Tests,Scores])

Your dataset has been changed:

LastName FirstName Scores Tests orderIndex column1

Adams Allen [81,87,83,79] [0,1,2,3] 2 [[0,81],[1,87],[2,83],[3,79]]

Adams Bonnie [98,94,92,85] [0,1,2,3] 3 [[0,98],[1,94],[2,92],[3,85]]

Cannon Charles [88,81,85,78] [0,1,2,3] 4 [[0,88],[1,81],[2,85],[3,78]]

Use the following to unpack the nested array:

Transformation Name Expand arrays to rows

Parameter: Column column1

Each test-score combination is now broken out into a separate row. The nested Test-Score combinations must
be broken out into separate columns using the following:

Transformation Name Unnest Objects into columns

Parameter: Column column1

Parameter: Paths to elements '[0]','[1]'

After you delete column1, which is no longer needed you should rename the two generated columns:

Transformation Name Rename columns

Parameter: Option Manual rename

Parameter: Column column_0

Parameter: New column 'TestNum'
name

Transformation Name Rename columns

Parameter: Option Manual rename

Parameter: Column column_1

Copyright © 2022 Trifacta Inc. Page #179

Parameter: New column 'TestScore'
name

Unique row identifier: You can do one more step to create unique test identifiers, which identify the specific test
for each student. The following uses the original row identifier OrderIndex as an identifier for the student and
the TestNumber value to create the TestId column value:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula (orderIndex * 10) + TestNum

Parameter: New column 'TestId'
name

The above are integer values. To make your identifiers look prettier, you might add the following:

Transformation Name Merge columns

Parameter: Columns 'TestId00','TestId'

Extending: You might want to generate some summary statistical information on this dataset. For example, you
might be interested in calculating each student's average test score. This step requires figuring out how to
properly group the test values. In this case, you cannot group by the LastName value, and when executed at
scale, there might be collisions between first names when this recipe is run at scale. So, you might need to create
a kind of primary key using the following:

Transformation Name Merge columns

Parameter: Columns 'LastName','FirstName'

Parameter: Separator '-'

Parameter: New column 'studentId'
name

You can now use this as a grouping parameter for your calculation:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula average(TestScore)

Parameter: Group rows by studentId

Parameter: New column 'avg_TestScore'
name

Results:

After you delete unnecessary columns and move your columns around, the dataset should look like the following:

TestId LastName FirstName TestNum TestScore studentId avg_TestScore

TestId0021 Adams Allen 0 81 Adams-Allen 82.5

TestId0022 Adams Allen 1 87 Adams-Allen 82.5

Copyright © 2022 Trifacta Inc. Page #180

TestId0023 Adams Allen 2 83 Adams-Allen 82.5

TestId0024 Adams Allen 3 79 Adams-Allen 82.5

TestId0031 Adams Bonnie 0 98 Adams-Bonnie 92.25

TestId0032 Adams Bonnie 1 94 Adams-Bonnie 92.25

TestId0033 Adams Bonnie 2 92 Adams-Bonnie 92.25

TestId0034 Adams Bonnie 3 85 Adams-Bonnie 92.25

TestId0041 Cannon Chris 0 88 Cannon-Chris 83

TestId0042 Cannon Chris 1 81 Cannon-Chris 83

TestId0043 Cannon Chris 2 85 Cannon-Chris 83

TestId0044 Cannon Chris 3 78 Cannon-Chris 83

Unnest Object Values into New Columns

This example shows how you can unnest Object data into separate columns. The example contains vehicle
identifiers, and the Properties column contains key-value pairs describing characteristics of each vehicle.

This example shows how you can unpack data nested in an Object into separate columns.

Source:

You have the following information on used cars. The VIN column contains vehicle identifiers, and the Properti
es column contains key-value pairs describing characteristics of each vehicle. You want to unpack this data into
separate columns.

VIN Properties

XX3 JT4522 year=2004,make=Subaru,model=Impreza,color=green,mileage=125422,cost=3199

HT4 UJ9122 year=2006,make=VW,model=Passat,color=silver,mileage=102941,cost=4599

KC2 WZ9231 year=2009,make=GMC,model=Yukon,color=black,mileage=68213,cost=12899

LL8 UH4921 year=2011,make=BMW,model=328i,color=brown,mileage=57212,cost=16999

Transformation:

Add the following transformation, which identifies all of the key values in the column as beginning with
alphabetical characters.

The valueafter string identifies where the corresponding value begins after the key.
The delimiter string indicates the end of each key-value pair.

Transformation Name Convert keys/values into Objects

Parameter: Column Properties

Parameter: Key `{alpha}+`

Parameter: Separator between `=`
key and value

Parameter: Delimiter between ','
pair

Copyright © 2022 Trifacta Inc. Page #181

Now that the Object of values has been created, you can use the unnest transform to unpack this mapped data.
In the following, each key is specified, which results in separate columns headed by the named key:

NOTE: Each key must be entered on a separate line in the Path to elements area.

Transformation Name Unnest Objects into columns

Parameter: Column extractkv_Properties

Parameter: Paths to elements year

Parameter: Paths to elements make

Parameter: Paths to elements model

Parameter: Paths to elements color

Parameter: Paths to elements mileage

Parameter: Paths to elements cost

Results:

When you delete the unnecessary Properties columns, the dataset now looks like the following:

VIN year make model color mileage cost

XX3 JT4522 2004 Subaru Impreza green 125422 3199

HT4 UJ9122 2006 VW Passat silver 102941 4599

KC2 WZ9231 2009 GMC Yukon black 68213 12899

LL8 UH4921 2011 BMW 328i brown 57212 16999

Extract a Set of Values

This example shows how to extract values (for example, hashtag values) from a column and convert them into a
column of arrays.

In this example, you extract one or more values from a source column and assemble them in an Array column.

Suppose you need to extract the hashtags from customer tweets to another column. In such cases, you can use
the {hashtag} Trifacta pattern to extract all hashtag values from a customer's tweets into a new column.

Source:

The following dataset contains customer tweets across different locations.

User Location Customer tweets
Name

James U.K Excited to announce that we’ve transitioned Wrangler from a hybrid desktop application to a completely cloud-
based service! #dataprep #businessintelligence #CommitToCleanData # London

Mark Berlin Learnt more about the importance of identifying issues in your data—early and often
#CommitToCleanData #predictivetransformations #realbusinessintelligence

Catheri Paris Clean data is the foundation of your analysis. Learn more about what we consider the five tenets of sound
ne #dataprep, starting with #1a prioritizing and setting targets. #startwiththeuser #realbusinessintelligence #Paris

Copyright © 2022 Trifacta Inc. Page #182

Dave New York Learn how #NewYorklife

onboarded as part of their #bigdata #dataprep initiative to unlock hidden insights and make them accessible
across departments.

Christy San How can you quickly determine the number of times a user ID appears in your data?#dataprep #pivot
Francisco #aggregation#machinelearning initiatives #SFO

Transformation:

The following transformation extracts the hashtag messages from customer tweets.

Transformation Name Extract matches into Array

Parameter: Column customer_tweets

Parameter: Pattern matching `{hashtag}`
elements in the list

Parameter: New column name Hashtag tweets

Then, the source column can be deleted.

Results:

User Name Location Hashtag tweets

James U.K ["#dataprep", "#businessintelligence", "#CommitToCleanData", " # London"]

Mark Berlin ["#CommitToCleanData", "#predictivetransformations", "#realbusinessintelligence", "0"]

Catherine Paris ["#dataprep", "#startwiththeuser","#realbusinessintelligence", "# Paris"]

Dave New York ["#NewYorklife", "dataprep", "bigdata", "0"]

Christy SanFrancisco ["dataprep", "#pivot", "#aggregation", "#machinelearning"]

Copyright © 2022 Trifacta Inc. Page #183

Pivot Data
Contents:

Building a Pivot Table
Available Aggregations
Simple Pivot Table
Conditional Aggregations
Multiple Aggregation Levels
Group By
Values to Columns

A pivot table summaries data that is sourced from another table. Using pivot tables, you can calculate
aggregating functions, such as sums, maximums, and averages for one or more columns of data.

Optionally, these sums can be performed across groups of values from one column and broken out in columns
based on the values in another. In Trifacta®, a pivot table is composed of the following basic elements:

Pivot table Description
element

Column labels List of one or more columns whose values are represented as the columns in the generated pivot table.

Row labels List of one or more columns whose values become the rows in the generated pivot table.

Values Also known as facts, these values are one or more aggregation formulas, which are calculated in the following
manner:

"Show me the value of this formula computed by each row value for every value represented in the generated
table."

NOTE: If your aggregation does not include the kind of transformation listed above, in which the data is
pivoted from rows into columns, you can use the Group By transformation and an aggregate function.
See Create Aggregations.

Building a Pivot Table

Pivot tables are very powerful tools for summarizing and visualizing large-scale volumes of data. In Trifacta,
search for pivot table in the Search panel to create one.

NOTE: A pivot table completely replaces the source table. Data that is not captured in the pivot definition
is lost.

Tip: In your flows, you may find it useful to create your pivot tables in independent recipes that are
chained from your primary recipe.

Example Data

Pivot tables are perhaps best explained by example. The following table snippet captures transactional data from
a number of stores for a range of products across a set of dates. Transactional values include total sales,
quantity, and cost (POS_Sales, POS_Qty, and POS_Cost):

Daily Store_Nbr POS_Sales POS_Qty POS_Cost PRODUCT_DESC

Copyright © 2022 Trifacta Inc. Page #184

2/8/13 1 70 7 4.97 ACME LAWN GARDEN BAG CLEAR

2/7/13 2 10.62 9 8.37 ACME COOKIES CHOC CHIP

2/7/13 2 0 0 0 ACME SANDWICH BAG

2/7/13 2 7.08 6 5.58 ACME SODAS SALTED

2/7/13 2 3.92 2 2.82 ACME SCENTED OIL REFILL-CTRY SUN

2/7/13 2 13.44 7 10.36 ACME LARGE FUDGE GRAHAMS COOKIES

2/7/13 2 0 0 0 ACME SUGAR ICE WAFERS VANILLA

2/7/13 3 3.16 2 2.86 ACME ZOO ANIMAL FRUIT SNACKS 6'S

2/7/13 3 3.16 2 2.78 ACME WAFERS SUGER ICE

2/7/13 3 3.16 2 2.82 ACME SCENTED OIL REFILL-CTRY SUN

2/7/13 3 6.32 4 5.92 ACME RICE CRACKERS ONION

2/2/13 9 150 30 16.2 ACME FROSTED OATMEAL COOKIE SQUA

2/2/13 9 3.5 2 4.86 ACME FRUIT SNACK CASTLE ADVENTRS

2/2/13 9 90 9 8.37 ACME COOKIES CHOC CHIP

2/2/13 9 30 6 3.24 ACME ASSORTED COOKIES DRP

2/2/13 9 70 7 6.51 ACME KITCHEN BAG

2/2/13 9 170 17 15.81 ACME SNACK BAGS RESEALABLE

2/2/13 9 20 4 2.16 ACME CHEDDARY SN CRACKERS/PROCES

2/2/13 9 6.5 2 8.98 ACME RICE CRACKERS TERIYAKI

2/2/13 9 1.5 3 1.62 ACME COOKIE MAPLE LEAF CREME

2/2/13 9 30 6 3.24 ACME RICE CHIPS CHEDDAR

2/1/13 7 190 38 20.52 ACME FROSTED OATMEAL COOKIE SQUA

2/1/13 7 20 2 1.86 ACME COOKIES CHOC CHIP

2/1/13 7 10 1 0.82 ACME DIGESTIVE RICH TEA BISCUITS

2/1/13 7 120 24 12.96 ACME ASSORTED COOKIES DRP

2/1/13 7 120 12 11.16 ACME KITCHEN BAG

2/1/13 7 90 9 8.37 ACME SNACK BAGS RESEALABLE

2/1/13 7 10 1 0.71 ACME FUDGE MINT COOKIES SQUARES

2/1/13 7 9.5 19 10.26 ACME CHEDDARY SN CRACKERS/PROCES

2/1/13 7 10 1 0.82 ACME COOKIES MAPLE CREAM

2/1/13 7 40 8 4.32 ACME COOKIE MAPLE LEAF CREME

Available Aggregations

The Pivot data transformation supports use of any aggregation function. For more information, see
Aggregate Functions.

Simple Pivot Table

From the above, suppose you are interested in the sales from each store for each product. You can use the
following transformation to compute these aggregated calculations:

Transformation Name Pivot table

Copyright © 2022 Trifacta Inc. Page #185

Parameter: Column labels Store_Nbr

Parameter: Row labels PRODUCT_DESC

Parameter: Values SUM(POS_Sales)

Parameter: Max number of 500
columns to create

In the above transformation:

The Column labels entry specifies the column whose values make up the calculated columns of the pivot
table. The calculation is performed across each of these values. In this case, each column contains
calculations for separate store numbers.
The Row labels entry specifies the column whose values define the grouping of the calculations. In this
case, the sum of the sales column is performed for each product description value for each store.
The Values entry specifies the aggregation function to compute for each cell in the new table. In this case,
you are generating the sum of sales for each product description in each store.
By default, this transformation generates a maximum of 50 new columns. However, if the column used for
your Column labels contains more than 50 values, you may want to raise this value.

NOTE: Avoid creating datasets wider than 2500 columns. Very wide datasets can cause
performance degradation.

Results:

PRODUCT_DESC sum_POS_Sales_1 sum_POS_Sales_2 sum_POS_Sales_3 sum_POS_Sales_7 sum_POS_Sales_9

ACME LAWN 70 0 0 0 0
GARDEN BAG
CLEAR

ACME COOKIES 0 10.62 0 20 90
CHOC CHIP

ACME SANDWICH 0 0 0 0 0
BAG

ACME SODAS 0 7.08 0 0 0
SALTED

ACME SCENTED 0 3.92 3.16 0 0
OIL REFILL-CTRY
SUN

ACME LARGE 0 13.44 0 0 0
FUDGE GRAHAMS
COOKIES

ACME SUGAR ICE 0 0 0 0 0
WAFERS VANILLA

ACME ZOO 0 0 3.16 0 0
ANIMAL FRUIT
SNACKS 6'S

ACME WAFERS 0 0 3.16 0 0
SUGER ICE

ACME RICE 0 0 6.32 0 0
CRACKERS ONION

ACME FROSTED 0 0 0 190 150
OATMEAL COOKIE
SQUA

ACME FRUIT 0 0 0 0 3.5
SNACK CASTLE
ADVENTRS

Copyright © 2022 Trifacta Inc. Page #186

ACME ASSORTED 0 0 0 120 30
COOKIES DRP

ACME KITCHEN
BAG

0 0 0 120 70

ACME SNACK
BAGS
RESEALABLE

0 0 0 90 170

ACME CHEDDARY
SN CRACKERS
/PROCES

0 0 0 9.5 20

ACME RICE
CRACKERS
TERIYAKI

0 0 0 0 6.5

ACME COOKIE
MAPLE LEAF
CREME

0 0 0 40 1.5

ACME RICE CHIPS
CHEDDAR

0 0 0 0 30

ACME DIGESTIVE
RICH TEA
BISCUITS

0 0 0 10 0

ACME FUDGE
MINT COOKIES
SQUARES

0 0 0 10 0

ACME COOKIES
MAPLE CREAM

0 0 0 10 0

Conditional Aggregations

Suppose you are interested in only in the sum of sales for store numbers 1-3. To capture a more limited dataset,
you can use the SUMIF aggregation function:

Transformation Name Pivot table

Parameter: Row labels PRODUCT_DESC

Parameter: Values SUMIF(POS_Sales, Store_Nbr<4)

Parameter: Max number of 500
columns to create

Most aggregation functions have a conditional (*IF) variant.

Multiple Aggregation Levels

None of the axes of a pivot table is limited to a single dimension. You can have multiple Column labels, Row
labels, and Values (formulas). In the following transformation, aggregations have been further broken out by date,
and an additional formula (Value) has been added.

NOTE: Adding multiple Column labels and Values can greatly expand the width of the dataset. Generally,
adding Row labels does not expand the total count of rows.

Transformation Name Pivot table

Copyright © 2022 Trifacta Inc. Page #187

Parameter: Column labels Store_Nbr

Parameter: Row labels1 Date

Parameter: Row labels2 PRODUCT_DESC

Parameter: Values1 SUM(POS_Qty)

Parameter: Values2 SUM(POS_Sales)

Parameter: Max number of 500
columns to create

Results:

NOTE: Following results table is incomplete. Some columns have been omitted for space reasons.

Daily PRODUCT_DESC sum_POS_Qty_1 sum_POS_Sales_1 sum_POS_Qty_2 sum_POS_Sales_2 sum_POS_Qty_3

2/8/13 ACME LAWN
GARDEN BAG
CLEAR

7 70 0 0 0

2/7/13 ACME COOKIES
CHOC CHIP

0 0 9 10.62 0

2/7/13 ACME SANDWICH
BAG

0 0 0 0 0

2/7/13 ACME SODAS
SALTED

0 0 6 7.08 0

2/7/13 ACME SCENTED
OIL REFILL-CTRY
SUN

0 0 2 3.92 2

2/7/13 ACME LARGE
FUDGE GRAHAMS
COOKIES

0 0 7 13.44 0

2/7/13 ACME SUGAR ICE
WAFERS VANILLA

0 0 0 0 0

2/7/13 ACME ZOO
ANIMAL FRUIT
SNACKS 6'S

0 0 0 0 2

2/7/13 ACME WAFERS
SUGER ICE

0 0 0 0 2

2/7/13 ACME RICE
CRACKERS ONION

0 0 0 0 4

2/2/13 ACME FROSTED
OATMEAL COOKIE
SQUA

0 0 0 0 0

2/2/13 ACME FRUIT
SNACK CASTLE
ADVENTRS

0 0 0 0 0

2/2/13 ACME COOKIES
CHOC CHIP

0 0 0 0 0

2/2/13 ACME ASSORTED
COOKIES DRP

0 0 0 0 0

2/2/13 ACME KITCHEN
BAG

0 0 0 0 0

2/2/13 ACME SNACK
BAGS
RESEALABLE

0 0 0 0 0

Copyright © 2022 Trifacta Inc. Page #188

2/2/13 ACME CHEDDARY
SN CRACKERS
/PROCES

0 0 0 0 0

2/2/13 ACME RICE
CRACKERS
TERIYAKI

0 0 0 0 0

2/2/13 ACME COOKIE
MAPLE LEAF
CREME

0 0 0 0 0

2/2/13 ACME RICE CHIPS
CHEDDAR

0 0 0 0 0

2/1/13 ACME FROSTED
OATMEAL COOKIE
SQUA

0 0 0 0 0

2/1/13 ACME COOKIES
CHOC CHIP

0 0 0 0 0

2/1/13 ACME DIGESTIVE
RICH TEA
BISCUITS

0 0 0 0 0

2/1/13 ACME ASSORTED
COOKIES DRP

0 0 0 0 0

2/1/13 ACME KITCHEN
BAG

0 0 0 0 0

2/1/13 ACME SNACK
BAGS
RESEALABLE

0 0 0 0 0

2/1/13 ACME FUDGE
MINT COOKIES
SQUARES

0 0 0 0 0

2/1/13 ACME CHEDDARY
SN CRACKERS
/PROCES

0 0 0 0 0

2/1/13 ACME COOKIES
MAPLE CREAM

0 0 0 0 0

2/1/13 ACME COOKIE
MAPLE LEAF
CREME

0 0 0 0 0

Group By

If you wish to maintain the original dataset values, you can apply an aggregate function within a single column.

Values to Columns

Similar to pivot, the Convert values to columns transformation converts individual values within a column to
independent columns in the dataset. For each row, if the value represented by the column is present in the
original data, one value is added (e.g. Yes). If it's missing, another value is inserted (e.g. No).

Tip: This type of conversion can be useful for preparing data for machine learning systems. You can
convert the presence or absence of specific values in a row to 1 or 0, respectively.

In the following, the values in the Store_Nbr column have been converted to individual columns:

Transformation Name Convert values to columns

Parameter: Column Store_Nbr

Copyright © 2022 Trifacta Inc. Page #189

Parameter: Fill when present Yes

Parameter: Max number of 250
columns to create

In the above:

Fill when present identifies the string literal value to insert if the row contains the column's value (Yes).
Fill when missing identifies the string literal value to insert if the row does not contain the column's value
(empty).
Max number of columns to create places a limit on the total number of columns that the application is
permitted to create. In this case, the limit is set to 250 since the known number of stores is 250.

Tip: It's a good habit to set limits on the maximum number of columns to create. Data can become
sparse or unwieldy if limits are not considered.

Results:

Daily Store_Nbr POS_Sales POS_Qty POS_Cost PRODUCT_DESC column_1 column_2 column_3 column_9

2/8/13 1 70 7 4.97 ACME LAWN
GARDEN BAG
CLEAR

Yes

2/7/13 2 10.62 9 8.37 ACME COOKIES
CHOC CHIP

 Yes

2/7/13 2 0 0 0 ACME SANDWICH
BAG

 Yes

2/7/13 2 7.08 6 5.58 ACME SODAS
SALTED

 Yes

2/7/13 2 3.92 2 2.82 ACME SCENTED
OIL REFILL-CTRY
SUN

 Yes

2/7/13 2 13.44 7 10.36 ACME LARGE
FUDGE GRAHAMS
COOKIES

 Yes

2/7/13 2 0 0 0 ACME SUGAR ICE
WAFERS VANILLA

 Yes

2/7/13 3 3.16 2 2.86 ACME ZOO
ANIMAL FRUIT
SNACKS 6'S

 Yes

2/7/13 3 3.16 2 2.78 ACME WAFERS
SUGER ICE

 Yes

2/7/13 3 3.16 2 2.82 ACME SCENTED
OIL REFILL-CTRY
SUN

 Yes

2/7/13 3 6.32 4 5.92 ACME RICE
CRACKERS ONION

 Yes

2/2/13 9 150 30 16.2 ACME FROSTED
OATMEAL COOKIE
SQUA

 Yes

2/2/13 9 3.5 2 4.86 ACME FRUIT
SNACK CASTLE
ADVENTRS

 Yes

2/2/13 9 90 9 8.37 ACME COOKIES
CHOC CHIP

 Yes

2/2/13 9 30 6 3.24 ACME ASSORTED
COOKIES DRP

 Yes

Copyright © 2022 Trifacta Inc. Page #190

2/2/13 9 70 7 6.51 ACME KITCHEN
BAG

 Yes

2/2/13 9 170 17 15.81 ACME SNACK
BAGS
RESEALABLE

 Yes

2/2/13 9 20 4 2.16 ACME CHEDDARY
SN CRACKERS
/PROCES

 Yes

2/2/13 9 6.5 2 8.98 ACME RICE
CRACKERS
TERIYAKI

 Yes

2/2/13 9 1.5 3 1.62 ACME COOKIE
MAPLE LEAF
CREME

 Yes

2/2/13 9 30 6 3.24 ACME RICE CHIPS
CHEDDAR

 Yes

2/1/13 7 190 38 20.52 ACME FROSTED
OATMEAL COOKIE
SQUA

2/1/13 7 20 2 1.86 ACME COOKIES
CHOC CHIP

2/1/13 7 10 1 0.82 ACME DIGESTIVE
RICH TEA
BISCUITS

2/1/13 7 120 24 12.96 ACME ASSORTED
COOKIES DRP

2/1/13 7 120 12 11.16 ACME KITCHEN
BAG

2/1/13 7 90 9 8.37 ACME SNACK
BAGS
RESEALABLE

2/1/13 7 10 1 0.71 ACME FUDGE
MINT COOKIES
SQUARES

2/1/13 7 9.5 19 10.26 ACME CHEDDARY
SN CRACKERS
/PROCES

2/1/13 7 10 1 0.82 ACME COOKIES
MAPLE CREAM

2/1/13 7 40 8 4.32 ACME COOKIE
MAPLE LEAF
CREME

Copyright © 2022 Trifacta Inc. Page #191

Unpivot Columns
Contents:

Single-column Unpivot
Multi-column Unpivot

Ranges
Wildcards

You can convert columns into rows of values. A conversion transformations extracts the values from a specified
column or columns and turns the column name and each extracted value into key-value pairs.

Unpivot can be applied to one or more columns.
Often, this transformation is applied to datasets containing pivoted or aggregated data.

NOTE: Depending on the number of source columns, an unpivot operation can significantly increase the
number of rows in your dataset.

Single-column Unpivot

When you unpivot a single column of data, the column is separated into two new columns in your dataset:

New column name Values

key All values are the name of the source column.

value Each row contains one of the row values from the source column.

NOTE: These columns replace the source column in the dataset. To retain the source column, create a
copy of it first and then unpivot the copied column.

Source:

The following example contains a very simple set of data:

Name favoriteColor favoriteDessert

Anna red ice cream

Bella pink cookies

Callie blue pie

Transformation:

You can unpivot these columns one-by-one into row data:

Transformation Name Unpivot columns

Parameter: Columns favoriteColor

Parameter: Group size 1

Copyright © 2022 Trifacta Inc. Page #192

Results:

The new unpivoted columns are placed at the end of the dataset, and the source column is removed.

Name favoriteDessert key value

Anna ice cream favoriteColor red

Bella cookies favoriteColor pink

Callie pie favoriteColor blue

Multi-column Unpivot

This example turns the data from multiple columns into a single set of key-value pairs, where the key is the
column name associated with the source of the data in the value column.

Source:

The following dataset shows student test scores per test. Each row represents the scores of individual students.

StudentId test1Score test2Score test3Score

001 75 79 77

002 84 81 86

003 79 82 87

004 92 94 92

Transformation:

You can use the following transformation to turn the dataset into one row per student-test combination:

Transformation Name Unpivot columns

Parameter: Columns test1Score, test2Score, test3Score

Parameter: Group size 1

Results:

The results are as follows:

StudentId key value

001 test1Score 75

002 test2Score 79

003 test3Score 77

001 test1Score 84

002 test2Score 81

003 test3Score 86

001 test1Score 79

002 test2Score 82

003 test3Score 87

Copyright © 2022 Trifacta Inc. Page #193

001 test1Score 92

002 test2Score 94

003 test3Score 92

You can then rename the key and value columns as needed.

Ranges

You can specify a range of columns in your dataset. In the previous example, you can specify the three test score
columns using the following value in the Columns textbox:

test1Score~test3Score

All three columns are unpivoted.

Wildcards

NOTE: You can use the asterisk (*) wildcard in the Columns textbox to apply the unpivot to the entire
dataset, which generates a key and a value column, containing all column-row entries from the source
columns. However, unpivoting a large number of columns can significantly increase the number of rows
in your dataset.

Copyright © 2022 Trifacta Inc. Page #194

Window Transformations
Contents:

Basic Structure
Group by parameter
Order by parameter

Compute over Time Windows
Calculate over preceding and following rows
Fill Empty Values
Calculate Rank
Calculate Rolling Functions

Rolling date functions

A window transformation performs calculations on a row based on row values that are related to it. Windowing
functions can perform calculations based on time, relative row positions, and rolling windows.

For example, you might wish to calculate the average percentage of CPU usage over 24-hour intervals based on
log entries. From the rows of data, you can create a window function that calculates the average value in the
CPU usage column over the 24-hour period, as defined based on date values for each log entry.

Key distinction:

In a window function, the output of each row's calculation is specific to the row.
In an aggregate function, the output for a row is the same value for all rows that are used in the
calculation.
For more information on aggregation, see Create Aggregations.

Basic Structure

You can use windowing functions with the following transformation types:

window - creates a new column called window
New formula - creates a new column that you name
Edit with formula - modifies the values in a column based on a formula that you specify.

Group by parameter

You can use the Group by parameter to define the column of values by which rows of data are grouped for
calculation purposes. For example, if your Group by column contains months, your calculations are computed for
each month represented in the column values.

NOTE: Transforms that use the group parameter can result in non-deterministic re-ordering in the data
grid. However, you should apply the group parameter, particularly on larger datasets, or your job may
run out of memory and fail. To enforce row ordering, you can use the sort transform. For more
information, see Sort Transform.

Order by parameter

When using window functions, you can use the Order by parameter to specify the column or columns by which to
sort the output.

Source:

Copyright © 2022 Trifacta Inc. Page #195

The following table contains the sales data of a company for all the four regions in the last three months.

Month Sales Region

2021-01-01 800 East

2021-01-01 1500 West

2021-01-01 1000 North

2021-01-01 2000 South

2021-02-01 1250 East

2021-02-01 800 West

2021-02-01 1100 North

2021-02-01 700 South

2021-03-01 900 East

2021-03-01 1000 West

2021-03-01 1400 North

2021-03-01 800 South

Transformation:

In the following transformation, you can calculate the rolling average of sales . You apply the ROLLINGAVERAGE
and specify that the results are to be ordered by the Sales column.

Transformation Name Window

Parameter: Formulas ROLLINGAVERAGE (Sales, 0,1)

Parameter: Order by Sales

Results:

The following dataset shows the ROLLINGAVERAGE ordered by Sales column.

Month Sales Region RollingAverage

2021-02-01 700 South 750

2021-01-01 800 East 800

2021-02-01 800 West 800

2021-03-01 800 South 850

2021-03-01 900 East 950

2021-01-01 1000 North 1000

2021-03-01 1000 West 1050

2021-02-01 1100 North 1175

2021-02-01 1250 East 1325

2021-03-01 1400 North 1450

2021-01-01 1500 West 1750

2021-01-01 2000 South 2000

Copyright © 2022 Trifacta Inc. Page #196

Compute over Time Windows

You may need to create windows of time within your data that are not cleanly segmented by basic units of time
measurement. For example, you may need to create a custom time period, called a session, based on
timestamps recorded in event-based data.

A session is usually defined as a group of events that occur within a given time frame. For example, you may
need to perform calculations based on five-minute intervals within your logging data. If a user opens your
shopping website, logs in, searches items, and then logs out within a five-minute interval, that can be grouped
under a single session. However, if the user's interaction lasted six minutes, the logged events may span multiple
windowed sessions in the data.

You can use the SESSION function to create time boxes based on a time period that you specify. When the
function is applied to your column of timestamp values , the application assigns an ID to events that belong to the
same session.

From the following example, you can create a Session ID. After you create the session ID, you can find the
volume of data consumed by the individual user.

Source:

User Name TimeStamp Activity Volume (in Kb)

Bob 02/11/21 08:01:13 Read 1024

William 02/11/21 08:01:00 Read 1024

John 02/11/21 08:01:17 Read 1024

Christy 02/11/21 08:01:17 Read 1024

William 02/11/21 08:03:33 Read 520

Christy 02/11/21 08:02:01 Password change 1024

Bob 02/11/21 08:07:23 Adding items to cart 2048

William 02/11/21 08:05:45 Read 520

William 02/11/21 08:11:56 Account settings 2048

John 02/11/21 08:15:11 Password change 2048

Bob 02/11/21 08:34:00 Proceeding to payment 2048

Bob 02/11/21 08:43:03 logout 2048

Christy 02/11/21 09:03:43 Read 1024

Christy 02/11/21 09:10:00 logout 1024

Transformation:

Transformation Name Window

Parameter: Formulas SESSION (TimeStamp, 5, minute)

Parameter: Group by User Name

Parameter: Order by TimeStamp

Since the new column is named window, you should rename it:

Transformation Name Rename columns

Parameter: Option Manual rename

Copyright © 2022 Trifacta Inc. Page #197

Parameter: Column window

Parameter: New column SESSIONID
name

With this session ID, you can calculate the maximum volume of data consumed by each session ID and by each
user.

Transformation Name New formula

Parameter: Formula type Multiple row formula

Parameter: Formula MAX(Volume (in Kb))

Parameter: Sort rows by SessionID

Parameter: Group rows by User Name, SessionID

Parameter: New column Volume_Consumed (in Kb)
name

Results:

User Name TimeStamp Activity Volume (in SessionID max_Volume (in
Kb) Kb)

William 02/11/21 08:01:00 Read 1024 1 1024

William 02/11/21 08:03:33 Read 520 1 1024

William 02/11/21 08:05:45 Read 520 1 1024

William 02/11/21 08:11:56 Account settings 2048 2 2048

Bob 02/11/21 08:01:13 Read 1024 1 1024

Bob 02/11/21 08:07:23 Adding items to cart 2048 2 2048

Bob 02/11/21 08:34:00 Proceeding to payment 2048 3 2048

Bob 02/11/21 08:43:03 logout 2048 4 2048

Christy 02/11/21 08:01:17 Read 1024 1 1024

Christy 02/11/21 08:02:01 Password change 1024 1 1024

Christy 02/11/21 09:03:43 Read 1024 2 1024

Christy 02/11/21 09:10:00 logout 1024 3 1024

John 02/11/21 08:01:17 Read 1024 1 1024

John 02/11/21 08:15:11 Password change 2048 2 2048

Calculate over preceding and following rows

The PREV and NEXT functions enable you to fetch data from a previous row or a subsequent row, which is helpful
for identifying relative changes or trends in your data.

Source:

The following dataset contains orders for different product types over a given time period. You can apply the PREV
 and NEXT functions to calculate the previous orders and the next orders to analyze the trend of orders and derive
the average of orders for a product group.

Copyright © 2022 Trifacta Inc. Page #198

Product_Type Order_date Order

Laptop 2021-01-05 300

Laptop 2021-01-26 1780

Laptop 2021-01-09 500

Laptop 2021-01-31 1200

SmartPhone 2021-01-24 1400

SmartPhone 2021-01-26 2200

SmartPhone 2021-01-07 700

Tablet 2021-01-21 600

Tablet 2021-01-23 900

Transformation:

You can also calculate the percentage of change in orders over time. The following transformation calculates the
change between the current order and the previous one and then divides that value over the previous value to
calculate the percent change between the rows:

Transformation Name Window

Parameter: Formulas (Order - PREV(Order, 1)) / PREV(Order, 1) * 100

Parameter: Group by Product_Type

Parameter: Order by Order

After you rename the column to ChangeinOrder, you can apply the NUMFORMAT function to clean up and format
the ChangeinOrder values. The following transformation reformats the ChangeinOrder column to display two
decimal places.

Transformation Name Edit with formula

Parameter: Column ChangeinOrder

Parameter: Formula NUMFORMAT(ChangeinOrder, '##.##')

Similarly, you can apply the NEXT function and calculate the Change in orders for upcoming months.

Results :

Product_Type Order_date Order NEXTOrder ChangeinOrder

Laptop 2021-01-05 300 500

Laptop 2021-01-09 500 1200 66.67

Laptop 2021-01-31 1200 1780 140

Laptop 2021-01-26 1780 48.33

SmartPhone 2021-01-07 700 400

SmartPhone 2021-01-24 1400 2200 100

SmartPhone 2021-01-26 2200 57.14

Tablet 2021-01-21 600 900

Tablet 2021-01-23 900 50

Copyright © 2022 Trifacta Inc. Page #199

Fill Empty Values

You can use the FILL function to fill empty or null values in your data with the last non-empty value in the group.

Source:

For example, the following dataset contains the daily orders received. Note the missing values due to weekends.
You can assume that the no orders were received for Saturday and Sunday ,

Date DayOfWeek OrdersDay OrdersTotal

2021-03-10 Wednesday 100 100

2021-03-11 Thursday 112 212

2021-03-12 Friday 320 532

2021-03-13 Saturday

2021-03-14 Sunday

2021-03-15 Monday 300 832

Transformation:

You have to clean up the data to fill the values for OrdersDay column. You can use the following function to fill
the empty and null values. This function tests the the OrdersDay column to check if the column is empty or null. If
so, the value ' 0 ' is written in the column, else the value of the column ($col) is written.

Transformation Name Edit with formula

Parameter: Column OrdersDay

Parameter: Formula IF(OrdersDay == '' || ISNULL(OrdersDay), '0', $col)

You can see the values of Friday is taken for Saturday and Sunday and filled it accordingly as per the FILL functi
on.

Transformation Name Edit with formula

Parameter: Column OrdersTotal

Parameter: Formula IF (OrdersDay == '0', FILL (OrdersTotal, -1,0),$col)

Parameter: Order by Date

Results:

Date DayOfWeek OrdersDay OrdersTotal

2021-03-10 Wednesday 100 100

2021-03-11 Thursday 112 212

2021-03-12 Friday 320 532

2021-03-13 Saturday 0 532

2021-03-14 Sunday 0 532

2021-03-15 Monday 300 832

Copyright © 2022 Trifacta Inc. Page #200

Calculate Rank

The RANK function enables you to create rankings in your data based on calculations by returning a ranking value
for each row with the specified group of values. When used, some rows might receive the same value as other
rows. For example, if there are three tie values in a group, the same rank is assigned to the rows and the next
three ranks are skipped.

The DENSERANK function enables you to generate a ranked order of values within a group. If there are tie values
in a group, it does not skip rank in case of tie values. For example, if two rows are listed as rank 2, then the fourth
row receives rank 3.

Source:

The following dataset contains total Sales information by quarter. You can use the RANK and DENSERANK to
identify the quarters with the highest sales.

Year Quarter Sales

2018 1 1000

2018 2 2000

2018 3 3000

2018 4 2000

2019 1 1000

2019 2 500

2019 3 9000

2019 4 3000

2020 1 500

2020 2 500

2020 3 200

2020 4 400

Transformation:

RANK:

Transformation Name Window

Parameter: Formula type Multiple row formula

Parameter: Formula RANK()

Parameter: Sort rows by Sales

Parameter: New column SalesRank
name

DENSERANK:

Transformation Name Window

Parameter: Formula type Multiple row formula

Parameter: Formula DENSERANK()

Copyright © 2022 Trifacta Inc. Page #201

Parameter: Sort rows by Sales

Parameter: New column SalesDenseRank
name

Results:

For the RANK function, when multiple rows share the same rank, the next rank is not consecutive, whereas for
the DENSERANK function, the next rank is consecutive.

Year Quarter Sales SalesDenseRank SalesRank

2020 3 200 1 1

2020 4 400 2 2

2020 2 500 3 3

2020 1 500 3 3

2019 2 500 3 3

2019 1 1000 4 6

2018 1 1000 4 6

2018 4 2000 5 8

2018 2 2000 5 8

2019 4 3000 6 10

2018 3 3000 6 10

2019 3 9000 7 12

Calculate Rolling Functions

Rolling calculations enable you to compute a function over a changing set of rows. Rolling calculations are useful
for computing the current state of a measure within your data.

For example, in the above sample data, you can find the rolling sum and rolling average of the sales for the year.
You can use the above example data to find the rolling sum and rolling average.

Source:

From the following dataset, you can calculate the rolling calculations such as ROLLINGSUM, ROLLINGAVERAGE,
ROLLINGMAX, and ROLLINGMIN.

Year Quarter Sales

2018 1 1000

2018 2 2000

2018 3 3000

2018 4 2000

2019 1 1000

2019 2 500

2019 3 9000

2019 4 3000

2020 1 500

Copyright © 2022 Trifacta Inc. Page #202

2020 2 500

2020 3 200

2020 4 400

Transformation:

Transformation Name Window

Parameter: Formulas ROLLINGSUM (Sales, 0,1)

Parameter: Formulas ROLLINGAVERAGE (Sales, 0,1)

Parameter: Formulas ROLLINGMAX (Sales, 0, 1)

Parameter: Formulas ROLLINGMIN (Sales, 0,1)

Parameter: Order by Sales

You can rename the required columns accordingly.

Results:

Year Quarter Sales RollingSumSales RollingAverageSales RollingMinSales RollingMaxSales

2020 3 200 600 300 200 400

2020 4 400 900 450 400 500

2020 2 500 1000 500 500 500

2020 1 500 1000 500 500 500

2019 2 500 1500 750 500 1000

2019 1 1000 2000 1000 1000 1000

2018 1 1000 3000 1500 1000 2000

2018 4 2000 4000 2000 2000 2000

2018 2 2000 5000 2500 2000 3000

2019 4 3000 6000 3000 3000 3000

2018 3 3000 12000 6000 3000 9000

2019 3 9000 9000 9000 9000 9000

Rolling date functions

The Rolling date functions enable you to calculate forward or backward of the current row within the specified
column. For example, when dealing with business calendars, you might want to know if the date falls on a holiday
or weekend; based on that, you can roll the date forward or backward according to the business calendar.

Source:

The following example dataset shows the order date, order quantity that belongs to a product group. You are
interested in finding the rolling minimum and maximum dates for the product group, as well as the rolling mode
value. You can use ROLLINGMINDATE , ROLLINGMAXDATE , and ROLLINGMODEDATE functions.

Order_date Order_quantity Product_Group

2021-04-14 750 PG001

2021-07-13 1500 PG001

Copyright © 2022 Trifacta Inc. Page #203

2021-08-31 355 PG002

2021-02-16 2000 PG002

2021-05-13 867 PG002

2021-06-18 1010 PG002

2021-11-15 909 PG003

2021-10-16 200 PG003

2021-09-09 200 PG004

2021-01-01 900 PG004

2021-12-07 707 PG004

Transformation:

Transformation Name Window

Parameter: Formulas ROLLINGSUM (Sales, 0,1)

Parameter: Formulas ROLLINGMAXDATE (Order_date, 0,1)

Parameter: Formulas ROLLINGMINDATE (Order_date, 0, 1)

Parameter: Formulas ROLLINGMODEDATE (Order_date, 0,1)

Parameter: Order by Order_date

Results:

Order_date Order_quantity Product_Group RollingMaxdate RollingMindate RollingModedate

2021-01-01 900 PG004 2021-02-16 2021-01-01 2021-01-01

2021-02-16 2000 PG002 2021-04-14 2021-02-16 2021-02-16

2021-04-14 750 PG001 2021-05-13 2021-04-14 2021-04-14

2021-05-13 867 PG002 2021-06-18 2021-05-13 2021-05-13

2021-06-18 1010 PG002 2021-07-13 2021-06-18 2021-06-18

2021-07-13 1500 PG001 2021-08-31 2021-07-13 2021-07-13

2021-08-31 355 PG002 2021-09-09 2021-08-31 2021-08-31

2021-09-09 200 PG004 2021-10-16 2021-09-09 2021-09-09

2021-10-16 200 PG003 2021-11-15 2021-10-16 2021-10-16

2021-11-15 909 PG003 2021-12-07 2021-11-15 2021-11-15

2021-12-07 707 PG004 2021-12-07 2021-12-07 2021-12-07

Copyright © 2022 Trifacta Inc. Page #204

Working with Arrays
Contents:

Array Types
Create Arrays

Create by extraction
Create by nesting
Create from column values
Create from Object type

Read from Arrays
Compute from Arrays
Combine Arrays
Break out Arrays

Expand arrays into rows
Unnest array elements into columns

This section describes how to work with the Array data type in the Trifacta® application . An array is a set of
delimited values. Any individual value in the list can be a separate array, which allows for the creation of nested
data arrays.

Array Types

To be recognized as an array, a source column must contain values that are:

Bracketed by square brackets
Values in cell are delimited by commas

Such columns are likely to be recognized as Array data type.

The following are valid arrays:

[1,2,3]
["A","B"]
["C",["D","E"],"F",["G",["H","I"]]]

Ragged arrays: If the number of elements varies between two arrays, they are considered ragged. In the
above, all three arrays have a different number of top-level elements (3,2,4).
Nested arrays: When an array element is an array itself, the element is considered a nested array. See
the last example above.

For more information, see Array Data Type.

Create Arrays

Within Trifacta®, you can generate arrays using values from one or more columns to do so.

Create by extraction

You can create an array of values by extracting pattern-based values from a specified column. The following
transformation extracts from the msg column a list of all values where all letters are capitalized and places them
into the new acronyms column:

Transformation Name Extract matches into Array

Copyright © 2022 Trifacta Inc. Page #205

Parameter: Column msg

Parameter: Pattern matching `{upper}+`
elements in the list

Parameter: New column name acronyms

msg acronyms

SCUBA, IMHO, is the greatest sport in the world. ["SCUBA","IMHO"]

 []

LOL, that assignment you finished is DOA. You need to fix it PDQ. ["LOL","DOA","Y","PDQ"]

Notes:

An empty input column value renders an empty array.
In the final row, the Pattern matches on the "Y" value. To fix this, you can change the Pattern matching
value to the following, which matches on two or more uppercase letters in a row:

`{upper}{upper}+`

Create by nesting

You can create arrays by nesting together the values from multiple columns.

Source:

num1 num2 num3

11 12 13

14 15 16

17 18 19

You want to nest the values in num1 and num2 into a single array and then to nest the array with num3:

NOTE: If you are nesting a multi-level array, you should nest from the lowest level to the top level.

Transformation Name Nest columns into Objects

Parameter: Columns1 num1

Parameter: Columns2 num2

Parameter: Nest columns to Array

Parameter: New column nest1
name

Then, you can perform the nesting of the top-level elements:

NOTE: The order in which you list the columns to nest determines the order in which the elements
appear in the generated array.

Copyright © 2022 Trifacta Inc. Page #206

Transformation Name Nest columns into Objects

Parameter: Columns1 nest1

Parameter: Columns2 num3

Parameter: Nest columns to Array

Parameter: New column nest2
name

In the generated columns, you notice that all values are quoted, even though these values are integers.

NOTE: Elements that are generated into arrays using a nest transformation are always rendered as
quoted values.

You can use the following transformation to remove the quotes from the nest2 column:

Transformation Name Replace text or patterns

Parameter: Column nest2

Parameter: Find '"'

Parameter: Replace (empty)

Parameter: Match all true
occurrences

After removing the unused nest1 column, the data looks like the following:

num1 num2 num3 nest2

11 12 13 [[11,12],13]

14 15 16 [[14,15],16]

17 18 19 [[17,18],19]

Create from column values

You can use one of several available functions to create arrays from a column's values.

Source:

listVals

5

TRUE

{"key1":"value1","keys2":"value2"}

[1,2,3]

My String

-5.5

The following transformation generates a new column in which each row contains an array of all of the values of
the input column:

Copyright © 2022 Trifacta Inc. Page #207

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula LIST(listVals,1000)

Parameter: New column listOfListVals
name

Results:

listVals listOfListVals

5 ["5","TRUE","{\"key1\":\"value1\",\"keys2\":\"value2\"}","[1,2,3]","My String","-5.5"]

TRUE ["5","TRUE"," {\"key1\":\"value1\",\"keys2\":\"value2\"}","[1,2,3]","My String","-5.5"]

{"key1":"value1","keys2":"value2"} ["5","TRUE"," {\"key1\":\"value1\",\"keys2\":\"value2\"}","[1,2,3]","My String","-5.5"]

[1,2,3] ["5","TRUE"," {\"key1\":\"value1\",\"keys2\":\"value2\"}","[1,2,3]","My String","-5.5"]

My String ["5","TRUE"," {\"key1\":\"value1\",\"keys2\":\"value2\"}","[1,2,3]","My String","-5.5"]

-5.5 ["5","TRUE"," {\"key1\":\"value1\",\"keys2\":\"value2\"}","[1,2,3]","My String","-5.5"]

Notes:

The second parameter on the LIST function defines the maximum number of values to write. 1000 is the
default.
All values in the generated array are written as String values.
Quoted values are escaped in the output.

The following functions allow you to generate various types of arrays from a column's set of values.

Function Description

LIST Function Extracts the set of values from a column into an array stored in a new column. This function is typically part of an
aggregation.

UNIQUE Function Extracts the set of unique values from a column into an array stored in a new column. This function is typically part of
an aggregation.

LISTIF Function Returns list of all values in a column for rows that match a specified condition.

ROLLINGLIST Computes the rolling list of values forward or backward of the current row within the specified column and returns an
Function array of these values.

RANGE Function Computes an array of integers, from a beginning integer to an end (stop) integer, stepping by a third parameter.

NOTE: The lower bound of the range is included, while the upper bound is not.

Tip: Additional examples are available in the above links for these functions.

Create from Object type

You can extract the keys of an Object column into an array of string values. In an Object type, the values are
listed in quoted key/value pairs and can be nested. See Object Data Type.

Source:

Copyright © 2022 Trifacta Inc. Page #208

Suppose your Object data looks like the following:

myObject

{"key1":"value1","key2":"value2", "key3":"value3"}

{"apples":"2", "oranges":"4" }

{"planes":{"boeing":"5","airbus":"4"},"trains":{"amtrak":"1","SP":"2"}, "automobiles":{"toyota":"100","nissan":"50"}}

You can run the following transformation to extract the top-level keys into arrays in a new named column:

NOTE: The KEYS function retrieves only the top-level keys from the Object.

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula KEYS(myObject)

Parameter: New column myObjectKeys
name

Results:

myObject myObjectKeys

{"key1":"value1","key2":"value2","key3":"value3"} ["key1","key2","key3"]

{"apples":"2","oranges":"4"} ["apples","oranges"]

{"planes":{"boeing":"5","airbus":"4"},"trains":{"amtrak":"1","SP":"2"}, "automobiles":{"toyota":"100","nissan":" ["planes","trains","
50"}} automobiles"]

For more information, see KEYS Function.

Read from Arrays

You can read values from arrays in your dataset.

NOTE: After an array has been created, you can append to the array or otherwise combine it with
another array. You cannot replace values in the array without breaking apart the array and rebuilding it.

Function Description

IN Function Returns true if the first parameter is contained in the array of values in the second parameter.

ARRAYELEMENTAT Computes the 0-based index value for an array element in the specified column, array literal, or function that
Function returns an array.

ARRAYLEN Function Computes the number of elements in the arrays in the specified column, array literal, or function that returns
an array.

ARRAYUNIQUE Function Generates an array of all unique elements among one or more arrays.

Tip: Additional examples are available in the above links for these functions.

Copyright © 2022 Trifacta Inc. Page #209

Compute from Arrays

You can use the following functions to perform computations on the values in your arrays:

Function Description

LISTSUM Computes the sum of all numeric values found in input array. Input can be an array literal, a column of arrays, or a function
Function returning an array. Input values must be of Integer or Decimal type.

LISTMAX Computes the maximum of all numeric values found in input array. Input can be an array literal, a column of arrays, or a
Function function returning an array. Input values must be of Integer or Decimal type.

LISTMIN Computes the minimum of all numeric values found in input array. Input can be an array literal, a column of arrays, or a
Function function returning an array. Input values must be of Integer or Decimal type.

LISTAVERA Computes the average of all numeric values found in input array. Input can be an array literal, a column of arrays, or a
GE Function function returning an array. Input values must be of Integer or Decimal type.

LISTVAR Computes the variance of all numeric values found in input array. Input can be an array literal, a column of arrays, or a
Function function returning an array. Input values must be of Integer or Decimal type.

LISTSTDEV Computes the standard deviation of all numeric values found in input array. Input can be an array literal, a column of
Function arrays, or a function returning an array. Input values must be of Integer or Decimal type.

LISTMODE Computes the most common value of all numeric values found in input array. Input can be an array literal, a column of
Function arrays, or a function returning an array. Input values must be of Integer or Decimal type.

Combine Arrays

You can combine arrays together using a variety of methods of combining.

Source:

array1 array2

["1","2","3"] ["A","B","C"]

["4","5","6"] ["D","E","F"]

["7","8","9"] ["G","H","I"]

The following transformation concatenates the above arrays into a single single array:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula ARRAYCONCAT([array1,array2])

Parameter: New column arrayConcat
name

Results:

array1 array2 arrayConcat

["1","2","3"] ["A","B","C"] ["1","2","3","A","B","C"]

["4","5","6"] ["D","E","F"] ["4","5","6","D","E","F"]

["7","8","9"] ["G","H","I"] ["7","8","9","G","H","I"]

Copyright © 2022 Trifacta Inc. Page #210

These functions can be used to combine arrays together:

Function Description

ARRAYCONCAT Combines the elements of one array with another, listing all elements of the first array before listing all elements of the
Function second array.

ARRAYCROSS Generates a nested array containing the cross-product of all elements in two or more arrays.
Function

ARRAYINTERSE Generates an array containing all elements that appear in multiple input arrays, referenced as column names or array
CT Function literals.

ARRAYSTOMAP Combines one array containing keys and another array containing values into an Object of key-value pairs.
Function

ARRAYZIP Combines multiple arrays into a single nested array, with element 1 of array 1 paired with element 2 of array 2 and so
Function on. Arrays are expressed as column names or as array literals.

Tip: Additional examples are available in the above links for these functions.

Break out Arrays

Expand arrays into rows

You can break out arrays into individual values using the following transformations. Here is some example data
from the nest2 column that was generated earlier. The num3 column is retained for reference:

num3 nest2

13 [[11,12],13]

16 [[14,15],16]

19 [[17,18],19]

You can use the following simple transformation to flatten the values in nest2 into individual values in each row:

NOTE: Depending on the number of elements in your arrays, you can significantly increase the size of
your dataset.

NOTE: If a cell in the source column does not contain an array, an empty value is written into the
corresponding row.

Transformation Name Expand Array to rows

Parameter: column nest2

Results:

num3 nest2

13 [11,12]

Copyright © 2022 Trifacta Inc. Page #211

13 13

16 [14,15]

16 16

19 [17,18]

19 19

NOTE: Converting a column of arrays to rows unpacks the top level of the array only. You may have to
apply this transformation multiple times.

Unnest array elements into columns

You can break out individual elements of an array into separate columns.

NOTE: Each element that you want broken out into a column must be listed on a separate line in Path to
elements.

Source:

arrayNested

["A",["B","C"],"D"]

["H",["I","J",["K","L"]]]

["E","F","G"]

The following transform retrieves the second and third elements of each array:

Transformation Name Unnest Objects into columns

Parameter: Column arrayNested

Parameter: Paths to elements1 [1]

Parameter: Paths to elements2 [2]

Parameter: Include original true
column name

This one retrieves the first element of the array that is nested as the second element of the array:

Transformation Name Unnest Objects into columns

Parameter: Column arrayNested

Parameter: Paths to elements1 [1][0]

Parameter: Include original true
column name

The resulting data should look like the following:

arrayNested arrayNested_1 arrayNested_2

["A",["B","C"],"D"] ["B","C"] B

["H",["I","J",["K","L"]]] ["I","J",["K","L"]] I

Copyright © 2022 Trifacta Inc. Page #212

["E","F","G"] F

Copyright © 2022 Trifacta Inc. Page #213

Working with Objects
Contents:

Structure of Objects
Import Objects

Import Object columns
Import JSON files

Create Objects
Create by nesting
Create by Filtering Strings
Convert from Arrays

Read from Objects
Extract Keys
Extract Object Values
Convert to String

Unnest Objects

This section describes how to work with the Object data type. An object (or map) is a set of key-value pairs.

Any individual value can contain another set of key-value pairs, which enables the creation of nested data objects.

Tip: As one of its values, an object can contain an array, which can in turn contain other objects or
arrays. In this manner, you can created nested hybrid data objects by combining these two data types.

Structure of Objects

An Object data type is a method for encoding key-value pairs. A single field value may contain one or more sets
of key-value pairs. A simple example:

{"Texas":"TX"},
{"New York":"NY"},
{"California":"CA"},

Notes:

The above example features repeated data in a repeated format across each line.
Effectively, these are records of data, mapping a state's formal name (e.g. Texas) to its two-letter
abbreviation (e.g. TX).
Data structures of the Object data type can be more complex.

NOTE: The Trifacta application can recognize up to 250 unique keys in a column of Object data type.

Import Objects

Import Object columns

When a column is identified as a set of key-value pairs during import, the column may be typed as an Object data
type column. These key-value pairs can be extracted and converted into rows and columns in the dataset using
transformations and functions in the application.

Copyright © 2022 Trifacta Inc. Page #214

Import JSON files

The Object data type can be the basis for entire JSON files. When JSON files are formatted in a way that can be
parsed by the the Trifacta application, they can be converted into tabular format as part of the import process. If
the preceding example is the entire file, the conversion process may display the dataset in the Transformer page
as the following:

column1 column2

Texas TX

New York NY

California CA

For more information, see Working with JSON v2.

Create Objects

Within the Trifacta application, you can use functions and transformations to create columns that are recognized
as Object data type.

Create by nesting

You can nest multiple columns into a single column of objects using the nest transform.

This section provides a simple example of nesting columns into a new column of Object data type.

Source:

In the following example, furniture product dimensions are stored in separate columns in cm.

Category Name Length_cm Width_cm Height_cm

bench Hooska 118.11 74.93 46.34

lamp Tansk 30.48 30.48 165.1

bookshelf Brock 27.94 160.02 201.93

couch Loafy 95 227 83

Transformation:

Use the nest transform to bundle the data into a single column.

Transformation Name Nest columns into Objects

Parameter: Columns Length_cm,Width_cm,Height_cm

Parameter: Nest columns to Object

Parameter: New column 'Dimensions'
name

Results:

Category Name Length_cm Width_cm Height_cm Dimensions

bench Hooska 118.11 74.93 46.34 {"Length_cm":"118.11","Width_cm":"74.93","Height_cm":"46.34"}

lamp Tansk 30.48 30.48 165.1 {"Length_cm":"30.48","Width_cm":"30.48","Height_cm":"165.1"}

Copyright © 2022 Trifacta Inc. Page #215

bookshelf Brock 27.94 160.02 201.93 {"Length_cm":"27.94","Width_cm":"160.02","Height_cm":"201.93"}

couch Loafy 95 227 83 {"Length_cm":"95,"Width_cm":"227","Height_cm":"83"}

Create by Filtering Strings

You can create objects by filtering strings by using the FILTEROBJECT function.

You can create nested objects by filtering strings. In this example, column headers and column values are nested
into a single entity in a new column of Object data type.

Functions:

Item Description

FILTEROBJEC Filters the keys and values from an Object data type column based on a specified key value.
T Function

PARSEOBJEC Evaluates a String input against the Object datatype. If the input matches, the function outputs an Object value. Input can
T Function be a literal, a column of values, or a function returning String values.

Source:

The following table shows a series of requests for inventory on three separate products. These are rolling
requests, so inventory levels in the subsequent request are decreased based on the previous request.

date reqProdId reqValue prodA prodB prodC

5/10/21 prodA 10 90 100 100

5/10/21 prodC 20 90 100 80

5/10/21 prodA 15 75 100 80

5/11/21 prodB 25 75 75 80

5/11/21 prodA 5 70 75 80

5/11/21 prodC 30 70 75 50

5/12/21 prodB 10 70 65 50

You must create a column containing the request information and the inventory level information for the
requested product after the request has been fulfilled.

Transformation:

The five data columns must be nested into an Object. The generated column is called inventoryLevels.

Transformation Name Nest columns into Objects

Parameter: Columns reqProdId,reqValue,prodA,prodB,prodC

Parameter: Nest columns to Object

Parameter: New column inventoryLevels
name

You can then build the inventory response column (inventoryResponse) using the FILTEROBJECT function:

Transformation Name New formula

Parameter: Formula Single row formula
type

Copyright © 2022 Trifacta Inc. Page #216

https://Length_cm":"27.94","Width_cm":"160.02","Height_cm":"201.93

Parameter: Formula filterobject(parseobject(inventoryRequest),
['reqProdId','reqValue',reqProdId])

Parameter: New inventoryResponse
column name

Results:

The inventoryResponse column contains the request information and the response information after the
request has been fulfilled.

date reqProdId reqValue

5/10 prodA 10
/21

5/10 prodC 20
/21

5/10 prodA 15
/21

5/11 prodB 25
/21

5/11 prodA 5
/21

5/11 prodC 30
/21

5/12 prodB 10
/21

Convert from Arrays

prodA prodB prodC inventoryLevels inventoryResponse

90 100 100 {"reqProdId":"prodA","reqValue":"10","
prodA":"90","prodB":"100","prodC":"100"}

{"reqProdId":"prodA","
reqValue":"10","prodA":"
90"}

90 100 80 {"reqProdId":"prodC","reqValue":"20","
prodA":"90","prodB":"100","prodC":"80"}

{"reqProdId":"prodC","
reqValue":"20","prodC":"
80"}

75 100 80 {"reqProdId":"prodA","reqValue":"15","
prodA":"75","prodB":"100","prodC":"80"}

{"reqProdId":"prodA","
reqValue":"15","prodA":"
75"}

75 75 80 {"reqProdId":"prodB","reqValue":"25","
prodA":"75","prodB":"75","prodC":"80"}

{"reqProdId":"prodB","
reqValue":"25","prodB":"
75"}

70 75 80 {"reqProdId":"prodA","reqValue":"5","
prodA":"70","prodB":"75","prodC":"80"}

{"reqProdId":"prodA","
reqValue":"5","prodA":"
70"}

70 75 50 {"reqProdId":"prodC","reqValue":"30","
prodA":"70","prodB":"75","prodC":"50"}

{"reqProdId":"prodC","
reqValue":"30","prodC":"
50"}

70 65 50 {"reqProdId":"prodB","reqValue":"10","
prodA":"70","prodB":"65","prodC":"50"}

{"reqProdId":"prodB","
reqValue":"10","prodB":"
65"}

You can create objects by converting two arrays of key value pairs by using the the ARRAYSTOMAP function.

This example illustrates how to use the ARRAYSTOMAP and KEYS functions to convert values in Array or
Object data type of key-value pairs.

Functions:

Item

ARRAYSTOMAP
Function

KEYS Function

Source:

Description

Combines one array containing keys and another array containing values into an Object of key-value
pairs.

Extracts the key values from an Object data type column and stores them in an array of String values.

Your dataset contains master product data with product properties stored in two arrays of keys and values.

ProdId ProdCategory ProdName ProdKeys ProdProperties

S001 Shirts Crew Neck T- ["type", "color", "fabric", ["crew","blue","cotton","S,M,L","in stock","padded"]
Shirt "sizes"]

Copyright © 2022 Trifacta Inc. Page #217

S002 Shirts V-Neck T-Shirt ["type", "color", "fabric", ["v-neck","white","blend","S,M,L,XL","in stock","discount -
"sizes"] seasonal"]

S003 Shirts Tanktop ["type", "color", "fabric", ["tank","red","mesh","XS,S,M","discount - clearance","in
"sizes"] stock"]

S004 Shirts Turtleneck ["type", "color", "fabric", ["turtle","black","cotton","M,L,XL","out of stock","padded"]
"sizes"]

Transformation:

When the above data is loaded into the Transformer page, you might need to clean up the two array columns.

Using the following transform, you can map the first element of the first array as a key for the first element of the
second, which is its value. You might notice that the number of keys and the number of values are not consistent.
For the extra elements in the second array, the default key of ProdMiscProperties is used:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula ARRAYSTOMAP(ProdProperties, ProdValues,
'ProdMiscProperties')

Parameter: New column 'prodPropertyMap'
name

You can now use the following steps to generate a new version of the keys:

Transformation Name Delete columns

Parameter: Columns ProdKeys

Parameter: Action Delete selected columns

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula KEYS(prodPropertyMap)

Parameter: New column 'ProdKeys'
name

Results:

ProdId ProdCategory ProdName ProdKeys ProdProperties prodPropertyMap

S001 Shirts Crew Neck ["type", "color", "fabric", ["crew","blue","cotton","S,M,L","in {
T-Shirt "sizes","ProdMiscProperties"] stock","padded"] "type": ["cr

ew"],
 "color": ["b

lue"],
 "fabric": ["

cotton"],
 "sizes": ["S

,M,L"],
 "ProdMiscProp
erties": ["in
stock", "padded"
] }

S002 Shirts V-Neck T- ["type", "color", "fabric", ["v-neck","white","blend","S,M,L,XL"," {
Shirt "sizes","ProdMiscProperties"] in stock","discount - seasonal"] "type": ["v-

neck"],

Copyright © 2022 Trifacta Inc. Page #218

S003 Shirts Tanktop ["type", "color", "fabric", ["tank","red","mesh","XS,S,M","
"sizes","ProdMiscProperties"] discount - clearance","in stock"]

S004 Shirts Turtleneck ["type", "color", "fabric", ["turtle","black","cotton","M,L,XL","out
"sizes","ProdMiscProperties"] of stock","padded"]

"color": ["w
hite"],
 "fabric": ["

blend"],
 "sizes": ["S

,M,L,XL"],
 "ProdMiscProp
erties": ["in
stock", "discou
nt - seasonal"
] }

{
 "type": ["ta

nk"],
 "color": ["r

ed"],
 "fabric": ["

mesh"],
 "sizes": ["X

S,S,M"],
 "ProdMiscProp
erties": ["dis
count -
clearance", "in
stock"] }

{
 "type": ["tu

rtle"],
 "color": ["b

lack"],
 "fabric": ["

cotton"],
 "sizes": ["M

,L,XL"],
 "ProdMiscProp
erties": ["out
of stock", "pad
ded"] }

Read from Objects

When a column is recognized as an Object data type, you can apply transformations to extract the keys, the
values, or both from the column for use in a new column. You can use pattern-based matching to acquire the
values of interest for further analysis or cleaning.

Extract Keys

You can extract keys from objects from the Object data and and stores them in an array of String values.

You can extract the keys from an Object column into an Array of String values.

Functions:

Item Description

KEYS Extracts the key values from an Object data type column and stores them in an array of String
Function values.

Source:

The following dataset contains configuration blocks for individual features, each of which has a different
configuration. These example blocks are of Object type.

Copyright © 2022 Trifacta Inc. Page #219

Tip: In the following example configuration, the keys are the values on the left (e.g. enabled, maxRows,
and maxCols), while the values for those keys are on the right side.

Code formatting has been applied to the Object data to improve legibility.

FeatureName Configuration

Whiz Widget
{
 "enabled": "true",
 "maxRows": "1000",
 "maxCols": "100"
}

Magic Button
{
 "enabled": "false",
 "startDirectory": "/home",
 "maxDepth": "15"
}

Happy Path Finder
{
 "enabled": "true"
}

Transformation:

The following transformation extracts the keys from the Object data in the Configuration column.

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula keys(Configuration)

Parameter: New column 'keys_Configuration'
name

Results:

The keys_Configuration column contains the arrays of the key values.

FeatureName Configuration keys_Configuration

Whiz Widget
{ ["enabled","maxRows","maxCols"]
"enabled": "true",

 "maxRows": "1000",
 "maxCols": "100"
}

Magic Button
{ ["enabled","startDirectory","maxDepth"]
 "enabled": "false",
 "startDirectory": "/home",
 "maxDepth": "15"
}

Copyright © 2022 Trifacta Inc. Page #220

Happy Path Finder
{ ["enabled"]
 "enabled": "true"
}

Extract Object Values

You can extract an object's values in to a new column.

This simple example demonstrates how to extract nested values from Object elements into a separate column.

Source:

For example, suppose your restaurant dataset includes a set of characteristics in the restFeatures column in
the following JSON format, from which you are interested in the total number of seats in the restaurant.

This example contains the data for a single restaurant, formatted as regular JSON, for simplicity:

{
 "Credit":"Y",
 "Accessible":"Y",
 "Restrooms":"Y",
 "EatIn":"Y",
 "ToGo":"N",
 "AlcoholBeer":"Y",
 "AlcoholHard":"N",
 "TotalTables":"10",
 "TotalTableSeats":"36",
 "Counter":"Y",
 "CounterSeats":"8"

}

Transformation:

You can use the following transformation to extract the values from TotalTableSeats and CounterSeats into
separate columns:

NOTE: Change the column type to Object before applying the following transformation.

NOTE: Each key must be entered on a separate line in the Path to elements area.

Transformation Name Unnest Objects into columns

Parameter: Column restFeatures

Parameter: Paths to elements TotalTableSeats

Parameter: Paths to elements CounterSeats

Parameter: Include original Selected
column name

Results:

restFeatures_TotalTable Seats restFeatures_CounterSeats

Copyright © 2022 Trifacta Inc. Page #221

36 8

After converting into separate columns, you can perform a simple sum of the TotalTableSeats and CounterS
eats columns to determine the total number of seats in the restaurant.

The final table looks like the following:

restFeatures_TotalTable Seats restFeatures_CounterSeats TotalSeats_Restaurant

36 8 44

Convert to String

Depending on the use, it may be easier to work with your objects as String values. While Strings have no
inherent structure, they do have a wide range of functions that you can use to find and extract information from
the values. Some useful functions:

Function Description

FIND Function Returns the index value in the input string where a specified matching string is located in provided column, string literal, or
function returning a string. Search is conducted left-to-right.

RIGHTFIND Returns the index value in the input string where the last instance of a matching string is located. Search is conducted right-
Function to-left.

FINDNTH Returns the position of the nth occurrence of a letter or pattern in the input string where a specified matching string is
Function located in the provided column. You can search either from left or right.

SUBSTITUTE Replaces found string literal or pattern or column with a string, column, or function returning strings.
Function

Unnest Objects

You can unnest the object data type to create new rows or columns based on the keys in the source data. The
following example shows how to unnest object values into separate columns.

This example shows how you can unpack data nested in an Object into separate columns.

Source:

You have the following information on used cars. The VIN column contains vehicle identifiers, and the Properti
es column contains key-value pairs describing characteristics of each vehicle. You want to unpack this data into
separate columns.

VIN Properties

XX3 JT4522 year=2004,make=Subaru,model=Impreza,color=green,mileage=125422,cost=3199

HT4 UJ9122 year=2006,make=VW,model=Passat,color=silver,mileage=102941,cost=4599

KC2 WZ9231 year=2009,make=GMC,model=Yukon,color=black,mileage=68213,cost=12899

LL8 UH4921 year=2011,make=BMW,model=328i,color=brown,mileage=57212,cost=16999

Transformation:

Add the following transformation, which identifies all of the key values in the column as beginning with
alphabetical characters.

The valueafter string identifies where the corresponding value begins after the key.
The delimiter string indicates the end of each key-value pair.

Copyright © 2022 Trifacta Inc. Page #222

Transformation Name Convert keys/values into Objects

Parameter: Column Properties

Parameter: Key `{alpha}+`

Parameter: Separator between `=`
key and value

Parameter: Delimiter between ','
pair

Now that the Object of values has been created, you can use the unnest transform to unpack this mapped data.
In the following, each key is specified, which results in separate columns headed by the named key:

NOTE: Each key must be entered on a separate line in the Path to elements area.

Transformation Name Unnest Objects into columns

Parameter: Column extractkv_Properties

Parameter: Paths to elements year

Parameter: Paths to elements make

Parameter: Paths to elements model

Parameter: Paths to elements color

Parameter: Paths to elements mileage

Parameter: Paths to elements cost

Results:

When you delete the unnecessary Properties columns, the dataset now looks like the following:

VIN year make model color mileage cost

XX3 JT4522 2004 Subaru Impreza green 125422 3199

HT4 UJ9122 2006 VW Passat silver 102941 4599

KC2 WZ9231 2009 GMC Yukon black 68213 12899

LL8 UH4921 2011 BMW 328i brown 57212 16999

Copyright © 2022 Trifacta Inc. Page #223

Working with JSON v2
Contents:

Enable
Requirements

JSON input
JSON output

Example
Example 1 - Rows of JSON records
Example 2 - Top-level array of JSON records

Version 2: This section describes how you can import JSON files into Trifacta®, convert them to tabular format,
wrangle them, and then export them back in the same JSON format.

The basic workflow is described by way of example. In the example workflow, the JSON file must be imported
into Trifacta®, a new column must be inserted into the JSON, and the resulting JSON must be exported in the
same structure.

Enable

This method of working with JSON is enabled by default.

You can choose to continue using the legacy method of working with JSON.

NOTE: The legacy version of JSON import is required if you are working with compressed JSON files or
only Newline JSON files.

You should migrate your flows to using the new version.

NOTE: The legacy version of working with JSON is likely to be deprecated in a future release.

For more information on migrating to the new version, see Working with JSON v1.

Requirements

JSON input

Recommended limit of 1 GB in source file size. Since conversion happens within the Trifacta node, this
limit may vary depending on the memory of the Trifacta node.
Each JSON record must be less than 20 MB in size.

NOTE: This maximum record length can be modified. For more information, see
Configure Application Limits.

Filename extensions must be .json or .JSON.
Conversion of compressed JSON files is not supported. Compressed JSON files can be imported using
the previous method.
For best results, all keys and values should be quoted and imported as strings.

Copyright © 2022 Trifacta Inc. Page #224

NOTE: Escape characters that make JSON invalid can cause your JSON file to fail to import.

You can escape quote values to treat them as literals in your strings using the backslash character.
For example: \"
When the values are imported into the Transformer page, the Trifacta application re-infers the data
type for each column.

JSON
structure

Description Supported?

Newline The newline character (\n) denotes the end of a record. Each record can contain the keys (object or array)
and values for the JSON object.

Supported

Tip: This version is supported through through both versions of JSON import, but it performs
better in v1. If you are using the Newline form of JSON exclusively, you should use v1.

Top-level Top-level row contains keys for mapping JSON objects Supported
object

Top-level Top-level row contains array of objects Supported
array

JSON output

NOTE: JSON-formatted files that are generated by Trifacta are rendered in JSON Lines format, which is
a single line per-record variant of JSON. For more information, see http://jsonlines.org.

Trifacta can generate a JSON file as an output for your job. Characteristics of generated JSON files:
Newline-delimited: The end of each record is the \n character. If your downstream system is
expecting comma-delineated records except for the last one, additional work is required outside of
the application.
Non-nested: Each record in the generated file is flat.

For multi-level JSON hierarchies, you can nest columns together and leave the top level as a
set of columns in the data grid. However, on output, the second and lower hierarchies appear
as quoted string values in the output. Additional cleanup is required outside of the
application.

Example

Example 1 - Rows of JSON records

The following example contains records of images from a website:

{"metrics": [{"rank": "1043", "score" : "9679"}], "caption": "Such a good boy!", "id": "9kt8ex", "url":
"https://www.example.com/w285fpp11.jpg", "filename": "w285fpp11.jpg"}
{"metrics": [{"rank": "1042", "score" : "9681"}], "caption": "This sweet puppy has transformed our life!",
"id": "9x2774", "url": "https://www.example.com/fmll0cy11.jpg", "filename": "fmll0cy11.jpg"}
{"metrics": [{"rank": "1041", "score" : "9683"}], "caption": "We sure love our fur babies.", "id": "a8guou",
"url": "https://www.example.com/mljnmq521.jpg", "filename": "mljnmq521.jpg"}

Notes:

Each row is a complete JSON record containing keys and values.

Copyright © 2022 Trifacta Inc. Page #225

http://jsonlines.org
https://www.example.com/w285fpp11.jpg
https://www.example.com/fmll0cy11.jpg
https://www.example.com/mljnmq521.jpg

Tip: Nested JSON, such as metrics above, can be inserted as part of a record. It can then be
unnested within the application.

Each key's value must have a comma after it, except for the final key value in any row.

NOTE: The end of a JSON record is the right curly bracket (}). Commas are not added to the end
of each line in this format.

Workflow

1. Import the JSON file.
2. Any nested data must be unnested within columns. Each level in the JSON hierarchy must be un-nested in

a separate step.
3. When all of the JSON data is in tabular form, perform any Wrangle transformations.
4. If you need to rebuild the loose JSON hierarchy, you must nest the lower levels of the JSON hierarchy

back into their original form.
a. If it is ok to write out flat JSON records, you can export without nesting the data again.

5. Run the job, generating a JSON output.

Step - Import the file

1. Through the Import Data page, navigate and select your JSON file for import.

NOTE: File formats are detected based on the file extension. Please verify that your file extension
is .json or .JSON, which ensures that it is passed through the conversion service.

a. The file is passed through the conversion process, which reviews the JSON file and stores it on the
base storage layer in a format that can be easily ingested as in row-per-record format. This process
happens within the Import Data page. You can track progress on the right side of the screen.

2. After the file has been converted, click the Preview icon on the right side of the screen. In the Preview, you
can review the first few rows of the imported file.

a. If some rows are missing from the preview, then you may have a syntax error in the first row after
the last well-structured row. You should try to fix this in source and re-import.

b. If all of the rows are problematic, your data is likely malformed.
3. Complete the rest of the import process.
4. In Flow View, add the JSON-based imported dataset to your flow and create a recipe for it.

a. Select the recipe, and click Edit Recipe....

In the Transformer page, the example above should look like the following:

metrics caption id url filename

[{"rank":"1043","score":" Such a good boy! 9kt8ex https://www.example.com/w285fpp11. w285fpp11.
9679"}] jpg jpg

[{"rank":"1042","score":" This sweet puppy has transformed our 9x2774 https://www.example.com/fmll0cy11.jpg fmll0cy11.jpg
9681"}] life!

[{"rank":"1041","score":" We sure love our fur babies. a8guou https://www.example.com/mljnmq521. mljnmq521.
9683"}] jpg jpg

Step - Unnest JSON records

Your JSON records are in tabular format. If you have nested JSON objects within your JSON records, the next
step is to unnest your JSON records.

Copyright © 2022 Trifacta Inc. Page #226

https://www.example.com/w285fpp11
https://www.example.com/fmll0cy11.jpg
https://www.example.com/mljnmq521

NOTE: For JSON records that have multiple levels in the hierarchy, you should unnest the top level of
the hierarchy first, followed by each successive level.

Tip: The easiest way to unnest is to select the column header for the column containing your nested
data. Unnest should be one of the suggested options, and the suggestion should include the specification
for the paths to the key values. If not, you can use the following process.

1. In the Recipe panel, click New Step.
2. In the Search panel, enter unnest values into new columns.
3. Specify the following transformation. Substitute the Paths to elements values below with the top-level keys

in your JSON records:

Transformation Name Unnest values into new columns

Parameter: Column metrics

Parameter: Path to [0]
elements1

Tip: You can choose to remove the original from the source or not. In deeper or wider JSON files,
removing can help to identify what remains to be unnested.

4. In the above transformation, the bracketing array around the set of values has been broken down into raw
JSON. This value may now be interpreted as a String data type. From the column drop-down, you can
select Object data type.

5. Click the column head again, or specify the following transformation to unnest the Object column:

Transformation Name Unnest Objects into columns

Parameter: Column 0

Parameter: Path to rank
elements1

Parameter: Path to score
elements2

a. In the above, each Paths to elements entry specifies a key in the JSON record. The key's
associated value becomes the value in the new column, which is given the same name as the key.

b. So, this step breaks out the key-value pairs for the specified keys into separate columns in the
dataset.

6. Repeat the above process for the next level in the hierarchy.
7. You can now delete the source columns. In the example, these source columns are named metrics and 0

.

Tip: SHIFT + click these columns and then select Delete columns from the right panel. Click Add.

8. Repeat the above steps for each nested JSON object.

Copyright © 2022 Trifacta Inc. Page #227

Tip: If the above set of steps needs to be applied to multiple files, you might consider stopping
your work and returning to Flow View. Select this recipe and click Add New Recipe. If you add
successive steps in another recipe, the first one can be used for doing initial processing of your
JSON files, separate from any wrangling that you may do for individual files.

Tip: The unnesting process may have moved some columns into positions that are different from
their order in the original JSON. Use the Move command from the column menu to reposition your
columns.

Step - Wrangle your dataset

Your JSON data is ready for wrangling. Continue adding steps until you have transformed your data as needed
and are ready to run a job on it.

Step - Nest the JSON records

NOTE: If your desired JSON output does not include multiple hierarchies, you can skip this section. The
generated JSON files are a single JSON record per row.

If you ran a job on the example dataset, the output would look like the following:

{"rank":1043,"score":9679,"caption":"Such a good boy!","id":"9kt8ex","url":"https://www.example.com/w285fpp11.
jpg","filename":"w285fpp11.jpg"}
{"rank":1042,"score":9681,"caption":"This sweet puppy has transformed our life!","id":"9x2774","url":"
https://www.example.com/fmll0cy11.jpg","filename":"fmll0cy11.jpg"}
{"rank":1041,"score":9683,"caption":"We sure love our fur babies.","id":"a8guou","url":"https://www.example.
com/mljnmq521.jpg","filename":"mljnmq521.jpg"}

Suppose you want to nest the url and filename columns into a nested array called, resources.

Re-nest the lower hierarchies until have you have a single flat record, containing some Object type columns that
hold the underlying hierarchies. When the re-nested JSON records are exported, secondary hierarchies appear
as escaped string values. More details later.

Tip: The following steps reshape your data. You may wish to create a new recipe as an output of the
previous recipe where you can add the following steps.

Steps:

1. SHIFT + click the url and filename columns. Then, select Nest columns in the right-hand panel. This
transformation should look like the following:

Transformation Name Nest columns into Objects

Parameter: column1 url

Parameter: column2 filename

Parameter: Nest columns to Object

Parameter: New column column1
name

2. column1 now contains an Object mapping of the two columns. You can now nest this column again into
an Array:

Copyright © 2022 Trifacta Inc. Page #228

https://www.example.com/w285fpp11
https://www.example.com/fmll0cy11.jpg
https://www.example

Transformation Name Nest columns into Objects

Parameter: Columns column1

Parameter: Nest columns to Array

Parameter: New column resources
name

3. Delete column1.
4. Continue nesting other columns in a similar fashion. Repeat the above steps for the next level of the

hierarchy in your dataset.
5. You must re-nested from the bottom of the target hierarchy to the top.

NOTE: Do not nest the columns at the top level of the hierarchy.

6. When the column names contain all of the keys that you wish to generate in the top-level JSON output,
you can run the job.

Step - Generate JSON output

When you are ready, you can run the job. Create or modify a publishing action to generate a JSON file for output.
See Run Job Page.

When the job completes, you can click the JSON link in the Output Destinations tab of the Job Details page to
download your JSON file. See Job Details Page.

Output file for the above example should look like the following:

{"rank":1043,"score":9679,"caption":"Such a good boy!","id":"9kt8ex","url":"https://www.example.com/w285fpp11.
jpg","filename":"w285fpp11.jpg","resources":[{"url":"https://www.example.com/w285fpp11.jpg","filename":"
w285fpp11.jpg"}]}
{"rank":1042,"score":9681,"caption":"This sweet puppy has transformed our life!","id":"9x2774","url":"
https://www.example.com/fmll0cy11.jpg","filename":"fmll0cy11.jpg","resources":[{"url":"https://www.example.com
/fmll0cy11.jpg","filename":"fmll0cy11.jpg"}]}
{"rank":1041,"score":9683,"caption":"We sure love our fur babies.","id":"a8guou","url":"https://www.example.
com/mljnmq521.jpg","filename":"mljnmq521.jpg","resources":[{"url":"https://www.example.com/mljnmq521.jpg","
filename":"mljnmq521.jpg"}]}

Example 2 - Top-level array of JSON records

Your JSON may be formatted as a single top-level object containing an array of JSON records. The following
example contains records of messages about individual diet and exercise achievements:

{
 "object": [

 {
 "score": 19669,
 "title": "M/07/1'3\" [23lbs > 13lbs = 10lbs] Still a bit to go, but my owner no longer refers to me as

his chunky boy!",
 "ups": 19669,
 "id": "9kt8ex",
 "url": "https://i.redd.it/bzygw285fpp11.jpg",
 "short": "bzygw285fpp11.jpg"

 },
 {

 "score": 19171,
 "title": "M/29/5'11\" [605 pounds > 375 pounds = 230 pounds lost] (14 months) Still considered super

morbidly obese but I've made some good progress.",
 "ups": 19171,
 "id": "9x2774",
 "url": "https://i.redd.it/wbbufmll0cy11.jpg",

Copyright © 2022 Trifacta Inc. Page #229

https://www.example.com/w285fpp11
https://www.example.com/w285fpp11.jpg
https://www.example.com/fmll0cy11.jpg
https://www.example.com
https://www.example
https://www.example.com/mljnmq521.jpg
https://i.redd.it/bzygw285fpp11.jpg
https://i.redd.it/wbbufmll0cy11.jpg

 "short": "wbbufmll0cy11.jpg"
 },
 {

 "score": 16778,
 "title": "F/28/5\u20197\u201d [233lbs to 130lbs] Got tired of being obese and took control of my life!",
 "ups": 16778,
 "id": "a8guou",
 "url": "https://i.redd.it/3t0kmljnmq521.jpg",
 "short": "3t0kmljnmq521.jpg"

 },
 {

 "score": 16743,
 "title": "M/22/5'11\" [99lbs > 150lbs = 51lbs] Anorexia my recovery",
 "ups": 16743,
 "id": "atla3n",
 "url": "https://i.redd.it/9t6tvsjs16i21.jpg",
 "short": "9t6tvsjs16i21.jpg"

 }
]

}

The outer JSON is a single key-value pair:

key: object
value: array of JSON records

When source JSON records structured in this manner are imported, each JSON record in the object is imported
into a separate row. You can unnest this data by applying an Unnest values transformation.

NOTE: The object can contain only one nested array of JSON data. If the object contains multiple nested
arrays, it is not not broken into separate rows. All unnesting must be performed in your recipe steps

Suppose you want to compute the average of all workout scores. First, you must unnest the JSON records and
then apply the AVERAGE function.

Steps:

Tip: The easiest way to unnest is to select the column header for the column containing your data. After
you select the column header, you are provided with suggestions to Unnest Values into new columns.
You can use the Unnest suggestion and click Add. The following steps illustrate how to create this
transformation manually.

1. In the Recipe panel, click New Step.
2. In the Search panel, enter unnest values into new columns.
3. Specify the following transformation. Substitute the Paths to elements values below with the top-level keys

in your JSON records:

Transformation Name Unnest values into new columns

Parameter: Column object

Parameter: Path to elements id

Parameter: Path to elements score

Parameter: Path to elements short

Parameter: Path to elements title

Parameter: Paths to elements ups

Copyright © 2022 Trifacta Inc. Page #230

https://i.redd.it/3t0kmljnmq521.jpg
https://i.redd.it/9t6tvsjs16i21.jpg

Parameter: Path to elements url

4. The above step breaks out the key-value pairs for the specified keys into separate columns in the dataset.
Each Paths to elements entry specifies a key in the JSON record, which is used to create a new column of
the same name. The key's associated value becomes a cell value in the new column.

5. You can now delete the source column. In the example, the source column is object.

Tip: You can choose to remove the original from the source or not. In deeper or wider JSON files,
removing can help to identify what remains to be unnested. When you're done unnesting a column
and have removed data from the original, you should have an empty column.

Results:

id score short

9kt 19669 bzygw285
8ex fpp11.jpg

9x2 19171 wbbufmll0
774 cy11.jpg

a8g 16778 3t0kmljnm
uou q521.jpg

atla 16743 9t6tvsjs16
3n i21.jpg

title

M/07/1'3" [23lbs > 13lbs = 10lbs] Still a bit to go, but my owner no longer refers to
me as his chunky boy!

M/29/5'11" [605 pounds > 375 pounds = 230 pounds lost] (14 months) Still
considered super morbidly obese but I've made some good progress.

F/28/5’7” [233lbs to 130lbs] Got tired of being obese and took control of my life!

M/22/5'11" [99lbs > 150lbs = 51lbs] Anorexia my recovery

Now you can find the average score by applying average function.

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula AVERAGE(score)

Parameter: New column Average_score
name

Results:

id score short title

9kt 19669 bzygw28 M/07/1'3" [23lbs > 13lbs = 10lbs] Still a bit to go, but my owner no
8ex 5fpp11. longer refers to me as his chunky boy!

jpg

9x2 19171 wbbufmll M/29/5'11" [605 pounds > 375 pounds = 230 pounds lost] (14
774 0cy11. months) Still considered super morbidly obese but I've made some

jpg good progress.

a8g 16778 3t0kmljn F/28/5’7” [233lbs to 130lbs] Got tired of being obese and took
uou mq521. control of my life!

jpg

atla 16743 9t6tvsjs1 M/22/5'11" [99lbs > 150lbs = 51lbs] Anorexia my recovery
3n 6i21.jpg

ups url

ups url

19669 https://i.redd.it
/bzygw285fpp1
1.jpg

19171 https://i.redd.it
/wbbufmll0cy11
.jpg

16778 https://i.redd.it
/3t0kmljnmq52
1.jpg

16743 https://i.redd.it
/9t6tvsjs16i21.
jpg

Average_score

19669 https://i.redd. 18090.25
it
/bzygw285fp
p11.jpg

19171 https://i.redd. 18090.25
it
/wbbufmll0cy
11.jpg

16778 https://i.redd. 18090.25
it
/3t0kmljnmq5
21.jpg

16743 https://i.redd. 18090.25
it
/9t6tvsjs16i2
1.jpg

Copyright © 2022 Trifacta Inc. Page #231

https://i.redd.it
https://i.redd.it
https://i.redd.it
https://i.redd.it
https://i.redd
https://i.redd
https://i.redd
https://i.redd
https://18090.25
https://18090.25
https://18090.25
https://18090.25

Copyright © 2022 Trifacta Inc. Page #232

Working with JSON v1
Contents:

Enable
Migrate to v2

JSON Input and Output
Example
JSON Workflow

Step - Import the file
Step - Convert to one JSON record per row
Step - Convert JSON to Object type
Step - Unnest JSON records
Step - Wrangle your dataset
Step - Nest the JSON records
Step - Generate JSON output
Step - Final Cleanup

Version 1: This section describes how you can import JSON files into Trifacta®, convert them to tabular format,
wrangle them, and then export them back in the same JSON format.

The basic workflow is described by way of example. In the example workflow, the JSON file must be imported
into Trifacta®, a new column must be inserted into the JSON, and the resulting JSON must be exported in the
same structure.

Enable

This legacy method of working with JSON is likely to be deprecated in a future release.

If you have existing flows that were created using this legacy method, they should continue to work as expected.
However, you should migrate your flows to use the newer version as soon as possible. See Migrate below.

NOTE: The legacy version of JSON import is required if you are working with compressed JSON files or
only Newline JSON files.

This method can be enabled through workspace settings. For more information, see Workspace Settings Page.

Migrate to v2

Any flow that you have created using the v1 version of the JSON importer should work without modification.

In the future, the v1 version will be deprecated. You can use the following method to migrate your flows to use
the new version of the JSON importer.

NOTE: The v1 version of JSON import is supported for imported datasets. If you use these datasets in
other workflows, they are likely to require modifications that you have done in recipes.

Basic workflow:

Copyright © 2022 Trifacta Inc. Page #233

This migration workflow creates new versions of these imported datasets and fixes recipes accordingly.

1. Through the Library page, locate the imported datasets that are based on JSON files.
a. You may be able to just search for json.

2. For each JSON imported dataset:
a. Click the link.
b. In the Dataset Details page, copy the value for the Location. Paste it into a text file.
c. In the Dataset Details page, locate flow or flows where the dataset is in use.

Tip: If you copy the link address of the flow and paste it into a text file, you can paste that
later into a browser and jump directly to the flow.

d. Repeat the above steps for each JSON-based imported dataset.
3. You should now have a list of links to the source data and the flows where your JSON imported datasets

are in use.
4. In the Library page, create a new version of each imported dataset:

a. Click Import Data.
b. Click the appropriate connection.
c. Paste the link to the Location where the source is stored.
d. The data is ingested through the conversion service.

Tip: Click the icon for the dataset in the right panel. All rows in the Preview panel should be
properly structured. Nested data may not be broken out into separate columns at this time.

e. Rename the dataset as needed.

Tip: You should give each new version of the imported dataset a consistent prefix or suffix
tag, such as -v2. Later, you can locate these new imported datasets easily through search
in the Library.

f. Click Continue.
5. Repeat the above steps for each imported dataset that you are updating to v2.
6. For each of these flows:

a. Navigate to it.
b. Locate the v1 imported dataset in it. You might copy the name.
c. Click Add Datasets. Search for the v2 imported dataset. Add it to the flow.

7. In Flow View:
a. Click the recipe that is in use with the v1 version of the imported dataset. In the context menu in the

right panel, select Make a copy > without inputs.
b. Select the copied recipe.
c. In the context menu in the right panel, select Change input. Select the v2 imported dataset.
d. Your v2 imported dataset is now connected to a version of your recipe.
e. Select the recipe object. In the right panel, you should see a preview of the recipe steps.

NOTE: In the recipe, the steps where you modified the imported dataset into tabular format
are likely to be be broken. This is ok.

8. Click Edit recipe.
9. In the Transformer page:

a. Disable recipe step 1.
b. Review the state of the data grid to see if the data is organized in tabular form.
c. If not, repeat the above steps for the next step in your recipe.

Copyright © 2022 Trifacta Inc. Page #234

d. Continue until the data is in tabular form.
10. After some additional tweaking, your recipe should contain no broken steps, and your data should appear

in tabular form.
11. You may wish to run a job or download your sample data to compare it to outputs from your v1 imported

dataset and steps. You may need to create an output object first.
12. You can now integrate these changes in either of the following ways:

a. Apply to existing recipe: Change the input on the existing to the v2 imported dataset. Apply any
disabling of steps and other tweaks to the recipe's connected to the v1 imported dataset.

NOTE: Before applying the above changes, you might want to download the v1 recipe
through the Recipe panel.

b. Use v2 recipe in the flow: You could simply switch over to using the new recipe. Caveats:
i. You must recreate any outputs and schedules from the v1 recipe.
ii. Internal identifiers for the new recipe and its outputs are different from the v1 recipe. These

new identifiers may impact API-based automation.
iii. Other application objects that reference the v1 recipes, such as flow tasks in your plans,

must be fixed to use the new recipe or output objects.
13. Run a production job to verify that your flow is producing consistent data with the v2 imported dataset.
14. Repeat as needed for other flows.

JSON Input and Output

Input:

It is easier to work with JSON in which each row of the file is a record. When a record spans multiple rows,
additional steps are required in the application to render it into tabular format. The example uses multi-row
JSON records.

Output:

NOTE: JSON-formatted files that are generated by Trifacta are rendered in JSON Lines format, which is
a single line per-record variant of JSON. For more information, see http://jsonlines.org.

Trifacta can generate a JSON file as an output for your job. Characteristics of generated JSON files:
Newline-delimited: The end of each record is the \n character. If your downstream system is
expecting comma-delineated records except for the last one, additional work is required outside of
the application.
Non-nested: Each record in the generated file is flat.

For multi-level JSON hierarchies, you can nest columns together and leave the top level as a
set of columns in the data grid. However, on output, the second and lower hierarchies appear
as quoted string values in the output. Additional cleanup is required outside of the
application.

Example

This example dataset contains information on books. In this case:

The data is submitted as one attribute per row. A single JSON record spans many rows.
The total number of books is three.
The JSON data has two hierarchies.

"book": {
 "id": "bk101",
 "author": "Guy, Joe",
 "title": "Json Guide",
 "genre": "Computer",

Copyright © 2022 Trifacta Inc. Page #235

http://jsonlines.org

 "price": "44.95",
 "publish_date": "2002-04-26",
 "characteristics": {

 "cover_color": "black",
 "paper_stock": "20",
 "paper_source": "new"

 },
 "description": "An in-depth look at creating applications."

},
"book": {
 "id": "bk102",
 "author": "Nelson, Rogers",
 "title": "When Doves Cry",
 "genre": "Biography",
 "price": "24.95",
 "publish_date": "2016-04-21",
 "characteristics": {

 "cover_color": "white",
 "paper_stock": "15",
 "paper_source": "recycled"

 },
 "description": "Biography of a prince."

},
"book": {
 "id": "bk103",
 "author": "Fitzgerald, F. Scott",
 "title": "The Great Gatsby",
 "genre": "Fiction",
 "price": "9.95",
 "publish_date": "1925-04-10",
 "characteristics": {

 "cover_color": "blue",
 "paper_stock": "20",
 "paper_source": "new"

 },
 "description": "Classic American novel."

}

JSON Workflow

1. Import the JSON file.

NOTE: During import, you should deselect the Detect Structure option. You are likely to need to
rebuild the initial parsing steps to consume the file properly. Details are provided later.

2. If needed, convert loose JSON to a single JSON record per row.
3. Unnest the data into columns.

a. Each level in the JSON hierarchy must be un-nested in a separate step.
4. When all of the JSON data is in tabular form, perform any Wrangle transformations.
5. If you need to retain the hierarchy, you must nest the lower levels of the JSON hierarchy back into their

original form. Leave the top level un-nested.
a. If it is ok to write out flat JSON records, you can export without nesting the data again.

6. Run the job, generating a JSON output.

Step - Import the file

1. Through the Import Data page, navigate and select your JSON file for import.
2. When the file has been loaded, click Edit settings for the dataset card in the right panel. In the Import

Settings dialog, deselect the Detect Structure checkbox.
3. Complete the rest of the import process.
4. In Flow View, add the JSON-based imported dataset to your flow and create a recipe for it.
5. Select the recipe, and click Edit Recipe....

Copyright © 2022 Trifacta Inc. Page #236

Step - Convert to one JSON record per row

NOTE: This step is required only if a single JSON record in your imported dataset spans multiple rows. If
you have single-row JSON records in the Transformer page, please skip to the next section.

1. In the Transformer page, you should see your loosely formatted JSON in a single column. Each row
contains a separate attribute, and a single record spans multiple rows.

2. Open the Recipe panel on the right side. The initial parsing steps for the data are displayed.
3. In Recipe panel, delete all steps except the first one.
4. The first one is a Break into rows transformation. This transformation can only appear in the first step of a

recipe.
5. Select the step, and click the Pencil icon to edit it.
6. In the Transform Builder, the Split on value is probably the \n character.
7. The above signals to the application to break up the data into individual rows on the newline (\n)

character. This transformation then breaks up your loose JSON on every single attribute. You must modify
the Split on value so that it captures only the first attribute of each JSON record. For the above dataset,
the Split on value must be the following, noting the space after the colon:

"book":

8. Click Add to save the step again.
9. The above dataset should now have four rows, with the first one an empty row. This empty row is caused

by the insertion of the \n in front of the first reference to the above string. In the column histogram, select
the gray bar, which selects the empty row. In the Suggestions panel, locate the Delete rows suggest, and
click Add. The row is removed.

10. You now have individual rows for each JSON record.

Step - Convert JSON to Object type

The next step involves converting your JSON records to a column of Object type values. The Object data type is
a means of rendering records into key-value pairs. However, its structure is a little different from JSON. For more
information, see Object Data Type.

Steps:

The following steps convert your JSON to an Object data type.

1. Since JSON uses character indentation to convey structure, you should remove these indentations if they
appear in your dataset. For our two-layered example, you can use the following transformation:

Transformation Name Replace text or patterns

Parameter: Column column1

Parameter: Find /\n\s*"/

Parameter: Replace with \"

Parameter: Match all true
occurrences

a. In the above, the key term is the Find pattern, which is a regular expression:

/\n\s*"/

b. The two forward slashes at the ends define the pattern as a regular expression.

Copyright © 2022 Trifacta Inc. Page #237

2.

3.

4.
5.
6.
7.

c. The content in the middle matches on the pattern of a newline character, an arbitrary number of
spaces, and a double quote.

d. This pattern is replaced with just the double-quote, removing the preceding part of the pattern from
the dataset.

e. For more information on matching patterns, see Text Matching.
In standard JSON, a comma is used to demarcate the end of a line or a record, except for the last one in a
set.

a. In the above example, the first two records have commas at the end of them. Here is a snippet of
their ends:

... "description":"An in-depth look at creating applications."},

... "description":"Biography of a prince."},

... "description":"Classic American novel."}

b. To convert these records to Object type, the commas at the end of the first two rows must be
removed:

Transformation Name Replace text or patterns

Parameter: Column column1

Parameter: Find `\n\},\n{end}`

Parameter: Replace with }

Parameter: Match all true
occurrences

i. The above transformation is similar to the previous one. However, in this one, the Find
pattern uses a Pattern to indicate that the pattern should only be matched at the end of a
record:

{end}

ii. This token in the pattern prevents it from matching if there are other instances of the pattern
nested within the record.

Individual records should look similar to the following:

NOTE: Below, some values are too long for a single line. Single lines that overflow to additional
lines are marked with a \. The backslash should not be included if the line is used as input.

{"id": "bk101","author": "Guy, Joe","title": "Json Guide","genre": "Computer", \
"price": "44.95","publish_date": "2002-04-26",{"cover_color": "black", \
"paper_stock": "20","paper_source": "new"}, \
"description": "An in-depth look at creating applications."}

These records are suitable for conversion to Object data type.
To change the data type for the column, click the icon to the left of the column header. Select Object.
The column data type is changed to Object. The step to change data type is added to your recipe, too.
If the column histogram now displays some mismatched records.

a. Review those records to determine what is malformed.
b. Delete the recipe step that changes the data type to Object.
c. Make fixes as necessary.
d. Switch back to Object data type. Iterate as needed until all records are valid when the column is

converted to Object type.

Copyright © 2022 Trifacta Inc. Page #238

Step - Unnest JSON records

The next step is to convert your JSON records to tabular format.

NOTE: For JSON records that have multiple levels in the hierarchy, you should unnest the top level of
the hierarchy first, followed by each successive level.

Tip: The easiest way to unnest is to select the column header for the column containing your Object
data. Unnest should be one of the suggested options. If not, you can use the following process.

1. In the Recipe panel, click New Step.
2. In the Search panel, enter unnest object elements.
3. Specify the following transformation. Substitute the Paths to elements values below with the top-level keys

in your JSON records:

Transformation Name Unnest object elements

Parameter: Column column1

Parameter: Path to elements1 id

Parameter: Path to elements2 author

Parameter: Path to elements3 title

Parameter: Path to elements4 genre

Parameter: Path to elements5 price

Parameter: Path to elements6 publish_date

Parameter: Path to elements7 description

Parameter: Remove elements true
from original

a. In the above, each Paths to elements entry specifies a key in the JSON record. The key's
associated value becomes the value in the new column, which is given the same name as the key.

b. So, this step breaks out the key-value pairs for the specified keys into separate columns in the
dataset.

Tip: You can choose to remove the original from the source or not. In deeper or wider
JSON files, removing can help to identify what remains to be unnested.

4. Repeat the above process for the next level in the hierarchy. In the example, this step means unnesting
the characteristics node:

Transformation Name Unnest object elements

Parameter: Column column1

Parameter: Path to elements1 characteristics.cover_color

Parameter: Path to elements2 characteristics.paper_stock

Copyright © 2022 Trifacta Inc. Page #239

Parameter: Path to elements3 characteristics.paper_source

Parameter: Remove elements true
from original

5. You can now delete column1. From the column menu to the right of column1, select Delete.
6. You have now converted your JSON to tabular format.

Tip: If the above set of steps needs to be applied to multiple files, you might consider stopping
your work and returning to Flow View. Select this recipe and click Add New Recipe. If you add
successive steps in another recipe, the first one can be used for doing initial processing of your
JSON files, separate from any wrangling that you may do for individual files.

Tip: The unnesting process may have moved some columns into positions that are different from
their order in the original JSON. Use the Move command from the column menu to reposition your
columns.

Step - Wrangle your dataset

Your JSON data is ready for wrangling.

In the following example, the discount column is created. If the publication date is before 01/01/2000, then the
discount is 0.1 (10%):

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula IF(publish_date < DATE(2000, 1, 1), 0.1, 0)

Parameter: New column discount
name

Continue adding steps until you have transformed your data as needed and are ready to run a job on it.

Step - Nest the JSON records

NOTE: If your desired JSON output does not include multiple hierarchies, you can skip this section. The
generated JSON files are a single JSON record per row.

If a job is run using the recipe created so far on the example data, a newline-delimited JSON file that has no
hierarchies in it can be generated by the application. However, the dataset is a two-level hierarchy, so the
elements in the characteristics hierarchy are written out in the following manner:

"characteristics.cover_color":"black","characteristics.paper_stock":20,"characteristics.paper_source":"new",
"characteristics.cover_color":"white","characteristics.paper_stock":15,"characteristics.paper_source":"
recycled",
"characteristics.cover_color":"blue","characteristics.paper_stock":20,"characteristics.paper_source":"new",

You can take one of two approaches:

1. Generate the JSON file with a flat hierarchy. Output looks like the above. Use an external tool to unnest
the second and lower hierarchies appropriately.

Copyright © 2022 Trifacta Inc. Page #240

2. Re-nest the lower hierarchies until have you have a single flat record, containing some Object type
columns that hold the underlying hierarchies. When the re-nested JSON records are exported, secondary
hierarchies appear as escaped string values. More details later.

If you are re-nesting the lower hierarchies, you can use the following approach.

Tip: The following steps reshape your data. You may wish to create a new recipe as an output of the
previous recipe where you can add the following steps.

1. When you re-nest, you want to nest from the lowest to top tier of the hierarchy.
2. In the example, the following columns should be nested together: characteristics.cover_color, ch

aracteristics.paper_stock, and characteristics.paper_source:

Transformation Name Nest columns into Objects

Parameter: column1 characteristics.cover_color

Parameter: column2 characteristics.paper_stock

Parameter: column3 characteristics.paper_source

Parameter: Nest columns to Object

Parameter: New column characteristics
name

3. In the generated characteristics column, you can remove the characteristics. from the key
value:

Transformation Name

Parameter: Column

Parameter: Find

Parameter: Replace with

Replace text or patterns

characteristics

`characteristics.`

(empty)

4. Now, delete the three source columns:

Transformation Name Delete columns

Parameter: column1 characteristics.cover_color

Parameter: column2 characteristics.paper_stock

Parameter: column3 characteristics.paper_source

5. Repeat the above steps for the next level of the hierarchy in your dataset.

NOTE: Do not nest the columns at the top level of the hierarchy.

Copyright © 2022 Trifacta Inc. Page #241

Step - Generate JSON output

When you are ready, you can run the job. Create or modify a publishing action to generate a JSON file for output.
See Run Job Page.

When the job completes, you can click the JSON link in the Output Destinations tab of the Job Details page to
download your JSON file. See Job Details Page.

Step - Final Cleanup

Outside the application, you may need to do the following:

1. Since the JSON output is newline delimited, your downstream system may need you to add commas at
the end of each record but the last one.

2. If you have re-nested JSON hierarchies into your flat records, the exported JSON for secondary
hierarchies appears as quoted strings, like the following:

"characteristics":"{\"cover_color\":\"black\",\"paper_stock\":\"20\",\"paper_source\":\"new\"}",
"characteristics":"{\"cover_color\":\"white\",\"paper_stock\":\"15\",\"paper_source\":\"recycled\"}",
"characteristics":"{\"cover_color\":\"blue\",\"paper_stock\":\"20\",\"paper_source\":\"new\"}",

The quoted strings can be fixed by simple search and replace.

Copyright © 2022 Trifacta Inc. Page #242

Cleanse Tasks
The following topics pertain to cleaning data that has been imported into Trifacta®.

Copyright © 2022 Trifacta Inc. Page #243

Rename Columns
Contents:

Name Requirements
Reserved keywords

Rename Individual Columns
Rename a column through column menu
Rename a column through suggestions
Rename a column through transformation
Rename a new column

Auto-Generated Column Names
Rename Multiple Columns

Manual rename multiple columns
Add prefix
Add suffix
Apply rename to all columns
Convert to lowercase
Convert to UPPERCASE
Keep from beginning (left)
Keep from end (right)
Find and replace
Use row(s) as column names
Combine multiple rows

In the Trifacta® application, you can rename individual columns through the column drop-down. Through
transform steps, you can apply renaming to one or more columns.

NOTE: An imported dataset requires about 15 rows to properly infer column data types and the row, if
any, to use for column headers.

Name Requirements

Column names are case-insensitive and cannot begin with whitespace.
Column names cannot contain escaped characters, such as \n.

NOTE: When publishing to Avro,Parquet, or database tables, column names support alphanumeric
characters and the underscore (_) character only. Column names cannot begin with a numeral. Other
characters cause an error to occur.

NOTE: Column names with spaces or special characters in a transformation must be wrapped by curly
braces. Example:

column1,{Column 2 with space},column3

Tip: To prevent potential issues with downstream systems, you should limit your column lengths to no
more than 128 characters.

Copyright © 2022 Trifacta Inc. Page #244

Reserved keywords

The following keywords should not be used as column names, as they may conflict with underlying requirements
of the platform or the running environments with which it integrates:

NOTE: This list may not be complete. If your job fails with a duplicate column error, please review your
column names to identify potential reserved keywords among them.

TRIFACTA__LINEAGE_INFO
TRIFACTA__FILE_LINEAGE_INFO

NOTE: There are two underscore characters in a row (__) after TRIFACTA in each of the above
entries.

Rename Individual Columns

Rename a column through column menu

To rename a column, click the drop-down caret next to the column name. Click Rename.

Rename a column through suggestions

Steps:

1. If your column already exists, click the name of the column.
2. Click the Rename suggestion card.
3. Click Modify.
4. Replace the newColumnName value with your preferred column name.

Rename a column through transformation

You can use the following transformation to rename a single column through the Transform Builder. In this case,
the Rename columns transformation is used to perform a manual rename of MySourceCol to MyNewCol.

Transformation Name Rename columns

Parameter: Option Manual rename

Parameter: Column MySourceCol

Parameter: New MyNewCol
name

Rename a new column

Columns that are generated through transform steps are given a default name.

For the following types of transforms, however, you can specify the column name as part of the step:

derive
extractkv
merge
nest

When a transform is added to the recipe, an as: clause is automatically added to the transform step. You can
modify your transform to change the value of the as: column. For example, the following transform generates a

Copyright © 2022 Trifacta Inc. Page #245

new column with the first word from the Name column. The as: value renames this generated column as FirstN
ame:

Transformation Name New formula

Parameter: Formula Single row formula
type

Parameter: Formula FIND(Name,`{start} `,false,0)

Parameter: New name FirstName

Auto-Generated Column Names

When your transforms generate new columns, names are automatically assigned to these columns based on the
following pattern.

1. If the transform includes a function reference, the function name is included in the new column. Example:

Transformation Name New formula

Parameter: Formula Single row formula
type

Parameter: Formula LEFT(city,3)

New column name: left_city

2. If the above step is applied again, a duplicate column is generated with the following name. Example:

Transformation Name New formula

Parameter: Formula Single row formula
type

Parameter: Formula LEFT(city,3)

New column name: left_city1

3. If the transform does not contain a function reference, the following convention is used:

Transformation Name New formula

Parameter: Formula Single row formula
type

Parameter: Formula 'A'

New column name: column1

Transformation Name New formula

Parameter: Formula Single row formula

Copyright © 2022 Trifacta Inc. Page #246

type

Parameter: Formula 'B'

New column name: column2

Rename Multiple Columns

Trifacta enables to rename multiple columns using a single transformation. You can perform this batch renaming
using one of the methods described in this section.

NOTE: In macros, Rename Columns transformations do not work. This is a known issue.

Tip: To prevent potential issues with downstream systems, you should limit your column lengths to no
more than 128 characters.

Steps:

1. Open the Transform Builder to add a new step to your recipe.
2. From the drop-down in the first textbox, select Rename columns.
3. Select your method of renaming. See below.
4. Select the column or columns to which to apply the rename.

Tip: To apply the renaming across all columns in the dataset, select All. This option is useful for
pattern-based renames, such as adding a prefix or changing case.

5. To add the step to your recipe, click Add.

Manual rename multiple columns

For each column that you select, you must add the new name just below the old one.

To add additional columns to the mapping, click Add.
To remove columns from the mapping, click Remove.

Add prefix

For the selected columns, you can apply a specific prefix value to the names.

Old Column Names Prefix New Column Names

column1 pre_ pre_column1

column2 pre_ pre_column2

column3 pre_ pre_column3

Transformation:

Transformation Name Rename columns

Parameter: Option Add prefix

Parameter: Column column1,column2,column3

Copyright © 2022 Trifacta Inc. Page #247

Parameter: Prefix pre_

Add suffix

For the selected columns, you can apply a specific suffix value to the names. Example:

Old Column Names Suffix New Column Names

column1 _new column1_new

column2 _new column2_new

column3 _new column3_new

Transformation:

Transformation Name Rename columns

Parameter: Option Add suffix

Parameter: Column column1,column2,column3

Parameter: Suffix _new

Apply rename to all columns

The following transformation performs the same rename as the previous one. Instead, it uses the All option to
apply the rename across all columns of the dataset. If the number of columns changes in the future, then the
rename is still applied across all of the columns in the dataset.

Transformation:

Transformation Name Rename columns

Parameter: Option Add suffix

Parameter: Columns All

Parameter: Suffix _new

Convert to lowercase

For the selected columns, you can convert the columns names to lowercase. Example:

Old Column Names New Column Names

Daily daily

POS_Cost pos_cost

Sales_Type sales_type

Transformation:

Transformation Name Rename columns

Parameter: Option Convert to lowercase

Parameter: Column Daily,POS_Cost,Sales_Type

Copyright © 2022 Trifacta Inc. Page #248

For example, if the old column name is Sales_Type, then the new column name is renamed to sales_type.

Convert to UPPERCASE

For the selected columns, you can convert the columns names to uppercase. Example:

Old Column Names New Column Names

Daily DAILY

POS_Cost POS_COST

Sales_Type SALES_TYPE

Transformation:

Transformation Name Rename columns

Parameter: Option Convert to UPPERCASE

Parameter: Column Daily,POS_Cost,Sales_Type

For example, if the old column name is Sales_Type, then the new column name is renamed to SALES_TYPE.

Keep from beginning (left)

For the selected columns, you can specify the number of characters to keep from the beginning (left) of the
column names. Based on the number of characters you provide, the column name is updated. Example:

Old Column Names Number of characters New Column Names

Daily 3 Dai

POS_Cost 3 POS

Sales_Type 3 Sal

Transformation:

Transformation Name Rename columns

Parameter: Option Keep from beginning (left)

Parameter: Column Daily,POS_Cost,Sales_Type

Parameter: Number of characters 3

For example, if the old column name is Sales_Type, then based on the number of characters to keep from the
beginning (left) is 3, then new column name is renamed to Sal.

Keep from end (right)

For the selected columns, you can specify the number of characters to keep from end (right) of the column
names. Based on the number of characters you provide, the column name is updated. Example:

Old Column Names Number of characters New Column Names

Daily 4 aily

POS_Cost 4 Cost

Copyright © 2022 Trifacta Inc. Page #249

Sales_Type 4 Type

Transformation:

Transformation Name Rename columns

Parameter: Option Keep from beginning (right)

Parameter: Column Daily,POS_Cost,Sales_Type

Parameter: Number of characters 4

For example, if the old column name is Sales_Type, then based on the number of characters to keep from the
end (right) is 4, then new column name is renamed to Type.

NOTE: If the number of characters are more than the length of the column names, then the whole name
of the column is retained.

Find and replace

You can apply literals, Patterns , or regular expressions to match patterns of text in the source column names.
These matching values can then be replaced by a fixed value.

Tip: The default behavior is to replace the first instance. Use the Match all occurrences checkbox to
apply the pattern matching across all columns in your set.

For the selected columns, you can specify the number of characters to keep from end (right) of the column
names. Based on the number of characters you provide, the column name is updated. Example:

Old Column Names New Column Names

column1 Field1

column2 Field2

column3 Field3

Transformation:

Transformation Name Rename columns

Parameter: Option Find and replace

Parameter: Column column1,column2,column3

Parameter: Find 'column'

Parameter: Replace with 'Field'

The above uses literal values for find and replace. For more information on pattern-based matching, see
Text Matching.

Use row(s) as column names

When this method is applied, all of the values in the specified row or rows are used as the new names for each
column.

Copyright © 2022 Trifacta Inc. Page #250

NOTE: This method applies to all columns in the dataset.

Types:

Type Description

Use a single row to rename columns Specify the row number in the sample to use as the source for column names.

NOTE: Source row number information must be available. See below.

Use the first row in the sample to rename columns Use the first row in the sample as the name for all columns.

Combine multiple rows to rename columns Specify two or more rows to combine into column names. Details are below.

NOTE: Source row number information must be available. See below.

Source row number information:

NOTE: If source row number information is no longer available, this method cannot be used for column
rename.

If a value is not applied for the source row number, the next row of data is used.
Source row numbers apply. Current row numbers may not be the same. In the data grid, mouse over the
leftmost column to see available row information.
Each value in the row or combination of values across rows must be unique within the set of new column
names.
The row is removed from its original position.
If the product is unable to find unique multi-row headers for the column, the first row of the header set is
used.

Combine multiple rows

The following transformation renames the columns in the dataset based on the values in rows 3 and 4 of the data:

Transformation Name Rename columns

Parameter: Option Use row(s) as column names

Parameter: Type Combine multiple rows to name columns

Parameter: Row Numbers - row A 3

Parameter: Row Numbers - row B 4

Parameter: Choose your '_'
separator

Parameter: Fill across? Selected

In the above:

The separator is defined as an underscore character (_). This value can be empty.
When Fill across is selected, if any row value is empty, the last non-empty value for the row in a previous
column is used as part of the column header.

Copyright © 2022 Trifacta Inc. Page #251

Copyright © 2022 Trifacta Inc. Page #252

Sanitize Column Names
If needed, you can clean the names of the columns in your dataset.

When column names are sanitized:

alphanumeric characters and underscores (_) are permitted
spacebars are converted to underscores
all other characters are removed

Although Trifacta® supports a wider range of characters, you may wish to sanitize your column names to simplify
publishing to and import into downstream systems.

Sanitize during Import

The above sanitization can be applied to your column names when the dataset is imported.

Tip: If you notice issues with references to your column names in your recipes, you may be able to fix
them by re-importing the dataset and choosing to sanitize during import.

Steps:

1. From the menubar, click Library.
2. In the Library page, click Import Data.
3. In the Import Data page, select the file or table to import.
4. Click Edit Settings.
5. In the dialog, select Remove special characters from column names.
6. Complete the import of the dataset.

For more information, see File Import Settings.

Sanitize via Transformation

Through the Transform Builder, you can add a step to sanitize column names in your recipe.

Transformation Name Rename by removing special characters

Parameter: Option Clean current column names

Tip: If you are sanitizing your column names for downstream systems, you should add this step at the
end of your recipe.

You can perform more fine-grained column renaming operations. See Rename Columns.

Copyright © 2022 Trifacta Inc. Page #253

Change Column Data Type
Contents:

Change Type
Change from column menus
Change through Transform Builder

Lock Data Type
Via Transform Builder

Unlock Data Type
Via Transform Builder
Via column menus

Change Datetime Data Type
Via column menus
Via Transform Builder

While transforming your data, you may need to change the data type of one or more columns.

For example, data of String type may be the easiest to manipulate. Since there are no mismatched values for
String data type, you may wish to change a column's data type to this baseline type.

Data types that you see in the Transformer page represent types that are understood by the product.
When data is imported from a separate datastore, Trifacta may apply internal data types to the data.
These types may differ from the original data typing in the source. As needed, the inferring of data types
can be disabled at the file, connection, or global level. For more information, see Disable Type Inference.
When data is published from the product to a separate datastore, these types may be mapped to different
data types in the target. For more information, see Type Conversions.

Tip: You can use the Change Column Type transformation to override the data type inferred for a
column. However, if a new transformation step is added, the column data type is re-inferred, which may
override your specific typing. You should consider applying Change Column Type transformations as late
as possible in your recipes.

For more information on the available data types, see Supported Data Types.

Change Type

You can change a column's data type in one of the following ways:

Change from column menus

You can change the data type for individual columns through the following column menus:

Copyright © 2022 Trifacta Inc. Page #254

1. To the left of the column name, you can click the icon and select a new data type from the list.

Figure: Column Data Type Menu

2. To the right of the column name, you can click the caret to open the column menu. Select Change Type an
d make a selection from the sub-menu.

Tip: Both of the above methods become individual steps in your recipe.

Change through Transform Builder

You can change data type for a single column or multiple columns through the Transform Builder. You can use a
transformation like the following, which changes the columns LastName, FirstName, and Address to String
data type.

Transformation Name Change column type

Parameter: Column 1 LastName

Parameter: Column 2 FirstName

Parameter: Column 3 Address

Parameter: New Type String

NOTE: You can lock the data type for columns to prevent it from being updated when the data is
transformed in subsequent steps.

NOTE: When specifying a data type by name, you must use the internal value for the data type. The
value in the column menu is the display name for the type.

For more information, see Valid Data Type Strings.

Copyright © 2022 Trifacta Inc. Page #255

Lock Data Type

You can lock a column's data type through the Transform Builder. When a column's data type is locked, the data
type is no longer automatically checked and updated by the Trifacta application.

Tip: If you do not wish to have the data types modified, you can add a transformation to lock all of them
in a single step. Details are below.

Via Transform Builder

1. In the Search panel, enter lock column type.
2. From the Columns drop-down, select any one of the following options:

a. Multiple: Select one or more columns from the drop-down list.
b. Range: Specify a start column and ending column. All columns inclusive are selected.
c. All: Select all columns in the dataset.

NOTE: This option locks all the column's data type.

d. Advanced: Specify the columns using a comma-separated list. You can combine multiple and
range options under Advanced. Example:

c1,c3,c5~c8

3. Specify the other parameters.
4. To add the step to your recipe, click Add.

Example - lock a column's data type

This transformation locks the column data type:

Transformation Name lock column to current type

Parameter: Columns Multiple

Parameter: Column 1 Store_Nbr, Whse_Name

Example - lock the data types for all columns

This transformation locks the data types for all columns:

Tip: Many transformations support the Advanced option for column selection. You can specify column
ranges, including all columns using the asterisk (*) wildcard. See the following.

Transformation Name lock column to current type

Parameter: Columns Advanced

Parameter: Column 1 *

Unlock Data Type

You can unlock a column's data type by following any one of these methods:

Copyright © 2022 Trifacta Inc. Page #256

Via Transform Builder

In the Transformer Builder, you can select unlock to the current type option to apply the unlock feature to one or
more columns.

This transformation unlocks the column data type:

Transformation Name unlock column to current type

Parameter: Columns Multiple

Parameter: Column 1 Store_Nbr, Whse_Name

Via column menus

You can unlock the data type for individual columns through the following column menus:

To the left of the column name, you can click the icon and select Automatically update. The selected
column is unlocked.

Change Datetime Data Type

If you are changing a column's data type to Datetime, you must also select a format string to apply to the column.

Via column menus

You can apply a Datetime data type through the column menus. When you choose the Datetime data type, you
must apply a format for your Datetime values. For more information, see Choose Datetime Format Dialog.

Via Transform Builder

In the Transformer Builder, you can apply a specific transformation to format one or more columns to Datetime
data type, using a specific format.

Tip: You can use the following transformation to change the format of a Datetime column.

This transformation looks like the following:

Transformation Name Change column type

Parameter: Columns Multiple

Parameter: Column 1 myDate

Parameter: New Type Date/Time

Parameter: Date/time month*dd*yyyy*hh:MMaX
Type

Copyright © 2022 Trifacta Inc. Page #257

Copy and Paste Columns
You can cut, copy, and paste columns or column values in your dataset through the Column Browser panel or the
column menus in the data grid.

NOTE: You cannot copy and paste columns between datasets.

Steps:

1. In the Column Browser or the data grid, select the column or columns for your source.
2. After you have selected one or more columns, from the column menu, select one of the following options:

Menu Description
option

Cut Cut the column(s) to the clipboard. Selection is removed from the dataset temporarily.

NOTE: Cut operations do not add steps to your dataset. If you choose to do something other than pasting
the column or its values, the source column is left untouched.

Copy Copy the column(s) to the clipboard.

Paste Paste the column(s) in the clipboard before the currently selected column in the dataset.
before

Paste after Paste the column(s) in the clipboard after the currently selected column in the dataset.

Paste Paste the values from the column(s) in the clipboard into the selected column(s).
values
only

NOTE: When values are pasted into the column, the column data type may be re-inferred.

3. Select the column where you wish to move the columns or paste the values.

NOTE: Do not select multiple columns for multi-column pasting. You must select only one column.
Multi-column operations are applied to the columns to the bottom/right of the selection.

4. From the column menu, select Paste:
a. Paste before: Paste cut or copied columns before the selected one.
b. Paste after: Paste column(s) after the selected one.
c. Paste values: Replace values in the selected column(s) with the values from the column(s) in the

clipboard. The number of selected columns on the clipboard and in the selected target area must
match. Data types do not have to match.

NOTE: When values are pasted into the column, the column data type may be re-inferred.

Copyright © 2022 Trifacta Inc. Page #258

Create Column by Example
You can create a new column of data from an existing one by providing example values for the new column for
values in the source column. With each successive example value, Transformation by Example (TBE) improves
the quality of the output values, until you have the desired set of values for your newly generated column.

Limitations:

Transformation by Example works best for text-based inputs. Non-text inputs are treated as String type by
the feature.

NOTE: Multi-value inputs, such as Object or Array data types, must be converted to String data
type prior to transformation by example.

In the Transformer page, TBE is applied across the currently displayed sample. In the entire dataset, there
may be outlier values that do not match any of the examples that you have provided.

Tip: If your column data is quite varied, you should collect additional samples to verify that your
TBE is properly matching all values in the column.

For more information, see Overview of TBE.

Steps:

1. In the Transformer page, locate the column to use as your source. From the column menu, select Create
column from examples.

2. In the Transform Builder, enter the new column name.
3. In the following example, a new column called zip is being created from the Addresses column:

Figure: Selected column and first value is specified
4. Double-click an empty cell in the Preview column to populate it with an example. In the above, the zip code

from the first value has been entered into the Preview column: 92704-4321.

Tip: You can copy values from the source column and paste them into the Preview column.

Copyright © 2022 Trifacta Inc. Page #259

5. While many of the zip code values from other rows have been accurately populated, there are still some
values that need fixing. In the following, you can see that one zip code was not properly extracted. Double-
click in the Preview column for the third row and fix the value: 91935:

Figure: Populating multiple example rows improves the overall quality of transformation across all
rows

6. A quick scroll through the rest of the rows in the sample indicate that you have properly extracted the zip
code values for all rows.

7. Click Add to Recipe.
8. The new Zip column is added to the dataset.

Figure: Transformed example column

Copyright © 2022 Trifacta Inc. Page #260

Remove Data
Contents:

Considerations when removing data
Delete columns
Delete rows

Delete rows based on selections
Filter rows based on matching conditions
Filter rows based on data type mismatches
Delete rows based on multiple blank cells

Remove values
Using regular expressions

Through simple selections, you can identify columns to remove, values on which to base row deletion, or strings
to remove from your dataset. As needed, these transformations can be modified for more sophisticated removal
transformations.

Considerations when removing data

Please keep in mind:

When data is removed from your dataset, no actual deletion is performed.
Trifacta® does not modify source data. All recipe executions generate new sets of data based on
the transformations you define, which are applied to a generated version of the source data.
Transformation steps are previewed and can be undone on sampled data in the Transformer page,
so you should feel free to experiment with data removal.

In large volume datasets, be careful applying patterns or regular expressions to your data. You should limit
your application of these pattern-based changes to the minimum range of columns, rows, or strings
required to complete the task.

Delete columns

To delete a column from your dataset, click the column drop-down and select Delete. The data is no longer
available in the data grid or subsequent recipe steps.

Tip: To delete multiple columns, select them in the data grid or column browser. Then select Delete from
the column menu.

Tip: To simply remove columns from display, use the Hide command. The hidden column still appears in
the output.

Manual transformations:

To delete multiple columns, you can specify comma-separated column names in your Delete Columns
transformation:

Transformation Name Delete columns

Parameter: Columns ColA,ColC,ColE

Parameter: Action Delete selected columns

Copyright © 2022 Trifacta Inc. Page #261

To delete a range of columns, use the tilde (~) character between the start and end column names:

Transformation Name Delete columns

Parameter: Columns ColA~ColE

Parameter: Action Delete selected columns

Delete rows

You can delete rows in your dataset based on conditional patterns that you specify. The easiest method is to
select a string in the appropriate column and then choose the Delete suggestion card.

Delete rows based on selections

Steps:

In the following example, each row contains an entry for a different business, and you want to remove all of the
business entries from the city of Tempe.

1. In this case, you could use the column histogram to select the value Tempe in the city column, or you
can use the Filters panel to filter for rows containing the value Tempe.

2. Then, select the Delete suggestion card.

Figure: Select Tempe in the City column to remove all entries for that city
3. After selecting Delete, the application evaluates your selected value and attempt your intention with the

selection. Is it a string literal or a pattern? If it's a pattern, what does the pattern represent? You may select
one of the variants in the Delete card to find the right match.

NOTE: Be sure to scroll up and down in the data grid to review the values that are affected. In
some cases, your selection may turn into a pattern, which could apply to more than just the
desired values. In the previous example, selecting Tempe may yield a matching pattern of {alpha
}{5}, which would match any five-letter city name, including Tempe. Select other variants in the
Delete card to change the matching pattern. Click Edit to review the matching string.

4. After defining and modifying your Filter Rows transformation, you can use the preview to see the rows that
will be removed, prior to adding the transformation to your recipe.

Tip: You can also use the Filter Rows to retain rows based on a specified condition, effectively deleting
the rows that do not match. See Filter Data.

Copyright © 2022 Trifacta Inc. Page #262

Filter rows based on matching conditions

You can delete or keep rows in your dataset based on one or more matching conditions you define.

1. In the Search panel, enter filter.
2. Select the type of conditional. You can filter based on:

a. Type: missing or mismatched values.
b. Matches: literal or pattern matches that are exact matches, partial matches, or matches with the

beginning or ending of column values.
c. Ranges: Less than (or equal to), greater than (or equal to), or combinations.
d. Custom formula: Specify an expression that evaluates to true or false. If true, then the data is

filtered.
3. Specify the other parameters, including whether to delete or keep the matching rows.

For more information, see Filter Data.

Filter rows based on data type mismatches

You can delete or keep rows based on whether a cell value in the row matches a specified data type. The
following example removes rows that do not match the mm*dd*yy format for the Datetime data type from the tra
nsactionDate column.

1. In the Search panel, enter filter mismatched.
2. Specify the following transformation:

Transformation Name Filter mismatched

Parameter: Condition Is mismatched

Parameter: Column transactionDate

Parameter: Date/Time type mm*dd*yy

Parameter: Action Delete matching rows

3. Review the preview. If it looks good, add it to your recipe.

Delete rows based on multiple blank cells

If you have rows in your dataset that contain no data, you can use the following two steps to remove them.
Assuming that you know the starting (col1) and ending (colN) column names of your dataset, try the following:

NOTE: If at a later time, you reorder or remove the starting or ending columns in a step before this one,
these steps are broken.

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula MERGE([column1~columnN])

Parameter: New column 'all_blank_vals'
name

Transformation Name Delete rows when value is missing

Parameter: Column all_blank_vals

Parameter: Action Delete selected columns

Copyright © 2022 Trifacta Inc. Page #263

The above merges all values into a single value in the all_blank_vals column. The second step removes the
row if the value in the merged column is blank.

Remember to delete the all_blank_vals column after you are done.

For more information, see Filter Data.

Remove values

To delete values from a column, select the values in the data grid. In the suggestion cards, select the Replace
card. In the following example, the city column is removed of all values matching Tempe:

Transformation Name Replace text or patterns

Parameter: Column city

Parameter: Find 'Tempe'

Parameter: Replace with ''

Parameter: Match all true
occurrences

The Replace transformation applies only to string values. The rest of a matching row is unaffected.

The above transformation matches all values in the column, even partial values, the match string is removed from
the column value. For example, an entry Tempest would be turned into st if the above transformation was
added.

To ensure that only full-column value matches are applied, you can add Patterns to indicate the start and end of
the column value as in the following:

Transformation Name Replace text or patterns

Parameter: Column city

Parameter: Find `{start}Tempe{end}`

Parameter: Replace with ''

Parameter: Match all true
occurrences

In the above case, only values of Tempe that are the entire column value are matched.

Using regular expressions
For more sophisticated matching, you can apply regular expressions to your replace command. In the following
example, all integers from 0-99 are matched in the qty column. Because there is no replacement value, they are
deleted.

Regular expressions are very powerful pattern matching tools. You should be careful in your use
of them. See Text Matching.

Character Definition

^ Beginning of string. Required to prevent matching on the last digit of any numeric value.

$ End of string. Required to prevent a 2-digit match on three-digit numbers.

Copyright © 2022 Trifacta Inc. Page #264

\d A single digit

| Logical or. In this case, it is used to define separate regexes for 1- and 2-digit values.

Copyright © 2022 Trifacta Inc. Page #265

Deduplicate Data
Contents:

Validate Duplicate Data
Remove duplicate rows transformation
Deduplicate Rows Based on a Primary Key
Deduplicate Columns

As part of your data cleansing steps, you might need to remove duplicate rows of data from your dataset.

Validate Duplicate Data

In some cases, it might be acceptable to have duplicated data. For example, additional records using the same
primary key might be included in a dataset as amendments or detail records.

NOTE: Before you remove duplicates from your dataset, you should verify that the data should not
contain duplicates at all. If the data structure supports some duplicate elements including key values, you
should exercise care in how you identify what constitutes duplicate information.

Remove duplicate rows transformation

Trifacta® provides a single transformation, which can remove identical rows from your dataset:

Tip: If you are attempting to identify if there are duplicate rows, check the row count in your dataset
before and after you have added this transformation.

Transformation Name Remove duplicate rows

Limitations:

This transformation is case-sensitive. So, if a column has values Hello and HELLO, the rows containing
those values are not considered duplicates and cannot be removed with this transformation.
Whitespace and the beginning and ending of values is not ignored.

Before applying the Remove deduplicate rows transformation, you should attempt to normalize your data.
You can use the following techniques to normalize a few columns of data.

NOTE: If you have more than 20 columns of data, you might be better served by trying to identify a
primary key method for de-duplicating your dataset. Details are below.

For individual columns, you can use the trim function to remove leading and trailing whitespace:

NOTE: To preserve the original column values, use the New formula transformation. The Edit
column with formula transformation replaces the original values.

Transformation Name New formula

Parameter: Formula Single row formula
type

Copyright © 2022 Trifacta Inc. Page #266

Parameter: Formula TRIM(Item)

Since the Remove deduplicate rows transformation is case-sensitive, you can use the LOWER function to
make the case of each entry in a column to be consistent:

Transformation Name New formula

Parameter: Formula Single row formula
type

Parameter: Formula LOWER(Description)

Deduplicate Rows Based on a Primary Key

Another method to deduplicate data might be to delete rows based on one or more columns that you identify as a
primary key for the dataset. A primary key is an identifier that uniquely identifies a row of data within a dataset. It
can be a single field (column) or a combination of columns. For example, in a datasets of restaurant locations, the
primary key can be a combination of RestaurantName, Address, and Zip.

NOTE: Before continuing, you must identify a primary key for your dataset. See Generate Primary Keys.

When you have identified your primary key, you should identify the appropriate method for your dataset. Please
complete the following steps.

Steps:

1. If your primary key spans multiple columns, use the Merge columns transformation to bring the values
into a single column:

Transformation Name Merge columns

Parameter: Columns RestaurantName,Address,Zip

Parameter: Separator '-'

2. Rename the generated column: PrimaryKey.
3. Use the following transformation to generate a new column, comparing each value in the PrimaryKey

column to the previous one:

Transformation Name Window

Parameter: Formulas PREV(PrimaryKey, 1)

Parameter: Order by PrimaryKey

4. For each row, the value of the new column is the value in the PrimaryKey for the previous row. Now, test
if this value is the same as the value in the PrimaryKey column for the current row:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula IF((window==PrimaryKey),true,false)

Parameter: New column IsDupe
name

Copyright © 2022 Trifacta Inc. Page #267

5. The new column (IsDupe) contains true for duplicate primary keys. Delete the rows that are duplicates:

Transformation Name Delete rows

6. Delete any generated columns that are no longer needed.

Deduplicate Columns

While this form of duplicate data is rarer, you might want to check on the possibility of duplicate data between
your columns. To check for duplicate column data, you can use a transformation similar to the following:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula Column1 == Column2

Parameter: New column 'dupeColVals'
name

In the generated column, values that are true indicate duplicate data. If all values are true, then you can
remove one of the columns.

Copyright © 2022 Trifacta Inc. Page #268

Compare Values
Contents:

Compare Numeric Values
Compare Boolean Values
Compare Date Values
Compare String Values

Depending on the data type, you can compare values in separate columns or single columns against fixed values.

Compare Numeric Values

You can use basic comparison operators to perform comparisons on your data. In this example, the compareCol
 column is generated as the evaluation of 3 < 6, which is true:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula (3 < 6)

Parameter: New column 'compareCol'
name

For more information, see Comparison Operators.

Compare Boolean Values

Boolean values can be true or false, so comparisons like the following can be applied to a Boolean set of
values:

Transformation Name Edit column with formula

Parameter: Columns Attendance

Parameter: Formula IF(isSeated == true,true,Attendance)

In the above case, the value in Attendance is set to true if the value in the isSeated column is true.
Otherwise, the current value in Attendance is used.

Compare Date Values

You can use the DATEDIF function to compare two date values, as in the following, which compares the number
of days between startCol and endCol values:

NOTE: Both parameters of the DATEDIF function must be column references containing valid date
values.

Transformation Name New formula

Parameter: Formula type Single row formula

Copyright © 2022 Trifacta Inc. Page #269

Parameter: Formula DATEDIF(startCol, endCol, 'day')

Parameter: New column 'DurationInDays'
name

Compare String Values

See Compare Strings.

Copyright © 2022 Trifacta Inc. Page #270

Replace Cell Values
You can search and replace for specific values in a column.

If the column is known

Steps:

1. Select the column containing the value you wish to replace.
2. In the Selection Details panel on the right side, click the appropriate bar under Unique Values. All matching

values are selected within the column.
3. Right-click the bar and select Replace Values....
4. A pre-configured transformation appears in the Transform Builder. Example:

Transformation Name Replace cells

Parameter: Column myDates

Parameter: Find '2013/02/07'

Parameter: Replace with ''

Tip: You can search for multiple items within the same column. Add other search values in
additional Find textboxes.

5. Add your value in the Replace with textbox.
6. Click Add.
7. All matching cell values in the column are replaced with your entered value.

For more information, see Selection Details Panel.

If the column is unknown

Steps:

1. If you do not know the column, click the Filter tool in the Transformer bar.
2. Click the Rows tab and enter the value to locate. Only rows where the value appears are displayed in the

data grid. Each instance of the matching value is highlighted.
3. Locate the column containing the specific highlighted values to replace. Select the value.
4. In the Suggestions panel, locate the Replace transformation card.
5. Select the variant of the Replace transformation that contains the specific value you selected. Then, click E

dit.
6. A pre-configured transformation appears in the Transform Builder. Example:

Transformation Name Replace text or patterns

Parameter: Column myString

Parameter: Find 'Red'

Parameter: Replace ''

7. Enter your replacement value in the Replace with textbox.

Copyright © 2022 Trifacta Inc. Page #271

8. Click Add.
9. All matching values in the column are replaced with your entered value.

For more information, see Filter Panel.

Copyright © 2022 Trifacta Inc. Page #272

Replace Values Using Patterns
Contents:

Replace Methods
Replace by selection
Replace using Transformer toolbar
Replace using Column Details panel

Find Values in a Column
Examples

Replace first three characters
Replace using literal expressions
Replace string of four digits
Replace date and time patterns
Replace based on position
Replace alpha-numeric and position patterns
Replace using special patterns

Trifacta® patterns enable you to identify patterns in cell values and to perform replacements on those found
elements of text. This section describes how to use patterns to find text and replace them with preferred values.

Tip: Patterns can also be used to extract values from cell values into a new column. The Trifacta patterns
listed on this page can also be applied to the Extract text or pattern transformation. For additional
example Trifacta patterns, see Extract Values.

For more information, see Overview of Pattern Matching.
For more information on Pattern syntax, see Text Matching.

Replace Methods

You can use the Replace text or patterns transformation to replace values in one or more columns with literal
values, Trifacta patterns, or regular expressions through any of the following methods. You can use this
transformation to replace missing, mismatched, or bad data using the following methods.

Replace by selection

When you select a piece of text in the data grid, the replace suggestion card displayed in the Selection Details
panel on the right side may contain Pattern-based options for finding the selected value and similar values in the
column of data. You can use these suggestions to replace column values.

Steps:

1. Select the data you want to replace. The suggestion cards are displayed.
2. In the Selection Details panel on the right side, select the Replace pattern suggestion card and click Edit.
3. The Replace text or patterns transformation is specified for you in the Transform Builder, where you can

modify the Find value and other parameters as needed. See example below.

Replace using Transformer toolbar

In the Transformer toolbar at the top of the grid, click Replace > Text or Pattern . The Replace text or pattern
transformation is displayed in the Transform Builder. For more information, see Transformer Toolbar.

For more information on procedures, see "Replace using Transform Builder" below.

Copyright © 2022 Trifacta Inc. Page #273

Replace using Column Details panel

You can review sets of patterns for the selected column in the Column Details panel. When you select a column
in the Column Details panel, you are prompted with a set of suggested patterns.

For more information on suggestions, see Overview of Predictive Transformation.

Replace using Transform Builder

When a pattern suggestion is selected, it is specified in the Transform Builder for review and addition to your
recipe. In the Transform Builder, you can select one or more columns to replace text or patterns.

Steps:

The following steps describe how to build a pattern-based replacement transformation from scratch in the
Transform Builder.

Tip: Some selections in the data grid or related tools can lead to suggestions or pre-configured
transformations in the Transform Builder.

1. Enter Replace text or pattern in the Search panel.
2. Select an individual column or multiple columns from the following options:

Multiple: Select one or more columns from the drop-down list.
All: Select all columns in the dataset. See below for an example.
Range: Specify a start column and an ending column. All columns in between are selected.
Advanced: Specify the columns using a comma-separated list. You can combine multiple and
range options under Advanced.

Ranges of columns can be specified using the tilde (~) character.
The following example range selects from the dataset as displayed in the data grid column1,
column3, and the range of columns between column5 and column8, inclusive:

column1,column3,column5~column8

3. In the Find text box, enter the text value or pattern that matches the value you want to replace. For more
information, see "Find Values in a Column" below.

4. In the Replace text box, enter the value to replace the found text.
5. For additional controls, click Advanced Options:

a. Start search after: Enter a text or pattern that precedes the value you want to replace. See below
example.

b. Start search before: Enter a text or pattern that follows the value you want to replace. See below
example.

c. Ignore case: If selected, case is ignored when matching.
d. Match all occurrences: If selected, all occurrences of the found text in the column are matched

and replaced.
6. Click Add. The transformation is added to your recipe, and the selected columns are replaced with

appropriate patterns in the data grid.

Find Values in a Column

The Replace with text or pattern transformation enables you to replace values within the specified
column or columns based on a string literal or Trifacta patterns. When you specify the transformation in the
Transform Builder, the Find textbox can be populated with one of the following types of values:

Find Description Delimiter Example
type

Literal A literal pieces of text single

Copyright © 2022 Trifacta Inc. Page #274

quotes 'My piece of
text'

Trifacta A Trifacta pattern represents zero or more characters that match a pattern. In Tr back-ticks `{start}{digit}{3}`
pattern ifacta, Patterns are a simplified means of expressing regular expressions. For

more information on Trifacta pattern syntax, see Text Matching .

Tip: The examples in this section use Trifacta Patterns, which are
simpler to use than regular expressions.

Regula Regular expressions are a standard-based method of describing patterns in forward /^.{<span class="
r values. slashes hljs-number">0<
expres

/span>,<span class="sion
NOTE: Regular expressions are considered a developer-level skill. hljs-number">3<
For more information on regular expression, see on RE2 and PCRE /span>}/
 regular expressions.

Examples

The following examples demonstrate how Trifacta Patterns can be used to find and replace values within a
column or set of columns.

Replace first three characters

This example uses Trifacta Pattern to find the first three characters. In this example, the first three characters of
the Customer ID column are replaced with the value CustID- for the selected column in the dataset.

Transformation:

Transformation Name Replace text or patterns

Parameter: Column CustomerID

Parameter: Find `{start}%{3}`

Parameter: Replace with CustID-

Results:

Before After

Tri02468 CustID-02468

Mul2239 CustID-2239

Zev5521 CustID-5521

Replace using literal expressions

This example is based on the search and replace content in your dataset using literals. In the following example,
the value ##CLT_NAME## is replaced with Our Customer, Inc. across all columns in the dataset.

Transformation:

Transformation Name Replace text or patterns

Parameter: Column All

Copyright © 2022 Trifacta Inc. Page #275

Parameter: Find '##CLT_NAME##'

Parameter: Replace with 'Our Customer, Inc.'

Parameter: Match all true
occurrences

Replace string of four digits

Tip: For privacy reasons or sensitivity reasons, you can mask the sensitive data with the following
replacements.

The following example uses Trifacta Patterns to find a string of four digits. The replacement is based on the
structure of the data, not on the type of data. If you have data that are not credit card numbers yet follows the
four-digit pattern, those values can also be replaced. In this example, the myCreditCardNumbers column is
masked with XXXX.

Transformation:

Transformation Replace text or patterns
Name

Parameter: Columns myCreditCardNumbers

Parameter: Find `{start}{digit}{4}{any}{digit}{4}{any}{digit}{4}{any}({digit}
{4}){end}`

Parameter: Replace XXXX-XXXX-XXXX-$1
with

Results:

Before After

1234-1234-1234-1234 XXXX-XXXX-XXXX-1234

1111-1111-1111-1111 XXXX-XXXX-XXXX-1111

4321-4321-4321-4321 XXXX-XXXX-XXXX-432
1

Using capture groups

The previous example captures aspects of the found pattern for use during replacement. A capture group is a
mechanism in Trifacta Patterns or regular expressions to capture one or more parts of the matched values into
variables.

In the example, the last four-digit segment of the Trifacta Pattern is surrounded by parentheses:

({digit}{4}){end}

This group of digits is captured as the first (and only) capture group. In the replacement string, it is referenced as:

$1

You can have multiple capture groups in a single pattern. In the replacement, these capture groups can be
referenced sequentially left-to-right from the pattern: $1, $2, and so on.

Copyright © 2022 Trifacta Inc. Page #276

For more information, see Capture Group References.

Tip: You can use both {digit} and {#} Trifacta patterns for columns containing numeric values.

Replace date and time patterns

The following example is based on replacing the date and time using the pre-configured suggestions displayed in
the search context panel. In this example, the date Trifacta Patterns yy/mm/dd is replaced with mm/dd/yy.

Transformation:

Transformation Name Replace text or patterns

Parameter: Column ORDER_DATE

Parameter: Find `({yy}){delim}({MM}){delim}({dd})`

Parameter: Replace with $2-$1-$3

Results:

Before After

20/11/02 11/02/20

20/11/22 11/22/20

20/11/26 11/26/20

Replace based on position

You can specify replacements based on the character position of values in your source column values. This
method of finding and replacing values is useful if the source column data is consistently structured.

For example, suppose you have dates in the following format:

Before

2020-05-01

2020-05-02

2020-05-03

Transformation:

Suppose you wanted to replace the value for the month with Month, you could add the following transformation
step:

Transformation Name Replace between positions

Parameter: Column Before

Parameter: Start 6
position

Parameter: End position 8

Parameter: Replace with Month

Copyright © 2022 Trifacta Inc. Page #277

Results:

After

2020-Month-01

2020-Month-02

2020-Month-03

To replace the four digits of the year, you could perform a basic replace text or pattern transformation with a
pattern to find of the following:

`{start}{digit}{4}`

Replace alpha-numeric and position patterns

You can use alpha-numeric and position Trifacta patterns for replacing the customer's address in the the
dataset. In this example, {alpha-numeric} pattern is applied to find the customer's addresses and used {star
t} and {end} pattern to mention the position of replacement. For more information on Pattern Syntax, see
Text Matching .

Transformation:

Transformation Name Replace text or patterns

Parameter: Column address_street_number

Parameter: Find `{alpha-numeric}`

Parameter: Replace with ##

Parameter: Start search after `{start}{digit}{2}`

Parameter: Stop search before `{any}`

Results:

Before After

3298, Church Street 32##, Church Street

4132, Park Avenue 41##, Park Avenue

1234, McGrath Road 12##, McGrath Road

Replace using special patterns

You can use the following special Trifacta Pattern tokens to search for matches in your source values. In some
cases, these Trifacta Patterns are consistent with the patterns used for specific data types.

Pattern Description

Matches values that begin with an at-sign, such as @trifacta. This Trifacta Pattern can be useful if you need to remap`{at-
or mask username values. username

}`

Matches values that begin with a hashtag, such as #dataprep. For an example of this Trifacta Pattern, see
Extract Values.

Copyright © 2022 Trifacta Inc. Page #278

`
{hashtag
}`

Matches values that are valid hexadecimal (base-16) numbers. These values contain a string of numerals, letters A-F, and
`{hex}`

combinations of them, without spaces. Examples: AE00, 1F2F, 100.

Matches valid phone numbers within a set of values. For more information on this data type pattern, see
`{phone} Phone Number Data Type.
`

Matches valid email addresses within a set of values. For more information on this data type pattern, see
`{email} Email Address Data Type.
`

Matches valid URL addresses within a set of values. For more information, on this data type pattern, see URL Data Type.
`{url}`

Copyright © 2022 Trifacta Inc. Page #279

Replace Groups of Values
Contents:

Replacement methods
Replace by selection
Mask data

Delete whole column(s)
Masking all values
Partial masking of values
Mask multiple columns based on data type

Replace with values from another column
Replace whole column
Replace partial values from another column

Replace between positions
Search and replace text or pattern
Replace missing values

Replace missing with zeroes
Replace missing with average values

Replace mismatched values

Whether data is missing, mismatched, or simply wrong, you can use a variety of methods in the Trifacta®
application to replace values in one or more columns with literal values or pattern-based replacements.

Replacement methods

In the Transformer page, you can use the following methods to replace values:

Method Description

By selection Select a value in the data grid to prompt a series of suggestions on what to do with the data. Typically, replacement
options are near the top of the suggestions.

Tip: You can replace specific values in a column with a preferred value. For more information, see
Replace Cell Values.

By column menu From the column menu, select Replace and a sub-menu item to begin configuring a replacement transformation.

By Transformer At the top of the data grid, click the Replace icon in the Transformer toolbar to begin configuring replacements.
toolbar

By Search panel In the Search panel, enter replace to build a replacement transformation from scratch.

Replace by selection

When you select data in the data grid, the replacement suggestions are pre-specified for you, including a number
of variants available in the suggestion card.

Notes:

Suggestions are typically conservative in the scope of their changes. Case-sensitive searches and
matching of the first occurrence only are the default settings.
Order of listing of suggestions in a suggestion card:

Pattern-based replacements are listed first. These replacements use Patterns , instead of regular
expressions. Regular expressions can be more difficult to control.

Copyright © 2022 Trifacta Inc. Page #280

Literal value replacements are listed below the pattern-based ones.

For more information, see Overview of Predictive Transformation.

Mask data

For privacy reasons or for sensitivity reasons, you may wish to mask sensitive data in one or more columns with
fixed strings.

Delete whole column(s)

If you need to remove the data in an entire column, the easiest method is to delete a column. Select one or more
columns and then select Delete from the column drop-down. See Remove Data.

Masking all values

You can use a transformation like the following to replace all values in a column with a simple string. In this case,
the value #REDACTED# has been inserted in place of all values in the column.

NOTE: This replacement changes the data type of the column to String. If you must retain the original
data type, the replacement value should be valid for the data type.

Transformation Name Edit column with formula

Parameter: Columns transactionValue

Parameter: Formula '#REDACTED#'

Partial masking of values

Suppose you wish to partially mask data in a column. In the following example, data for the AcctNum column is
masked, except for the last four characters (digits):

Transformation Name Edit column with formula

Parameter: Columns AcctNum

Parameter: Formula value: merge(['XXXX',right(AcctNum, 4)], '')

Mask multiple columns based on data type

You can use the following type of transformation to hide data based on data type. In this example, the values in
all columns with Social Security Number (SSN) are replaced with a masking value: XXX-XX-XXXX:

This method performs a simple text replacement of the data in the columns(s). After this
transformation has been applied to the data, the source data is no longer available, unless you
step back to a step before this one. For these kinds of operations, you may find it more secure to
apply these kinds of masking operations to the source data in a single recipe and then make that
output available to other users to use as an imported dataset.

Transformation Name Edit column with formula

Parameter: Columns All

Parameter: Formula if(isvalid($col, ['SSN']), 'XXX-XX-XXXX', $col)

Copyright © 2022 Trifacta Inc. Page #281

Replace with values from another column

Replace whole column

You can do simple replacements of data from one column into another with transformations like the following. In
this example, the values of colB are replaced with the values of colA with 0.15 added to them:

Transformation Name Edit with formula

Parameter: Columns colB

Parameter: Formula colA + 0.15

Replace partial values from another column

You can use the MERGE function to blend full or partial sets of columns into a new column. In the following
example, the newBrandId value is concatenated with the product code in the ProdId column to create a new
product identifier:

Transformation Name Edit with formula

Parameter: Columns ProdId

Parameter: Formula merge([newBrandId, right(prodId, 5)], '-')

Replace between positions

You can perform replacements based on character positions that you specify as part of the transformation.

The beginning character value is specified as a number from 0, which starts on the left.
The ending character value must be equal to or greater than the beginning character value.

In the following example, the Whse_Name column values are prepended with the value old-.

Transformation Name Replace by position

Parameter: Column Whse_name

Parameter: Start 0
position

Parameter: End position 0

Parameter: Replace with old-

Search and replace text or pattern

You can search and replace content in your dataset based on literals or patterns. In the following example, the
value ##CLT_NAME## is replaced with Our Customer, Inc. across all columns in the dataset:

Transformation Name Replace text or patterns

Parameter: Column All

Parameter: Find '##CLT_NAME##'

Parameter: Replace with 'Our Customer, Inc.'

Copyright © 2022 Trifacta Inc. Page #282

Parameter: Match all true
occurrences

Replace missing values

Replace missing with zeroes

For numeric data, you may choose to replace values that are missing in a column with zeros. The following
transformation sets missing values in the Qty and DiscountPct columns of Decimal data type to 0:

Transformation Name Edit column with formula

Parameter: Columns Qty,DiscountPct

Parameter: Formula if(ismissing([$col]), '0', $col)

Replace missing with average values

One of the problems with the above method is that any statistical computations applied to the column are now
affected by the zeroing of the missing values. For example, the computation for the AVERAGE function does not
factor in missing values into the count of rows, which result in skewing of values for your purposes.

The following example creates a new column from the DiscountPct column in which empty values are inserted
as the average of the values in the source column:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula if(ismissing([DiscountPct]), average(DiscountPct),
DiscountPct)

Parameter: New column DiscountPct-0toAVG
name

In this manner, the new column can be used for some statistical modeling, while preserving the original values in
the original column.

Replace mismatched values

You can perform replacements based on the values in a column that are mismatched against a specified type.

In the following example, Datetime values that do not match the yyyy*mm*dd, where the asterisk (*) is a
wildcard value.

Transformation Name Replace mismatched values

Parameter: Columns Multiple

Parameter: Column 1 myDate

Parameter: Data type to Date/Time
evaluate

Parameter: Date/Time type yyyy*mm*dd

Parameter: Replace with Custom value

Parameter: New value '##BAD_DATE##'

Copyright © 2022 Trifacta Inc. Page #283

NOTE: In the above example, the Date/Time type parameter applies only to replacements that are
mismatched against the Date/Time data type. This parameter is used to specify the Datetime format
against which the source values are validated. The parameter does not appear in Replace mismatched
values transformations for other data types.

Copyright © 2022 Trifacta Inc. Page #284

Normalize Numeric Values
Contents:

Numeric precision
Standardize decimal precision
Standardize units

Example - Fixed conversion factors
Dynamic conversion factors

Adjust level of precision
Adjust data granularity by aggregation

This section describes techniques to normalize numeric values in your datasets.

Ideally, your source systems are configured to capture and deliver data using a consistent set of units in a
standardized structure and format. In practice, data from multiple systems can illuminate differences in the level
of precision used in numeric data or differences in text entries that reference the same thing. Within Trifacta®,
you can use the following techniques to address some of the issues you might encounter in the standardization of
units and values for numeric types.

Numeric precision

In Trifacta, mathematical computations are performed using 64-bit floating point operations to 15 decimals of
precision. However, due to rounding off, truncation, and other technical factors, small discrepancies in outputs
can be expected. Example:

-636074.22

-2465086.34

Suppose you apply the following transformation:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula (-636074.22 + -2465086.34)

Parameter: New column MySum
name

The expected output in the MySum column: -3101160.56

The actual output for in the MySum column: -3101160.5599999996

NOTE: For 64-bit floating point mathematical operations, deviations like the above are intrinsic to the
Decimal data type and how the platform performs computations.

Depending on your precision requirements, you can manage precision across your columns using a
transformation like the following, which rounds off MySum to three digits:

Transformation Name Edit column with formula

Parameter: Columns MySum

Copyright © 2022 Trifacta Inc. Page #285

https://3101160.56
https://2465086.34
https://636074.22
https://2465086.34
https://636074.22

Parameter: Formula ROUND($col,3)

For more information on floating point computations, see
https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel.

Standardize decimal precision

If decimal values in a column are of varying levels of precision, you can standardize to a single level of precision.

Steps:

1. From the column menu, select Column Details.
2. .In the Column Details panel, select the Patterns tab.Among the patterns, select the following:

{digit}.{digit}

3. In the Suggestions panel on the right, locate the Edit Column transformation suggestion that uses the ROUND
function. Click Edit.

4. Change the second parameter of the ROUND function to match the number of digits of precision.

You can generalize this formatting across multiple columns by applying the $col reference in the
transformation's function, as in the following:

Transformation Name Edit column with formula

Parameter: Columns colA, colB, colC

Parameter: Formula IFVALID($col, ['Float'], ROUND($col, 2))

Standardize units

Tip: Each column that contains numeric values should have an identified unit of measurement. Ideally,
this information is embedded in the name of the column data. If the unit of measurement is not included,
it can be difficult to properly interpret the data.

Trifacta does not impose any units on imported data. For example, a column of values in floating point format
could represent centimeters, ounces, or any other unit of measurement. As long as the data conforms to the
specified data type for the column, then Trifacta can work with it.

However, this flexibility can present issues for users of the dataset. If data is not clearly labeled and converted to
a standardized set of units, its users are forced to make assumptions about the data, which can lead to misuse of
it.

Tip: The meaning of some units of measure can change over time. For example, a US Dollar in 2010
does not have the same value as a dollar in 2015. When you standardize shifting units of measure, you
should account for any time-based differences, if possible.

Example - Fixed conversion factors

In many cases, units can be converted to other units by applying a fixed conversion factor to a column of
data. For example, your dataset has the following three columns of measured data:

Person Height_ft Weight_kg Arm_Length_in

Jack 5'10" 92 kg 32

Copyright © 2022 Trifacta Inc. Page #286

https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel

Jill 5'2" 56 kg 29

Joe 6'3" 101 kg 35

The above data has the following issues:

1. The Weight and Height columns contain unit identifiers, which forces the values to be treated as strings.
2. Metric data (kg) is mixed with English unit data (ft and in).
3. The Height data is non-numeric.

Problem 1 - remove units

The Weight_kg column contains a unit identifier. On import, these values are treated as strings, which limits
their use for analysis.

Steps:

1. In the data grid, select an instance of " kg". Note that the space should be selected, too.
2. Among the suggestion cards, select the Replace card.
3. It should automatically choose to replace with nothing, effectively deleting the content. To check, click Modi

fy.
4. The transformation should look like the following:

Transformation Name Replace text or patterns

Parameter: Column Weight_kg

Parameter: Find ' kg'

Parameter: Replace with ''

Parameter: Match all true
occurrences

5. Add it to your recipe.
6. Verify that the column's data type has been changed to Integer or Decimal, depending on the values in

it.

Problem 2 - convert English to metric units

To normalize to English units, the first issue is easily corrected by multiplying the Weight values by 2.2, since 1 kg
= 2.2 lb:

Transformation Name Edit column with formula

Parameter: Columns Weight_kg

Parameter: Formula (Weight_kg * 2.2)

If you want to round the value to the nearest integer, use the following:

Transformation Name Edit column with formula

Parameter: Columns Weight_kg

Parameter: Formula ROUND((Weight_kg * 2.2))

After the above is added to the recipe, you should rename the column: Weight_lbs.

Copyright © 2022 Trifacta Inc. Page #287

Problem 3 - convert ft/in to in

The final issue involves converting the Height_ft values to a single value for inches, so that these values can
be used consistently with the other columns in the dataset.

On import, your data for the column might actually look like the following:

Height_ft

"5'10""

"5'2""

"6'3""

Steps:

1. Select the first quote mark in one of the entries.
2. In the suggestion cards, select the Replace card.
3. Select the variant that deletes all quotes in the column.
4. The full command should look like the following:

Transformation Name Replace text or patterns

Parameter: Column Height_ft

Parameter: Find `"`

Parameter: Replace with ''

Parameter: Match all true
occurrences

5. Add it to your recipe.
6. The remaining steps compute the number of inches. Multiply the feet by 12, and then add the number of

inches, using new columns of data.
7. Select the single quote mark, and choose the Split suggestion card. This transformation step should split

the column into two columns: Height_ft1 and Height_ft2.
8. Derive the value in inches:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula ((Height_ft1 *12)+Height_ft2)

Parameter: New column Height_in
name

9. You can delete the other, interim columns.

Dynamic conversion factors

In some cases, the conversion rate between two different units of measures is dynamic. A common
example involves mismatches between currency. For example, one dataset can be using U.S. dollars while
another represents values in Euros.

Copyright © 2022 Trifacta Inc. Page #288

Within a column

If you have inconsistent units within a column, it might be possible to correct these values by applying a multiple.
For example, you might be able to determine that some values are in kilometers, instead of meters, based on
their much smaller values. Multiplying the kilometer values by 1000 should standardize your units. The following
multiplies all values in the column Distance that are less than 1000 by 1000.

Transformation Name Edit column with formula

Parameter: Columns Distance

Parameter: Formula IF((Distance < 1000,(Distance * 1000), Distance)

Note the implied assumption that there are no distances in kilometers that are over 1000.

NOTE: Inconsistency in units within a column indicates a problem in either the source data or how the
column data was modified after import. Where possible, you should try to fix these issues in the source
data first, as they can introduce problems when the data is used.

Adjust level of precision

For numeric values that are used for measurement, you can adjust the level of precision within and across
columns of values. For example, you have the following columns of data:

Name Width_cm Height_cm

Object 1 23.3 55.5512

Object 2 65.2 102.4024

Object 3 54.2 12.22

In the above, you can see the following precision mismatches:

The Height column contains one value with only two digits of arithmetic precision in measurement.
The Width column uses two digits of arithmetic precision, while the Height column contains more digits of
precision.

Where precision in measurement is important, you should consider rounding to the lowest level of precision. In
this case, within the Height column, that level is to two significant digits after the decimal point (e.g. 12.22).
However, across all of the columns of the dataset, the level of precision is to one significant digit after the decimal
point, as the Width values are all restricted to this level of precision. While you could choose to round off to four
digits across all columns, the extra values of 0 do not accurately reflect measurement and are therefore
misleading.

You can use the following transformations to perform rounding functions within these columns:

Transformation Name Edit column with formula

Parameter: Columns Width_cm

Parameter: Formula NUMFORMAT(Width_cm '#.#')

Transformation Name Edit column with formula

Parameter: Columns Height_cm

Parameter: Formula NUMFORMAT(Height_cm '#.#')

Copyright © 2022 Trifacta Inc. Page #289

NOTE: The above assumes that the number of significant digits remains fixed in the source data. If this
varies over times or uses in your recipe, you might need to revisit these specific transformation steps.

NOTE: The above formatting option drops the zero for values like 4.0. As an alternative, you can use a
format of '#.0', which always inserts a zero, even in cases where the zero is not present.

Results:

Name Width_cm Height_cm

Object 1 23.3 55.5

Object 2 65.2 102.4

Object 3 54.2 12.2

Adjust data granularity by aggregation

For data hierarchies, you can use aggregations to adjust the granularity of your data to the appropriate grouping
level. For example, you want to join a dataset that is organized by individual products with a dataset that is
organized by brand. In most cases, you should aggregate the product-level data in the first dataset to the brand
level.

NOTE: When aggregation is applied, a new table of data is generated with the columns that you
specifically select for inclusion.

For more information, see Pivot Data.

Copyright © 2022 Trifacta Inc. Page #290

Standardize Using Patterns
Contents:

Example - Phone number patterns
Generic Conversions
Datetime Patterns

This section describes techniques to standardize values in your datasets using patterns. From the Column
Details panel in the Trifacta® application, you can review and select patterns in the column's data. These
selections can be used as the basis for converting all applicable values to the selected format.

NOTE: Pattern-based conversions can be applied to any data type.

In the Patterns tab, click the whitespace around a pattern and then review the Convert suggestion to define how
the pattern matches can be converted to a single standardized format.

Tip: To select, click the whitespace around the pattern and example values.

NOTE: The application does not suggest pattern-based conversions that add or remove alphanumeric
characters.

Figure: Selecting Datetime patterns in the Patterns tab

In the above, the pattern block prompts suggestions for Convert tasks based on the selected patterns.

Click Edit to modify the task.
Click Add to add the task as a step to your recipe.

Copyright © 2022 Trifacta Inc. Page #291

Example - Phone number patterns

For columns containing phone number data, you can use the Patterns tab to standardize formatting options.
Consider the following values, which are valid phone numbers. Next to each value is a pattern representing the
value:

PhoneNum Pattern

(415) 555-1212
\(({digit}{3})\) ({digit}{3})\-({digit}{4})

415-555-1212
({digit}{3})\-({digit}{3})\-({digit}{4})

415.555.1212
({digit}{3}).({digit}{3}).({digit}{3})

415 555-1212
({digit}{3}) ({digit}{3})\-({digit}{4})

1+415-555-1212
1\+{digit}{3}\-{digit}{3}\-{digit}{4}

In the Patterns tab, you can select the patterns to which you would like the other patterns in the same pattern
group to be converted. Below, the selected target pattern becomes the pattern to which other patterns in the
column values are converted:

NOTE: You may have to modify the phone number values before attempting the conversion, as they may
contain extra alphanumeric values. For example, international country codes (such as 044) or a
preceding 1+ required in long-distance numbers, may need to extracted or removed from the column
values prior to conversion.

Copyright © 2022 Trifacta Inc. Page #292

Generic Conversions

Below are types of conversions that are supported and not supported.

Supported:

Example Source Value

123.456.7890

(123) 456-7890

(123)456-7890

1234567890

123-456-7890

Not supported:

Example Target Value Notes

123-456-7890 Changing symbolic characters

123 456-7890 Removing symbolic characters

(123)-456-7890 Adding symbolic characters

123-456-7890 Splitting a long character group and adding symbolic characters

1234567890 Merging multiple character groups and removing symbolic characters

Example Source Example Target Notes
Value Value

123.456.7890 +1.123.456.7890 Adding a new character group

+1.123.456.7890 123.456.7890 Deleting a character group (alphanumeric characters cannot be deleted through pattern
standardization)

Adam Wilson A Wilson Partial deletion of data from a character group

+1 (123) 456-7890 +001 (123) 456-7890 Prepending or appending a character group with specified characters

Datetime Patterns

For columns of Datetime type, the available Convert mappings are based upon the supported date formats in the
platform. Standardization of Datetime patterns is a specific implementation.

Notes on Datetime patterns:

Two-digit years (YY) do not yield four-digit year (YYYY) suggestions due to ambiguity. For example, it is unclear if
50 should map to 1950 or 2050.

For performance reasons, a maximum of two semantic standardizations can be applied at once. Examples:

Source Value Possible Standardization Semantic Mappings Status

Jan 1, 1981 01/01/1981
Jan 01

ok (2 mappings)

1 01

Jan 1, 1981 01/01/81
Jan 01

Not suggested (3 mappings)

1 01
1981 81

Tip: Use the DATEFORMAT function to convert Datetime values to different date formats.

For more information on supported formats, see Datetime Data Type.

Copyright © 2022 Trifacta Inc. Page #293

Patterns by Example

You can generate a new column of values based on pattern matches from a source column. When you enter
example values to match with source values, other values with similar patterns may also be matched based on
your entered example value.

Tip: This method provides an easy way to build pattern-based matching for values in a source column.

For more information on transformation by example, see Overview of TBE.

Copyright © 2022 Trifacta Inc. Page #294

Modify String Values
Contents:

Convert Columns to String
Available string functions

Example - Clean up Strings
Trim strings
Use missing or mismatched value presets
Remove a specific sub-string
Replace double spaces
Break out CamelCase
Reduce strings by words

Other String Cleanup Transformations
Trim whitespace from text
Remove whitespace
Remove symbols
Remove accents
Trim quotes

Pad Values
Add prefix or suffix to strings

Standardize String Values
Standardize case

Standardize String Lengths
Pad string values
Fixed length strings

Manage Sub-Strings
Reset Types

This section describes techniques to standardize text values in your datasets. You can use the following
techniques to address some common issues you might encounter in the standardization of text and other non-
numeric values.

Convert Columns to String

For manipulation of individual values, it is often easiest to work with the String data type, which is the most
flexible. Depending on your approach, you may choose to convert some of your columns into String type:

Transformation Name Change column type

Parameter: Columns col1,col2, col3

Parameter: New type 'String'

For more information, Valid Data Type Strings.

Available string functions

You can edit values in a column by applying one of the available string functions. The following transformation
can be modified for any of the available string functions:

Transformation Name Edit column with formula

Parameter: Columns myCol

Copyright © 2022 Trifacta Inc. Page #295

Parameter: Formula MyStringFunction($col)

Tip: The $col value allows you to reference the current column, which is particularly useful if your
transformation is being applied across multiple columns.

For more information see String Functions.

Example - Clean up Strings

In the following example, you can see that there are minor differences between the String values in each row of
the dataset. These differences are captured in the Description column.

Some characters, like tab, cannot be represented in this format.
You can download this dataset: Dataset-ExampleStrings.csv.

String Description

My String Base string: 'My String'

My String extra Base string + ' extra'

My String A space in front of base string

My String A space after base string

MyString No space between the two words of base string

My String Two spaces between the two words of base string

My String Base string + a tab character

My String Base string + a return character

My String Base string + a newline character

When this data is imported, it looks like the following, after minor cleanup:

Copyright © 2022 Trifacta Inc. Page #296

Figure: Example data after import

Notes:

You can see that white space is demarcated in the imported data. In particular, the line item with two
spaces between the words is accurately represented in the data grid.
Newlines, carriage returns, tabs, and other non-visible characters are represented with icons.

To normalize these text values, you can use some of the techniques listed on this page to match the problematic
string values in this dataset and correct them, as needed. The sections below outline a number of techniques for
identifying matches and cleaning up your data.

Trim strings

NOTE: Before you begin matching data, you should perform a TRIM transform to remove whitespace at
the beginning and end of the string, unless the whitespace is significant to the meaning and usage of the
string data.

When transforming strings, a key step is to trim off the whitespace at the beginning and ending of the string. For
the above dataset, you can use the following command to remove these whitespaces:

Transformation Name Edit column with formula

Parameter: Columns All

Parameter: Formula TRIM($col)

The above transform uses the following special values, which are available for some transforms like set:

Special Description
Value

* For the Columns textbox under Advanced, you can use this wildcard to reference all columns in the dataset.

Tip: You can also select All from the Columns drop-down.

$col When multiple columns are referenced in a transform, this special value allows you to reference the source column in a
replacement value.

The previewed data looks like the following, in which five strings are modified and now match the base string:

Copyright © 2022 Trifacta Inc. Page #297

Figure: Trim data to improve matches

Tip: To remove all whitespace, including spaces in between, you can use the REMOVEWHITESPACE functi
on.

Use missing or mismatched value presets

The platform language, Wrangle , provides presets to identify missing or mismatched values in a selection of
data.

Tip: In a column's histogram, click the missing or mismatched categories to trigger a set of suggestions.

Missing values preset: The following transform replaces missing URL values with the text string http://www.
example.com. The preset ISMISSING([Primary_WebSite_or_URL]) identifies the rows missing data in the
specified column:

Transformation
Name

Edit column with formula

Parameter:
Columns

Primary_Website_or_URL

Parameter:
Formula

IF(ISMISSING([Primary_Website_or_URL]),'http://www.example.
com',$col)

For more information, see Find Missing Data.

NOTE: If the data type for the column is URL, then the replacement text string must be a valid URL, or
the new data is registered as mismatched with the data type.

Mismatched values preset: This transform converts to 00000 all values in the Zip column that are mismatched
against the Zipcode data type. In this case, the preset ISMISMATCHED(Zip, ['Zipcode']) identifies the
mismatched values in the column, as compared to the Zipcode data type:

Copyright © 2022 Trifacta Inc. Page #298

http://www
http://www.example
https://example.com

Transformation Name Edit column with formula

Parameter: Columns Zip

Parameter: Formula IF(ISMISMATCHED(Zip, ['Zipcode']),'00000',$col)

For more information, see Find Bad Data.

Remove a specific sub-string

An entry in the example data contains an additional word: My String extra. You can use a simple replace
command to remove it:

Transformation Name Replace text or patterns

Parameter: Column String

Parameter: Find ' extra'

Parameter: Replace with ''

Parameter: Match all true
occurrences

The global parameter causes the replacement to be applied to all instances found within a cell value.
Otherwise, the replacement occurs only on the first instance.

Replace double spaces

There are multiple ways of removing double spaces, or any pattern, from text values. For best results, you should
limit this change to individual columns.

NOTE: For matching string patterns that are short in length, you should be careful to define the scope of
match. For example, to remove double spaces from your dataset, you should limit the columns to just the
ones containing string values. If you applied the change to all columns in the dataset, meaningful uses of
double spacing could be corrupted, such as in JSON data fields.

Transformation Name Replace text or patterns

Parameter: Column String

Parameter: Find ' '

Parameter: Replace with ''

Parameter: Match all true
occurrences

In the above, the Find term contains a string with two spaces in it.

Tip: If you wish to find two or more spaces, you can use the following Pattern in the Find
parameter:

`()+`

The Replace term contains no spaces.

Copyright © 2022 Trifacta Inc. Page #299

Break out CamelCase

CamelCase refers to text in which multiple words are joined together by removing the spaces between them. In
the example data, the entry MyString is an example of CamelCase.

NOTE: Regular expressions are very powerful pattern-matching tools. If they are poorly specified in a
transform, they can have unexpected results. Please use them with caution.

You can use Patterns to break up CamelCase entries in a column of values. The following transforms use
regular expressions to identify patterns in a set of values:

Transformation Name Replace text or patterns

Parameter: Column String

Parameter: Find `({alpha})({upper})`

Parameter: Replace with '$1 $2'

Parameter: Match all true
occurrences

The first transform locates all instances of uppercase letters followed by lower-case letters. Each instance is
replaced by a space, followed by the found string ($2). For more information, see Text Matching.

Reduce strings by words

Remove last word:

For example, you need to remove the last word of a string and the space before it. You can use the following rep
lace transform to do that:

Transformation Name Replace text or patterns

Parameter: Column String

Parameter: Find ` {alpha}+{end}`

Parameter: Replace with ''

Parameter: Match all true
occurrences

When the above is previewed, however, you might notice that ending punctuation is not captured. For example,
periods, exclamation points, and question marks at the end of your values are not captured in the Pattern . To
capture those values, the Find parameter must be expanded:

Transformation Name Replace text or patterns

Parameter: Column String

Parameter: Find ` {alpha}+({[?.!;\)]}|){end}`

Parameter: Replace with ''

Parameter: Match all true
occurrences

Copyright © 2022 Trifacta Inc. Page #300

In the second version, a capture group has been inserted in the middle of the on parameter value, as specified by
the contents of the parentheses:

The bracket-colon notation denotes a set of possible individual characters that could appear at this point in
the pattern.

Note the backward slash before the right parenthesis in the capture group. This value is used to
escape a value, so that this parenthesis is interpreted as another character, instead of the end of
the capture group.

The vertical pipe (|) denotes a logical OR, meaning that the specified individual characters could appear
or the value after the vertical pipe.
Since the value after the vertical pipe is missing, this capture group finds values with or without
punctuation at the end of the line.
A capture group is a method of grouping together sequences of characters as part of a matching pattern
and then referencing them programmatically in any replacement value. For more information, see
Capture Group References.

Reduce total number of words:

You need to cut each value in a column down to a maximum of two words. You can use the following to identify
the first two words using capture groups in a Pattern and then write that pattern back out, dropping the
remainder of the column value:

Transformation Name Replace text or patterns

Parameter: Column String

Parameter: Find `{start}({alpha}*)({alpha}*) ({any}*{end})`

Parameter: Replace with '$1$2'

Parameter: Match all true
occurrences

For the Find pattern:

The start pattern identifies the start of each value in the String column.
The two alpha capture groups identify the first two words in the string. Note that the space after the
second capture group is specified outside of the capture group; if it was part of the capture group, a trailing
space is written in the replacement value.
The final capture group identifies the remainder of the value in the cell.

any captures any single character.
The wildcard asterisk captures all values between the any character and the end of the value.

Other String Cleanup Transformations

Trim whitespace from text

You can trim out whitespace from an individual column via transformation. The TRIM function applied to string
values removes the leading and trailing whitespace:

Transformation Name Edit column with formula

Parameter: Columns myCol

Parameter: Formula TRIM(myCol)

To apply this function across all columns in the dataset, you can use the following:

Copyright © 2022 Trifacta Inc. Page #301

Transformation Name Edit column with formula

Parameter: Columns All

Parameter: Formula TRIM($col)

Notes:

Instead of All above, you can use the asterisk (*) wildcard, which represents all possible value. In this
case, both values for Columns matches with all column names in the dataset.
You may need to move columns or use range values to apply this transformation to only non-numeric
column types.
The $col entry denotes a reference to the current column. So for any column to which this transformation
is applied, the source values are pulled from the column itself and then trimmed.

In some cases, you may wish to remove all spaces, including those in between words or digits, in your strings:

Transformation Name Edit column with formula

Parameter: Columns All

Parameter: Formula REMOVEWHITESPACE($col)

Remove whitespace

If needed, you can remove all whitespace from a column of values.

NOTE: This transformation differs from the TRIM function, which removes only the whitespace at the
beginning and end of the string. This transformation removes all whitespace, including space in the
middle of the string.

Tip: For some of the string comparison functions, you may achieve better results by comparing strings
without whitespace.

Transformation Name Remove whitespace

Parameter: Columns name

Parameter: Format Remove all whitespace

Remove symbols

The following transformation removes all non-alphanumeric symbols from your string values, including:

Punctuation
Numeric value indicators ($, %, etc.)

NOTE: Accented characters may not be removed. If this function fails to remove specific symbols, you
may need to remove these symbols manually or change the input encoding on the dataset through the
Import Data page.

Transformation Name Remove symbols

Parameter: Columns All

Copyright © 2022 Trifacta Inc. Page #302

Parameter: Format Remove symbols

Remove accents

The following transformation converts all accented characters (e.g."ä") to unaccented characters (e.g "a").

Transformation Name Remove accents from text

Parameter: Columns All

Parameter: Format Remove accents

Trim quotes

When some files are imported into the application, leading and trailing quotes may remain for some or all
columns. You can use the following transformation to remove these quotes from all columns:

NOTE: Quotes that appear in the middle of the string value are not removed. Single quotes, such as
apostrophes, are not removed.

Transformation Name Trim quotes

Parameter: Columns All

Parameter: Format Trim leading and trailing quotes

Pad Values

Add prefix or suffix to strings

You can add fixed-string prefixes or suffixes to your string values. The following adds -0000 to a text version of
the Zipcode column:

Transformation Name Add suffix to text

Parameter: Columns txtZipCode

Parameter: Format Add suffix

Parameter: Text to add '-0000'

Standardize String Values

Standardize case

You can use the following steps to set all text values in a column to be the same case.

Lower case:

Transformation Name Edit column with formula

Parameter: Columns myStrings

Parameter: Formula LOWER(myStrings)

Upper case:

Copyright © 2022 Trifacta Inc. Page #303

Transformation Name Edit column with formula

Parameter: Columns myStrings

Parameter: Formula UPPER(myStrings)

Proper (sentence) case:

Transformation Name Edit column with formula

Parameter: Columns myStrings

Parameter: Formula PROPER(myStrings)

Standardize String Lengths

Pad string values

If you need all of your column values to be of the same length, one technique is to pad each string value at the
front sufficiently, such that all string lengths in the column are identical.

This transformation results in adding enough spaces to each row value until the length of each value is 50
characters.

NOTE: Strings that are longer that the prescribed maximum are unchanged. You can use the LEFT or RI
GHT functions to change the size of the oversized ones. See below.

Transformation Name Pad text with leading characters

Parameter: Columns MyStrings

Parameter: Format Pad with leading characters

Parameter: Character to pad with ' '

Parameter: Length 50

Fixed length strings

You can limit the maximum size of a column or set of columns to a fixed string length. For example:

Transformation Name Edit column with formula

Parameter: Columns col1,col2

Parameter: Formula IF(LENGTH($col)>32,LEFT($col,32),$col)

In the above, if the length of either column is longer than 32 characters, then the column value is set to the
leftmost 32 characters. For shorter strings, the entire string is used.

For more information, see Manage String Lengths.

Copyright © 2022 Trifacta Inc. Page #304

Manage Sub-Strings

You can use the following functions to locate values within your strings. These functions can be used as part of
New Formula or Edit Formula transformations to create or edit column content:

Function Description
Name

LEN Function Returns the number of characters in a specified string. String value can be a column reference or string literal.

FIND Function Returns the index value in the input string where a specified matching string is located in provided column, string literal, or
function returning a string. Search is conducted left-to-right.

RIGHTFIND Returns the index value in the input string where the last instance of a matching string is located. Search is conducted
Function right-to-left.

LEFT Function Matches the leftmost set of characters in a string, as specified by parameter. The string can be specified as a column
reference or a string literal.

RIGHT Matches the right set of characters in a string, as specified by parameter. The string can be specified as a column
Function reference or a string literal.

SUBSTRING Matches some or all of a string, based on the user-defined starting and ending index values within the string.
Function

SUBSTITUTE Replaces found string literal or pattern or column with a string, column, or function returning strings.
Function

Reset Types

After modifying non-text values as strings, remember to convert them back to their original types.

Copyright © 2022 Trifacta Inc. Page #305

Manage String Lengths
Contents:

Test String Length
Truncate Strings
Specialized String Lengths
Use Rightmost Values
Substring Values
Additional String Functions

In this example, your target system has a limit on the maximum length for the First Name and Last Name fields.
You can use the following transforms to evaluate and truncate your strings based on their length.

Test String Length

You can use the following command to write a TOO LONG message when the length of the first_name field
exceeds 32 characters:

Transformation Name Edit column with formula

Parameter: Columns String_test

Parameter: Formula IF(LEN(first_name) > 32, 'TOO LONG',String_test)

Truncate Strings

The above test allows you to evaluate individual strings that are too long to see if they are errors or can somehow
be shortened. For a large dataset in which you cannot easily solve these problems, you can simply choose to cut
off the length of a string at 32 characters:

Transformation Name Edit column with formula

Parameter: Columns *

Parameter: Formula LEFT($col,32)

In the above, you can use a wildcard to match all columns in the dataset. The replacement value is defined to be
the first 32 characters of the source column ($col). By definition of the LEFT function, columns that are shorter
than 32 characters in length are untouched.

Tip: If the field you are truncating is used as a key to your dataset, you should verify that your key still
contains unique values after you have applied the truncation. For example, if the combination of first_n
ame and last_name is a unique identifier in your dataset, you should verify that the column containing
these identifiers contains unique values.

Specialized String Lengths

In some cases, you might want to limit the lengths of text strings. In this example, your dataset contains a column
of zip code values, some of which are in Zip+4 format. Your source data might look like the following:

zip_code

Copyright © 2022 Trifacta Inc. Page #306

94104

94104-2218

94105

For consistency, you might want to limit the column to use just the first five digits of the zip code.

Steps:

1. Select the first five digits of one of the nine-digit zip codes.
2. In the suggestion cards, select the Extract card.
3. Select the following variation:

Transformation Name Extract text or pattern

Parameter: Column to extract zipcode
from

Parameter: Option Custom text or pattern

Parameter: Text to extract `{zip}`

Parameter: Start extracting `{start}`
after

4. Click Add.

The above solution references two Patterns to identify elements of the cell value. For more information, see
Text Matching.

For a more generalized approach, you can use some of the following string functions to limit your data
length. Values that are shorter than the designated string length are left untouched.

NOTE: Transforms that cut down the size of a value might generate mismatched or missing values
based on the column's data type. You should verify that you are not creating new missing or mismatched
values.

Use Rightmost Values

Use the following transform to reduce a string to the rightmost 6 characters in any value:

Transformation Name Edit column with formula

Parameter: Columns prodID

Parameter: Formula RIGHT(prodID, 6)

Substring Values

The SUBSTRING function enables you to designate a specific subset of the string's characters to use. You specify
the index of the first character in the values and the number of subsequent characters to include. For example,
when applied to the value United States of America in the countries column, the following transform
sets the new value to be States.

Transformation Name Edit column with formula

Parameter: Columns countries

Copyright © 2022 Trifacta Inc. Page #307

Parameter: Formula SUBSTRING(countries, 7, 6)

Note that the index value begins at zero; to extract from the beginning of the value, replace 7 above with 0.

Additional String Functions

Wrangle supports other functions, which can be used to transform string values. See String Functions.

Copyright © 2022 Trifacta Inc. Page #308

Extract Values
Contents:

Extract vs. Split
Extract methods
Extract text or patterns

Extract single values
Extract values by example
Constrain matching
Extract single patterns
Extract multiple values
Extract first or last characters
Extract by positions

Extract by Data Type
Extract date values
Extract numeric values
Extract components of a URL
Extract object values
Extract array values

Extract Values into a List
Extract matches into array
Extract hashtags

Extracting one or more values from within a column of values can turn data into meaningful and discrete
information. This section describes how to extract column data, the methods for which may vary depending on
the data type.

Extract vs. Split

Extract and split transformations do not do the same thing:

A split transformation separates a single column into one or more separate columns based on one or
more values in the source column that identify where the data should be split. These delimiters can be
determined by the application or specified by the user when defining the transformation.
An extract transformation matches literal or pattern values from a source column and stores it in a
separate column.

NOTE: The source column is untouched by extract transformations.

Extract methods

In the Transformer page, you can use the following methods to extract values:

Method Description

By selection Select part of a value in the data grid to prompt a series of suggestions on what to do with the data. Typically, extract
options are near the top of the suggestions when you select part of a value.

By column From the menu to the right of the column, select Extract and a sub-menu item to begin configuring a transformation.
menu

By At the top of the data grid, click the Extract icon in the Transformer toolbar to begin configuring extract transformations.
Transformer
toolbar

Copyright © 2022 Trifacta Inc. Page #309

By Search In the Search panel, enter extract to build a transformation from scratch.
panel

Extract text or patterns

A primary use of extraction is to remove literal or patterned values of text from a column of values. Suppose your
dataset included a column of LinkedIn updates. You can use one of the following methods to extract keywords
from these values.

Extract single values

The following example transformation extracts the word #bigdata from the column msg_LinkedIn:

Transformation Name Extract text or pattern

Parameter: Column to extract msg_LinkedIn
from

Parameter: Option Custom text or pattern

Parameter: Text to extract '#bigdata'

Parameter: Number of matches 1
to extract

Notes:

The option parameter identifies that the pattern to match is a custom one specified by the user.
The Number of matches to extract parameter defaults to 1, meaning that the transformation
extracts a maximum of one value from each cell. This value can be set from 1-50.

Extract values by example

You can generate a new column of values extracted from a source column by entering example values to match
with source values. Values with similar patterns may also be matched based on your entered example value.

Tip: This method provides an easy way to build pattern-based matching for values in a source column.

For more information on transformation by example, see Overview of TBE.

Constrain matching

Within the extract transformation, you can specify literals or patterns before or after which the match is found.
This method can be used to remove parts of each cell value from erroneously matching on the literal or pattern
that is desired.

The following example extracts the second three-digit element of a phone number, skipping the area code:

Transformation Name Extract text or pattern

Parameter: Column to extract phone_num
from

Parameter: Option Custom text or pattern

Parameter: Text to extract `{digit}`

Parameter: Number of matches 1
to extract

Copyright © 2022 Trifacta Inc. Page #310

Parameter: Ignore matches `{start}{digit}{3}\-`
between

Extract single patterns

You can also do pattern-based extractions using Trifacta patterns or regular expressions.

Regular expressions are a standards-based method of describing patterns of characters for matching
purposes. Regular expressions are very powerful but can be difficult to use.
A Trifacta pattern is a proprietary method of describing patterns, which is much simpler to use than
regular expressions.
For more information on both types of patterns, see Text Matching.

The following example extracts all words that begin with # in the msg_LinkedIn column:

Transformation Name Extract text or pattern

Parameter: Column to extract msg_LinkedIn
from

Parameter: Option Custom text or pattern

Parameter: Text to extract `\#{alphanum-underscore}+`

Parameter: Number of matches 50
to extract

Notes:

The Text to extract parameter has changed:

Element Description

Two back-ticks (`) Indicate that the expression between them represents a Trifacta pattern.

\# The slash indicates that the character right after it should be interpreted as a character only; it should not
be interpreted as any special character in the pattern.

{alphanum- This Trifacta pattern element is used to indicate a single alphanumeric or underscore character.

underscore}

+ Adding the plus sign after the above character signifies that the pattern can match on a sequence of
alphanumeric or underscore characters of one or more length.

The Number of matches to extract parameter has been increased to grab up to 50 hashtags.

Advanced options

Option Description

Number of Set this value to the total number of patterns you wish to extract.
patterns to
extract

NOTE: This value determines the number of columns that are generated by the extraction. If no value is
available, an empty value is written into the corresponding column.

The default is 1.

Ignore case By default, pattern matching is case-sensitive. Select this checkbox to ignore case when matching.

Ignore matches You can enter a pattern here to describe any patterns that should not be part of any match. This option is useful if you
between have multiple instances of text but want to ignore the first one, for example.

Copyright © 2022 Trifacta Inc. Page #311

Extract multiple values

In your pattern expressions, you can use the vertical pipe character (|) to define multiple patterns to find. The
following example extracts any value from the myDate column that ends in 7 pr in 8:

Transformation Name Extract text or pattern

Parameter: Column to extract myDate
from

Parameter: Text to extract `{any}+7|{any}+8`

Parameter: End extracting before `{end}`

You can use the vertical pipe in both Trifacta patterns and regular expressions.

Extract first or last characters

You can extract the first or last set of characters from a column into a new column. In the following example, the
first five characters from the ProductName column are extracted into a new product identifier column:

Transformation Name Extract by positions

Parameter: Column to extract ProductName
from

Parameter: Option First characters

Parameter: Number of 5
characters to extract

You can change the Option value to Last characters to extract from the right side of the column value.

Extract and remove

If you need to remove the characters that you extracted, you can use the following transformation. In this case,
the first five characters, which were extracted in the previous transformation, are removed:

Transformation Name Edit column with formula

Parameter: Columns ProductName

Parameter: Formula RIGHT(ProductName, LEN(ProductName)-5)

Extract by positions

You can extract values between specified index positions within a set of column values. In the following example,
the text between the fifth and tenth characters in a column are extracted to a new column.

Tip: This extraction method is useful if the content before and after the match area is inconsistent and
cannot be described using patterns. If it is consistent, you should use the Extract text or pattern
transformation.

Transformation Name Extract by positions

Parameter: Column to extract ProductName
from

Parameter: Option Between two positions

Copyright © 2022 Trifacta Inc. Page #312

Parameter: Starting position 5

Parameter: Ending position 10

Extract by Data Type

You can perform extractions that are specific to a data type or based on failures of the data to match a specified
data type.

Extract date values

You can use functions to extract values from Datetime columns. The example below extracts the year value from
the myDate column:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula YEAR(myDate)

Parameter: New column myYear
name

The following functions can be used to extract values from a Datetime column, as long as the values are present
in the formatted date:

Function Description
Name

DAY Function Derives the numeric day value from a Datetime value. Source value can be a a reference to a column containing
Datetime values or a literal.

MONTH Derives the month integer value from a Datetime value. Source value can be a a reference to a column containing
Function Datetime values or a literal.

YEAR Function Derives the four-digit year value from a Datetime value. Source value can be a a reference to a column containing
Datetime values or a literal.

HOUR Function Derives the hour value from a Datetime value. Generated hours are expressed according to the 24-hour clock.

MINUTE Derives the minutes value from a Datetime value. Minutes are expressed as integers from 0 to 59.
Function

SECOND Derives the seconds value from a Datetime value. Source value can be a a reference to a column containing Datetime
Function values or a literal.

You can also reformat the whole Datetime column using the DATEFORMAT function. The following reformats the
column to show only the two-digit year:

Transformation Name Edit column with formula

Parameter: Columns myDate

Parameter: Formula DATEFORMAT(myDate, "yy")

Extract numeric values

You can extract numerical data from text values. In the following example, the first number is extracted from the a
ddress column, which would correspond to extracting the street number for the address:

Transformation Name Extract patterns

Copyright © 2022 Trifacta Inc. Page #313

Parameter: Column to extract address
from

Parameter: Option Numbers

Parameter: Number of matches 1
to extract

Empty values in this new column might indicate a formatting problem with the address.

Tip: If you set the number of patterns to extract to 2 for the address column, you might extract
apartment or suite information.

Extract components of a URL

URL components

Using functions, you can extract specific elements of a valid URL. The following transformation pulls the domain
values from the myURL column:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula DOMAIN(myURL)

Parameter: New column myDomain
name

In some cases, the function may not return values. For example, the SUBDOMAIN function returns empty values
if there is no sub-domain part of the URL.

The following functions can be used to extract values from a set of URLs:

Function Description
Name

HOST Finds the host value from a valid URL. Input values must be of URL or String type and can be literals or column references.
Function

DOMAIN Finds the value for the domain from a valid URL. Input values must be of URL or String type.
Function

SUBDOMAIN Finds the value a subdomain value from a valid URL. Input values must be of URL or String type.
Function

SUFFIX Finds the suffix value after the domain from a valid URL. Input values must be of URL or String type.
Function

URLPARAMS Extracts the query parameters of a URL into an Object. The Object keys are the parameter's names, and its values are the
Function parameter's values. Input values must be of URL or String type.

Query parameters

You can extract query parameter values from an URL. The following example extracts the store_id value from
the storeURL field value:

Transformation Name Extract patterns

Parameter: Column to extract storeURL
from

Copyright © 2022 Trifacta Inc. Page #314

Parameter: Option HTTP Query strings

Parameter: Fields to extract store_id

Extract object values

If your data includes sets of arrays, you can extract array elements into columns for each key, with the values
written to each key column.

Suppose your restaurant dataset includes a set of characteristics in the restFeatures column in the following
JSON format:

{
 "Credit": "Y",
 "Accessible": "Y",
 "Restrooms": "Y",
 "EatIn": "Y",
 "ToGo": "N",
 "AlcoholBeer": "Y",
 "AlcoholHard": "N",
 "TotalTables": "10",
 "TotalTableSeats": "36",
 "Counter": "Y",
 "CounterSeats": "8"

}

You can use the following transformation to extract the values from TotalTableSeats and CounterSeats into
separate columns:

Transformation Name Unnest Objects into columns

Parameter: Column restFeatures

Parameter: Paths to elements - 1 TotalTableSeats

Parameter: Paths to elements - 2 CounterSeats

Parameter: Include original Selected
column name

After the above is executed, you can perform a simple sum of the TotalTableSeats and CounterSeats
columns to determine the total number of seats in the restaurant.

Extract array values

In some cases, your data may contain arrays of repeated key-value pairs, where each pair would exist on a
separate line. Suppose you have a column called, Events, which contains date and time information about the
musician described in the same row of data. The Events column might look like the following:

[{"Date":"2018-06-15","Time":"19:00"},{"Date":"2018-06-17","Time":"19:00"},{"Date":"2018-06-19","Time":"20:
00"},{"Date":"2018-06-20","Time":"20:00"}]

The following transformation creates a separate row for each entry in the Events column, populating the other
fields in the new rows with the data from the original row:

NOTE: This type of transformation can significantly increase the size of your dataset.

Copyright © 2022 Trifacta Inc. Page #315

Transformation Name Expand arrays into rows

Parameter: Column Events

Extract Values into a List

You can also extract sets of values into an array list of values.

Tip: This transformation is useful for extracting types or patterns of information from a single column.

Extract matches into array

Using Trifacta patterns, you can extract the values of the column to form a new column of arrays. The following
example shows the usage of {any} pattern to extract the cell values and form a new array column.

Transformation:

Transformation Name Extract matches into Array

Parameter: Column product

Parameter: Pattern matching `{any}`
elements in the list

Parameter: Delimiter separating `,`
each element

Results:

Before After

socks, socks, socks ["socks", "socks", "socks"]

pants, pants ["pants", "pants"]

Extract hashtags

In this example, you extract one or more values from a source column and assemble them in an Array column.

Suppose you need to extract the hashtags from customer tweets to another column. In such cases, you can use
the {hashtag} Trifacta pattern to extract all hashtag values from a customer's tweets into a new column.

Source:

The following dataset contains customer tweets across different locations.

User Location Customer tweets
Name

James U.K Excited to announce that we’ve transitioned Wrangler from a hybrid desktop application to a completely cloud-
based service! #dataprep #businessintelligence #CommitToCleanData # London

Mark Berlin Learnt more about the importance of identifying issues in your data—early and often
#CommitToCleanData #predictivetransformations #realbusinessintelligence

Catheri Paris Clean data is the foundation of your analysis. Learn more about what we consider the five tenets of sound
ne #dataprep, starting with #1a prioritizing and setting targets. #startwiththeuser #realbusinessintelligence #Paris

Dave New York Learn how #NewYorklife

Copyright © 2022 Trifacta Inc. Page #316

onboarded as part of their #bigdata #dataprep initiative to unlock hidden insights and make them accessible
across departments.

Christy San How can you quickly determine the number of times a user ID appears in your data?#dataprep #pivot
Francisco #aggregation#machinelearning initiatives #SFO

Transformation:

The following transformation extracts the hashtag messages from customer tweets.

Transformation Name Extract matches into Array

Parameter: Column customer_tweets

Parameter: Pattern matching `{hashtag}`
elements in the list

Parameter: New column name Hashtag tweets

Then, the source column can be deleted.

Results:

User Name Location Hashtag tweets

James U.K ["#dataprep", "#businessintelligence", "#CommitToCleanData", " # London"]

Mark Berlin ["#CommitToCleanData", "#predictivetransformations", "#realbusinessintelligence", "0"]

Catherine Paris ["#dataprep", "#startwiththeuser","#realbusinessintelligence", "# Paris"]

Dave New York ["#NewYorklife", "dataprep", "bigdata", "0"]

Christy SanFrancisco ["dataprep", "#pivot", "#aggregation", "#machinelearning"]

Copyright © 2022 Trifacta Inc. Page #317

Format Dates
Contents:

Recommended Approaches
Option 1 - Patterns in the Column Details panel
Option 2 - Patterns based on date format
Option 3 - Transformation by Example
Option 4 - Manual fixups

Custom Datetime Formats
Normalize Regional Differences

Datetime values can be imported into Trifacta® in a variety of formats.

Below are just a few examples of one date in different acceptable formats:

myDate

Mar-14-2018

03/14/2018

2018-Mar-03

3/14/18

03/14/2018 00:00:00

March 14, 2018

This section describes the tools and approaches for standardizing and formatting your date values.

Recommended Approaches

When you are formatting a column of date values, you can attempt to standardize the values in the following
order.

Option 1 - Patterns in the Column Details panel

Through the Column Details panel, you can review the set of patterns that match the values in your date column
and select the ones to apply to standardize the values.

Steps:

1. From the column menu for your date column, select Column Details.
2. In the Column Details panel, click the Patterns tab.
3. In the Patterns tab, you can review the set of patterns that describe all values that appear in the column.

Select one that needs to be corrected.
4. In the right panel, select the Convert card.

Tip: If you do not see the Convert card, you might try to generate a new random sample, in which
example patterns are more evenly distributed throughout the sample.

Copyright © 2022 Trifacta Inc. Page #318

Figure: Select the Convert card in the Patterns tab
5. Click Add.
6. The number of patterns displayed in the Patterns tab is reduced. You can continue to select patterns to

standardize values.
7. Iterate until there is only one pattern displayed in the panel.

For more information on Datetime patterns, see Standardize Using Patterns.

Option 2 - Patterns based on date format

In some cases, you may not be able to simply select patterns, which generates sufficient suggestions to
standardize your date values. A second approach involves keying on mismatched values in the column.

Tip: This technique works for columns in which all values are valid Datetime values but are in different
date formats. If you have values that are invalid for any date format, you must use Option 3 to correct the
syntax errors using patterns first. See below.

In this case, you set the data type for the column to Datetime and use the DATEFORMAT function to match the
format of the values that you want to change. Next to the values from the preceding table, you can see the
corresponding date format token:

myDate DATEFORMAT value

Mar-14-2018 MMM-dd-yyyy

03/14/2018 MM/dd/yyyy

2018-Mar-03 yyyy-MMM-dd

3/14/18 M/d/yy

03/14/2018 00:00:00 MM/dd/yyyy HH:mm:ss

March 14, 2018 MMMM dd, yyyy

For purposes of this example, suppose your myDate column contains values in MM/dd/yyyy and M/d/yy format
. You wish to standardize on MMMM dd, yyyy format.

Steps:

1. From the Data Type menu at the top of the myDate column, select Date/Time.

Copyright © 2022 Trifacta Inc. Page #319

2. In the dialog, select the Date format that matches values you wish to fix:

Figure: Date/Time format selector
3. Click Save.
4. Now, you need to modify the values that match this format to match the target format (MMMM dd, yyyy).

Click the green bar in the column, which matches the values for the currently valid Datetime format., Then
click the Set suggestion. Click Modify.

5. In the Transform Builder, you have a predefined transformation that sets values based on whether the
column values are valid for the currently specified data type and format. You must replace the NULL() entr
y with the DATEFORMAT function which changes these values to the proper format:

Transformation
Name

Edit with formula

Parameter:
Columns

myDate

Parameter:
Formula

ifvalid($col, ['Datetime','yy','yyyy'], dateformat($col,
'MMMM dd, yyyy'))

6. Click Add. All values that matched the MM/dd/yyyy format are converted to the MMMM dd, yyyy format.
7. Repeat the previous steps:

a. Set the column's Datetime format to: M/d/yyyy.
b. Select the green bar in the column data quality bar.
c. Select the Set suggestion and modify it.
d. For the value in the transformation, insert the following function:

ifvalid($col, ['Datetime','M/d/yyyy'], dateformat(myDate, 'MMMM dd, yyyy'))

e. Add the transformation to you recipe.
8. Repeat Step 7 for any other mismatched formats.
9. You may have some manual fixups to complete at the end. See below.

Copyright © 2022 Trifacta Inc. Page #320

Option 3 - Transformation by Example

You can reformat dates by providing example output values for a listed source value. For a column of date
values, you can begin providing example outputs for individual values, and Trifacta can perform pattern-based
transformations to similarly formatted values. For more information, see Overview of TBE.

Option 4 - Manual fixups

Steps:

1. Now that you have selected a specific format for your Datetime values, the rows that do not match this
format are now identified as mismatched in the column. Click the red bar at the top of the column.

2. In the Status bar at the bottom of the screen, click Show only affected rows.
3. You can now see only the rows that remain mismatched with respect to the preferred Datetime format.
4. Select one of these values. For example, suppose you have quite a few values that are only four-digit year

values (YYYY). Select one of the values. Then, select the Replace card. Click Edit.
5. Your transformation should look like the following:

Transformation Name Replace text or patterns

Parameter: Column UpdateTime

Parameter: Find `{start}{digit}{4}{end}`

Parameter: Replace with ''

6. You can modify the search and replace patterns to capture and write back the year value:

a. In the Find value, put parentheses around the pattern that captures the four digits in a row. Adding
parentheses around a matching pattern identifies that sub-pattern as a capture group, which can
be referenced in any replacement.

b. The capture group should look like the following:

({digit}{4})

c. For the Replace with value, you must insert a month and day value according to the format selected
for the column (MM/DD/YYYY), followed by a reference back to the capture group.

d. Capture groups from the matching pattern can be referenced in the replacement value using
references such as $1, $2, $3, and so on. These tokens refer to the first, second, and third capture
groups in the Find value.

e. The Replace value should look like the following:

01/01/$1

f. Your transformation should look like the following when done:

Transformation Name Replace text or patterns

Parameter: Column UpdateTime

Parameter: Find `{start}({digit}{4}){end}`

Parameter: Replace with 01/01/$1

7. Click Add.
8. You can repeat these steps for the remaining mismatched values.

Copyright © 2022 Trifacta Inc. Page #321

Custom Datetime Formats

You can create your own customized Datetime formats using the DATEFORMAT function. For example, the
following changes the format of the lastDate function to use the yyyy:MM:dd format:

Transformation Name Edit with formula

Parameter: Columns lastDate

Parameter: Formula DATEFORMAT(lastDate, 'yyyy:MM:dd')

Normalize Regional Differences

The following date values correspond to the same date but vary in format in different regions of the world:

Date Value Region

03/14/2018 U.S.

14/03/2018 E.U.

2014-03-14 China

In the above examples, the delimiters for the U.S. and E.U. values are identical, which makes parsing these
values more challenging.

Tip: If your dataset contains date values from different regions of the world, you should find or create a
separate column to identify the applicable region.

Suppose the previous set of dates was represented in your dataset with the following values:

contractDate region

03/14/2018 USA

14/03/2018 EU

2014-03-14 CHN

In this case, you might try the following generalized solution. You can use conditional transformations to extract
the day, month, and year values from the contractDate column based on the value in the region column.

NOTE: This solution assumes that all date values within for a specific region (e.g. USA) are consistently
formatted. You should perform those formatting actions first.

Steps:

1. First, you must split the column based on the cell value's delimiter. Note that the following transformation
uses the Pattern {delim} to locate the delimiter in the cell value. This delimiter is either a dash or a slash.

Transformation Name Split by delimiter

Parameter: Column contractDate

Parameter: Option by Delimiter

Parameter: Delimiter `{delim}`

Copyright © 2022 Trifacta Inc. Page #322

2. Create the following three conditional transformations for extracting the day, month, or year values based
on the value in the Region column. Here is the transformation to acquire the year values:

Transformation Name conditions

Parameter: Condition type Case on single column

Parameter: Column to evaluate Region

Parameter: Case 1 'EU'

Parameter: Value 1 contractDate3

Parameter: Case 2 'USA'

Parameter: Value 2 contractDate3

Parameter: Case 3 'CHN'

Parameter: Value 1 contractDate1

3. For month:

Transformation Name conditions

Parameter: Condition type Case on single column

Parameter: Column to evaluate Region

Parameter: Case 1 'EU'

Parameter: Value 1 contractDate2

Parameter: Case 2 'USA'

Parameter: Value 2 contractDate1

Parameter: Case 3 'CHN'

Parameter: Value 1 contractDate2

4. For day:

Transformation Name conditions

Parameter: Condition type Case on single column

Parameter: Column to evaluate Region

Parameter: Case 1 'EU'

Parameter: Value 1 contractDate1

Parameter: Case 2 'USA'

Parameter: Value 2 contractDate2

Parameter: Case 3 'CHN'

Parameter: Value 1 contractDate3

Copyright © 2022 Trifacta Inc. Page #323

5. You can now bring together these three columns:

Transformation Name Merge columns

Parameter: Columns day, month, year

Parameter: Separator '/'

Parameter: New column newDate
name

6. You now have your new date column. You may need to reformat it into a preferred format.
7. Delete the columns that were created during this process.

Copyright © 2022 Trifacta Inc. Page #324

Apply Conditional Transformations
Contents:

Single- and Multi-Case Transformations
Conditional Functions

IF function
CASE function

Logical Operators

In your recipe steps, you can apply conditional logic to determine if transformational changes should occur.

You can build logical tests into your transformations in multiple levels:

Single- and multi-case transformations: Use case-based transformations to test if-then or case logic
against your dataset and to apply the specified results.
Conditional functions: IF and CASE functions can be applied to any transformation that accepts
functional expressions.
Logical operators: You can use AND or OR logic to build your conditional expressions.

NOTE: If you are running your job on Spark, avoid creating single conditional transformations with deeply
nested sets of conditions. On Spark, these jobs can time out, and deeply nested steps can be difficult to
debug. Instead, break up your nesting into smaller conditional transformations of multiple steps.

Single- and Multi-Case Transformations

Through the Transform Builder, you can build conditional tests using if/then/else or case logic to manipulate on
the data.

1. In the Search panel in the Transformer page, enter case.
2. You can choose one of three different logical transformations:

a. If-then-else: Specify any logical test that evaluates to true or false and specify values if true
(then) or if false (else).

b. Single-column case: Test for explicit values in a column and, if true, write specific values to the
new column.

c. Custom conditions: Specify any number of case statements, which can have completely
independent expressions:

i. Case 1 is tested, and a value is written if true.
ii. If Case 1 is false, then Case 2 is tested. If true, a different value can be written.
iii. Supports an arbitrary number of independent conditional cases.

3. Specify the other parameters, including the name of the new column.

After the transformation is added to the recipe, actions can then be taken based on the values in this new column.

Conditional Functions

You can also apply conditional logical as part of your function definitions for other transformations.

IF function

For example, the following replaces values in the same column with IN if they are greater than 0.5 or OUT
otherwise:

Copyright © 2022 Trifacta Inc. Page #325

Transformation Name Edit column with formula

Parameter: Columns testCol

Parameter: Formula IF($col >= 0.5, 'IN','OUT')

In the above, the token $col is a reference back to the value defined for the column (testCol in this
case). However, you can replace it with a reference to any column in the dataset.

You can use the IF function in any transformation that accepts functional inputs.

CASE function
You can chain together IF functions in the following manner:

Transformation Name Edit column with formula

Parameter: Columns testCol

Parameter: Formula IF($col >= 0.5, 'IN',(IF($col >= 0.35, 'MAYBE
IN','OUT')))

However, these can become problematic to debug. Instead, you can use the CASE function to assist in building
more complex logical trees. The following is more legible and easier to manage:

Transformation Name Edit column with formula

Parameter: Columns testCol

Parameter: Formula CASE([$col >= 0.75, 'IN', $col >= 0.35, 'MAYBE IN', 'OUT'])

If test Test Output if true

If: $col >= 0.75 IN

If above is false: $col >= 0.35 MAYBE IN

If above is false: default OUT

Logical Operators

Logical operators can be applied to your function expressions to expand the range of your logical tests.

In the above example, suppose you have a second column called, Paid, which contains Boolean values. You
could expand the previous statement to include a test to see if Paid=true:

Transformation Edit column with formula
Name

Parameter: testCol
Columns

Parameter: CASE([($col >= 0.75 && Paid == true), 'IN', ($col >= 0.35 &&
Formula Paid == true), 'MAYBE IN', 'OUT'])

The above performs a logical AND operation on the two expressions in each tested case. The logical operator is &&
.

You can also reference explicit functions to perform logical tests. The above might be replaced with the following:

Copyright © 2022 Trifacta Inc. Page #326

Transformation
Name

Edit column with formula

Parameter:
Columns

testCol

Parameter:
Formula

CASE([AND($col >= 0.75, Paid == true), 'IN', AND($col >= 0.35,
Paid == true), 'MAYBE IN', 'OUT'])

Logic Logical Operator Logical Function

Logical AND (exp1 && exp2) AND(exp1,exp2)

Logical OR (exp1 || exp2) OR(exp1,exp2)

Logical NOT !(exp1 == exp2) NOT(exp1,exp2)

Depending on the structure of your transformation and your preferences, either form may be used.

Copyright © 2022 Trifacta Inc. Page #327

Prepare Data for Machine Processing
Contents:

Scaling
Scale to zero mean and unit variance
Scale to min-max range

Outliers
Identify outliers
Remove outliers
Change outliers to mean values

Binning
Bins of equal size
Bins of custom size

One-Hot Encoding

Depending on your downstream system, you may need to convert your data into numeric values of the expected
form or to standardize the distribution of numeric values. This section summarizes some common statistical
transformations that can be applied to columnar data to prepare it for use in downstream analytic systems.

Scaling

You can scale the values within a column using either of the following techniques.

Scale to zero mean and unit variance

Zero mean and unit variance scaling renders the values in the set to fit a normal distribution with a mean of 0
and a variance of 1. This technique is a common standard for normalizing values into a normal distribution for
statistical purposes.

In the following example, the values in the POS_Sales column have been normalized to average 0, variance 1.

Remove mean: When selected, the existing mean (average) of the values is used as the center of the
distribution curve.

NOTE: Re-centering sparse data by removing the mean may remove sparseness.

Scale to unit variance: When selected, the range of values are scaled such that their variance is 1. When
deselected, the existing variance is maintained.

NOTE: Scaling to unit variance may not work well for managing outliers. Some additional
techniques for managing outliers are outlined below.

Transformation Name Scale column

Parameter: Column POS_Sales

Parameter: Scaling method Scale to zero mean and unit variance

Parameter: Remove mean false

Parameter: Scale to unit true

Copyright © 2022 Trifacta Inc. Page #328

variance

Parameter: Output options Create new column

Parameter: New column name scale_POS_Sales

Scale to min-max range

You can scale column values fitting between a specified minimum and maximum value. This technique is useful
for distributions with very small standard deviation values and for preserving 0 values in sparse data.

The following example scales the TestScores column to a range of 0 and 1, inclusive.

Transformation Name Scale column

Parameter: Column TestScores

Parameter: Scaling Scale to a given min-max range
method

Parameter: Minimum 0

Parameter: Maximum 1

Parameter: Output options Replace current column

Outliers

You can use several techniques for identifying statistical outliers in your dataset and managing them as needed.

Identify outliers

Suppose you need to remove the outliers from a column. Assuming a normal bell distribution of values, you can
use the following formula to calculate the number of standard deviations a column value is from the column mean
(average). In this case, the source column is POS_Sales.

Transformation Name New formula

Parameter: Formula type Multiple row formula

Parameter: Formula (ABS(POS_Sales - AVERAGE(POS_Sales))) / STDEV
(POS_Sales)

Parameter: New column name stdevs_POS_Sales

Remove outliers

The new stdevs_POS_Sales column now contains the number of standard deviations from the mean for the
corresponding value in POS_Sales. You can use the following transformation to remove the rows that contain
outlier values for this column.

Tip: An easier way to select these outlier values is to select the range of values in the stdevs_POS_Sal
es column histogram. Then, select the suggestion to delete these rows. You may want to edit the actual
formula before you add it to your recipe.

In the following transformation, all rows that contain a value in POS_Sales that is greater than four standard
deviations from the mean are deleted:

Copyright © 2022 Trifacta Inc. Page #329

Transformation Name Filter rows

Parameter: Condition Custom formula

Parameter: Type of formula Custom single

Parameter: Condition 4 <= stdevs_POS_Sales

Parameter: Action Delete matching rows

Change outliers to mean values

You can also remove the effects of outliers be setting their value to the mean (average), which preserves the data
in other columns in the row.

Transformation Name Edit with formula

Parameter: Columns POS_Sales

Parameter: Formula IF(stdevs_POS_Sales > 4, AVERAGE(POS_Sales),
POS_Sales)

Binning

You can modify your data to fit into bins of equal or custom size. For example, the lowest values in your range
would be marked in the 0 bin, with larger values being marked with larger bin numbers.

Bins of equal size

You can bin numeric values into bins of equal size. Suppose your column contains numeric values 0-1000. You
can bin values into equal ranges of 100 by creating 10 bins.

Transformation Name Bin column

Parameter: Column MilleBornes

Parameter: Select Option Equal Sized Bins

Parameter: Number of Bins 10

Parameter: New column MilleBornesRating
name

Bins of custom size

You can also create custom bins. In the following example, the TestScores column is binned into the following
bins. In a later step, these bins are mapped to grades:

Bins Bin Range Bin Number Grade

59 0-59 0 F

69 60-69 1 D

79 70-79 2 C

89 80-89 3 B

 90+ 4 A

(no value) I

Copyright © 2022 Trifacta Inc. Page #330

First, you bin values into the bin numbers listed above:

Transformation Name Bin column

Parameter: Column TestScores

Parameter: Select option Custom bin size

Parameter: Bins 59,69,79,89

Parameter: New column Grades
name

You can then use the following transformation to assign letters in the Grades column:

Transformation Name Conditions

Parameter: Condition type Case on single column

Parameter: Column to evaluate Grades

Parameter: Case - 0 'F'

Parameter: Case - 1 'D'

Parameter: Case - 2 'C'

Parameter: Case - 3 'B'

Parameter: Case - 4 'A'

Parameter: Default value 'I'

Parameter: New column name Grades_letters

One-Hot Encoding

One-hot encoding refers to distributing the listed values in a column into individual columns. Within each row of
each individual column is a 0 or a 1, depending on whether the value represented by the column appears in the
corresponding source column. The source column is untouched. This method of encoding allows for easier
consumption of data in target systems.

Tip: This transformation is particularly useful for columns containing a limited set of enumerated values.

In the following example, the values in the BrandName column are distributed into separate columns of binary
values, with a maximum limit of 50 new columns.

NOTE: Be careful applying this to a column containing a wide variety of values, such as Decimal values.
Your dataset can expand significantly in size. Use the max columns setting to constrain the upper limit on
dataset expansion.

Transformation Name One-hot encoding of values to columns

Parameter: Column BrandName

Parameter: Max number of 50
columns to create

Copyright © 2022 Trifacta Inc. Page #331

Tip: If needed, you can rename the columns to prepend the names with a reference to the source
column.

Copyright © 2022 Trifacta Inc. Page #332

Enrichment Tasks
Contents:

Add New Columns
Insert Metadata
Combine Datasets

Union
Join
Lookup

Reshape Datasets
Aggregation
Pivot tables

These topics cover various approaches to augmenting your data with fixed values, generated values, or data
from other datasets.

Add New Columns

You can add new columns of data that you specify within the application. See Create New Column.

This new column can be created by combining multiple columns of existing data. See Add Two Columns.

Insert Metadata

You can insert data about your dataset into the dataset itself. See Insert Metadata.

Tip: A common use of available metadata is to create primary keys for each record in your dataset. See
Generate Primary Keys.

Combine Datasets

Union

A union operation concatenates multiple datasets together. An example is below.

Tip: The following example unions two datasets based on the position of the columns. Unions may also
be performed based on the column names.

Dataset 1:

CName1 CName2 CName3

C1.1 C2.1 C3.1

C1.2 C2.2 C3.2

C1.3 C2.3 C3.3

Dataset 2:

CName1 CName2 CName4

Copyright © 2022 Trifacta Inc. Page #333

C4.1 C5.1 C6.1

C4.2 C5.2 C6.2

C4.3 C5.3 C6.3

When a union is performed based on the position of the columns in each dataset, all of the rows of Dataset 1 are
included, followed by all of the rows of Dataset 2. You can choose which columns to include from each of the
source datasets.

Output:

In the above, note that the name of the third column in each dataset is different (CName3 and CName4).

CName1 CName2 CName3 CName4

C1.1 C2.1 C3.1

C1.2 C2.2 C3.2

C1.3 C2.3 C3.3

C4.1 C5.1 C6.1

C4.2 C5.2 C6.2

C4.3 C5.3 C6.3

When to use:

Tip: You should perform union operations as early as possible in your recipes.

If your datasets include event or log information, you can use the union operation to create a longer
sequence of those transactions. For example, you might union together all of your log data for a week from
daily log files.

To union your dataset to another, enter Union datasets the Transformation textbox in the recipe panel.

See Append Datasets.

Join

A join operation brings together two datasets based on a column that appears in both datasets and contains the
same unique values used to identify records. Based on the values in this column, called the primary key, records
in the second dataset are joined to records in the first dataset. As part of the join definition, you may select the
fields from both datasets to include, filtering out any duplicated or unnecessary fields in the combined dataset.

The way in which the two datasets are joined is defined by the type of join:

inner join - include only the records in which key (primary key) values in the first dataset appear as key (fo
reign key) values in the second dataset.
left join - include only the records that contain a primary key value that appears in the first (left) dataset.

If a primary key value from the first dataset does not appear as a foreign key in the second dataset,
any columns brought in from the second dataset contain missing values.
Foreign key values that appear in the second dataset and not the first one do not generate rows in
the output dataset.

right join - include only the records that contain a foreign key value that appears in the second (right)
dataset. The other conditions above apply in reverse.
outer join - include all records from both datasets. If a key value is missing from either dataset, the column
values included from that dataset are missing.
For more information, see Join Types.

Copyright © 2022 Trifacta Inc. Page #334

When to use:

Tip: Generally, you should perform join operations as late as possible in your recipes.

A join is useful for pulling in selected fields from a second dataset based on matches of key values. These
operations can be expensive to execute but can generate a much wider range of output datasets.

To join your dataset with another, enter join datasets in the Search panel. See Join Data.

Lookup

A lookup operation is used to pull in reference fields from another dataset based on the values contained in a
selected column of the first dataset. These second datasets are typically static or changing infrequently.

NOTE: A lookup is similar to a left join. However, with a lookup, all fields from the reference dataset are
brought into the generated dataset and all fields from the original dataset are included automatically.
When you create a join, you may specify the fields to include in the output dataset.

For example, you might create a dataset like the following:

State-2letters State-full

AL Alabama

AK Alaska

AZ Arizona

... ...

WI Wisconsin

WY Wyoming

If you have a dataset containing the two-letter abbreviations, you can perform a lookup into the above dataset to
retrieve the corresponding full names, which are inserted as an adjacent column called State-full in the
original dataset.

NOTE: If a value in the column from the first dataset does not appear in the second dataset, there is no
corresponding value in the generated State-full column.

When to use:

Lookups are useful for referencing shared datasets whose meaning must be consistent across multiple
datasets. You can use lookups to pull in customer or product master data (Customer name, address, etc.)
based on CustomerId or ProductId values.

To perform a lookup from a column in your dataset, open the column drop-down and select Lookup.... See
Lookup Wizard.

Reshape Datasets

Aggregation

A single-dataset operation, an aggregation is used to perform summary calculations on columns in your dataset,
optionally grouping your data by the values in one or more columns.

Copyright © 2022 Trifacta Inc. Page #335

For example, your dataset contains point-of-sale transactions from all of the stores in your organization. You can
use an aggregation to summarize total sales by performing a sum operation on your Total_Sale column. If you
group this calculation by month and by StoreId, you can acquire monthly sales per month per store.

When to use:

An aggregation is useful for performing exploratory calculations on your entire dataset or segments of your
dataset.
You can perform aggregations and run jobs to generate the results. After you have these summary
reports, you can return to the Transformer page and remove the aggregation to continue wrangling your
data.

For more information on in-column aggregations, see Create Aggregations.

Pivot tables

For more information on building aggregated pivot tables, see Pivot Data.

Copyright © 2022 Trifacta Inc. Page #336

Create New Column
Contents:

New Formula
Add a column of text values
Add a column that uses a function
Add a column that references another column
Add a column using constants, functions, and column references

Merge Columns
Extract Values from a Column
Split Column Values
Convert a Column into Multiple Columns

Unnest

You can create a new column by adding or editing a formula on any existing column.

New Formula

The New Formula transformation allows you to create a new column based upon a formula that you provide to
the transformation. Below are some examples.

Add a column of text values

You can insert a new column containing a string value that you specify as part of the transformation. In the
following example, the status column is created, and all values in it are set to ok.

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula 'ok'

Parameter: New column status
name

Add a column that uses a function

You can insert a new column by using a function. In the following example, the currentyear column is
extracted as a new column from the TransactionDate column using YEAR function.

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula YEAR (TransactionDate)

Parameter: New column currentyear
name

For more information on extracting date information, see Extract Values.

Copyright © 2022 Trifacta Inc. Page #337

Add a column that references another column

You can also insert columns containing references to other columns. In the following example, the totalCost
column is created called totalCost, which is based on the formula using three separate columns: baseCost +
totalTax - totalDiscount:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula baseCost + totalTax - totalDiscount

Parameter: New column totalCost
name

Add a column using constants, functions, and column references

You can insert a column by using nested expressions by using constants, functions, and column references. In
the following example, the Three column is created, which is based on nested functions ROUND and DIVIDE.

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula ROUND(DIVIDE(10,3),0)

Parameter: New column Three
name

Merge Columns

You can merge two or more columns together to create a new column containing the merged values. For more
information, see Add Two Columns.

Extract Values from a Column

You can extract values based on patterns or literal values from one column and insert them into a new column.
See Extract Values.

Split Column Values

You can split the values in a column into separate columns based on delimiters and other conditions that you
define. See Split Column.

Convert a Column into Multiple Columns

Unnest

You can extract values stored in an array into separate columns in your dataset. This type of transformation can
be useful for unpacking nested data such as JSON into tabular format.

For more information, see Working with JSON v2.
For more information, see Working with Arrays.

Copyright © 2022 Trifacta Inc. Page #338

Add Two Columns
Contents:

Check Data Types
Check Values
Syntax of Math Functions
Add One Column into Another
Add Selective Values from One Column into Another
Add Two Columns into a New Third Column
Working with More than Two Columns
Concatenating Columns
Summing Rows

This section provides an overview of how to perform mathematical operations between columns.

Check Data Types

Before you begin, you should verify that the data types of the two columns match. Check the icon in the upper left
of each column to verify that they match.

To change the data type, you can:

Click the data type icon.
Select Edit data type from the column menu.

Check Values

After setting data types, you should address any missing or mismatched values in the column. For example, if
you change a column's data type from Decimal to Integer, values that contain decimal points may be reported as
mismatched values. Use the ROUND function to round them to the nearest integer.

Transformation Name Edit column with formula

Parameter: Columns myColumn

Parameter: Formula ROUND(myColumn)

Tip: You can use the FLOOR or CEILING functions to force rounding down or up to the nearest integer.

Syntax of Math Functions

You can express mathematical operations using numeric operators or function references. The following two
examples perform the same operation, creating a third column that sums the first two.

Numeric Operators:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula (colA + colB + colC)

Copyright © 2022 Trifacta Inc. Page #339

Parameter: New column 'colD'
name

Math Functions:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula ADD(colA,colB)

Parameter: New column 'colD'
name

NOTE: Expressions containing numeric operators can contain more than two column references or
values, as well as nested expressions. Math functions support two references only.

Add One Column into Another

To perform math operations, you can use the Edit column with formula transformation to update values in a
column based on a math operation. The following transformation multiplies the column by 10 and adds the value
of colB:

Transformation Name Edit column with formula

Parameter: Columns colA

Parameter: Formula ((colA * 10) + colB)

All values in colA are modified based on this operation.

Add Selective Values from One Column into Another

You can use the Edit column with formula transformation to perform math operations based on a condition you
define. In the following step, the Cost column is replaced reduced by 10% if the Qty column is more than 100.
The expression is rounded down to the nearest integer, so that the type of the column (Integer) is not changed:

Transformation Name Edit column with formula

Parameter: Columns Cost

Parameter: Formula IF(Qty > 100, ROUND(Cost * 0.9), Cost)

For rows in which Qty is less than 100, the value of Cost is written back to the column (no change).

Add Two Columns into a New Third Column

To create a new column in which a math operation is performed on two other columns, use the New Formula
transformation. The following multiplies Qty and UnitPrice to yield Cost:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula MULTIPLY(Qty,UnitPrice)

Copyright © 2022 Trifacta Inc. Page #340

Parameter: New column 'Cost'
name

Working with More than Two Columns

If you need to work with more than two columns, numeric operators allow you to reference any number of
columns and static values in a single expression.

However, you should be careful to avoid making expressions that are too complex, as they can be difficult to
parse and debug.

Tip: When performing complex mathematic operations, you may want to create a new column to contain
the innermost computations of your expression. Then, you can reference this column in the subsequent
step, which generates the full expression. In this manner, you can build complex equations in a way that
is easier to understand for other users of the recipe. The final step is to delete the generated column.

Concatenating Columns

If you are concatenating string-based content between multiple columns, use the Merge Columns
transformation. In the following example, the Merge Columns transformation is used to bring together the order ID
(ordId) and product ID (prodId) columns, with the dash character used as the delimiter between the two
column values:

Transformation Name Merge columns

Parameter: Columns ordId, prodId

Parameter: Separator '-'

Parameter: New column primaryKey
name

Tip: This method can be used for columns of virtually any type. Change the data type of each column to
String and then perform the merge operation.

Array column types can be concatenated with the ARRAYCONCAT function.

Tip: You can also use the MERGE function to accomplish the above actions. The function method is
useful if you are performing a separate transformation action on the data involved. For example, you
could use the function if you are using the Edit formula column to modify a column in place.

Summing Rows

You can use aggregate functions to perform mathematic operations on sets of rows. Aggregated rows are
collapsed and grouped based on the functions that you apply to them.

Copyright © 2022 Trifacta Inc. Page #341

Generate Primary Keys
Contents:

The unique row identifier method
Standardize formatting
Combine across datasets

The combined field method

This section describes how you can create primary keys for each row in your dataset.

In database terms, a primary key is a column or set of columns that uniquely identifies rows in a table. Examples:

For log data or other transactional data, the timestamp is typically a unique identifier.

Tip: If you think you need a primary identifier for your dataset, you should try to identify it or create
it before you delete potentially useful columns.

Product information typically contains an SKU identifier. If that is not available, you may need brand, make,
and model combinations, which can be created using the method described below.

A well-organized source of data is likely to contain this information for you, but in some cases, you may be
required to generate your own primary key.

Tip: In the Transformer page, a quick way to check if there is a primary key in your dataset is to compare
the count of categories in the data histograms for string-based data against the count of rows. If the
numbers are equal, then the column is suitable for use as a primary key. However, if you ever join with
another dataset, you must re-review the suitability of the field and may need to build a new primary key
field. Keep in mind that counts apply to the displayed sample, instead of the entire dataset.

This section provides two methods for generating primary keys in your datasets.

The unique row identifier method

When a dataset is loaded into the Transformer page for the first time, you can see a set of black dots along the
left side. Hover over these dots to reveal the row numbers retrieved from the original source, if that information is
still available. This method relies on these numbers for generating primary keys and is suitable when your final
output contains a relatively few number of combined datasets.

NOTE: Some transforms and datasources, like relational sources, make original row order information
unavailable.

When you first load your dataset into the Transformer page, you should generate a column containing the original
row information, such as the following:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula SOURCEROWNUMBER()

Parameter: New column origRowId
name

Copyright © 2022 Trifacta Inc. Page #342

This transform is useful to include after initial inference and structuring of each recipe for all of your datasets.

Standardize formatting

The output of this column is a list of numeric values from 1 or 2 to the final row of your dataset. As a unique
identifier, you might want to standardize these values. For example, you are transforming a set of orders. You
may want to prepend your unique row identifiers with a code and to format them based on a fixed length, as in
the following:

origRowId keyPrefix primaryKey

1 ORD000 ORD0001

2 ORD000 ORD0002

... ORD000 ...

10 ORD00 ORD0010

... ORD00 ...

99 ORD00 ORD0099

100 ORD0 ORD0100

This structuring generates primary keys of consistent length. You can use the following steps to standardize their
formatting, assuming that you have already created the origRowId column.

Steps:

1. Change this column to be of String type. Select String from the data type drop-down for the column.
2. Create a column containing your prepended identifier and the proper number of zeroes. The following bit

of logic generates a string with the proper number of zeroes depending on the length of the value in origR
owId:

Transformation New formula
Name

Parameter: Single row formula
Formula type

Parameter: IF(LEN(origRowId) > 3, 'ORD', IF(LEN(origRowId) > 2, 'ORD0',
Formula IF(LEN(origRowId) > 1, 'ORD00','ORD000')))

Parameter: keyPrefix
New column
name

NOTE: The following works for up to 10,000 rows in the original dataset. You need to add
additional IF clauses when your row counts exceed 10,000.

3. Now, you can merge these columns together:

Transformation Name Merge columns

Parameter: Columns keyPrefix,origRowId

Parameter: New column primaryKey
name

4. You can now delete the prefix column:

Copyright © 2022 Trifacta Inc. Page #343

Transformation Name Delete columns

Parameter: Columns keyPrefix

Parameter: Action Delete selected columns

These steps should be applied across all datasets that you intend to combine into your output dataset.

Combine across datasets

After you have combined or enriched your dataset, you can combine these original row ID fields from each
dataset to create a super primary key in the combined dataset using the method described below.

The combined field method

If your final dataset contains more than a few combined datasets, this basic method for creating a primary key is
to find a combination of fields that collectively represent a unique identifier from the final dataset. Columns:

LastName
FirstName
TestNumber
TestScore

Since there are multiple instances of test data for each person, there is no single column to use as a primary key.

Steps:

1. Load the dataset into the Transformer page.
2. Identify the columns that together can uniquely identifier a row. In the TestScores-All example, these

columns are the following:
a. LastName
b. FirstName
c. TestNumber

NOTE: It may be possible to set up a key using LastName and TestNumber, but that is not
guaranteed. If the dataset changes over time, a working key based on these columns may
become broken.

3. Use the merge transform to combine these columns together into a new column, such as the following:

Transformation Name Merge columns

Parameter: Columns LastName,FirstName,TestNum

Parameter: Separator '-'

Parameter: New column TestID
name

The with clause identifies the delimiter between the merged column values.
4. Values should look like the following:

TestID

Smith-Joe-2

Doe-Jane-4

Copyright © 2022 Trifacta Inc. Page #344

Jones-Jack-1

5. In some cases, you may want to delete the source columns for the primary key.

Copyright © 2022 Trifacta Inc. Page #345

Add Lookup Data
Contents:

Set up Your Lookup Data
Perform the Lookup
Example - Lookup for Timezones

You can integrate data from other sources into your current dataset. Based on a key column that you identify in
the lookup dataset, you can insert the corresponding values in other columns of the lookup dataset as new
columns in your source dataset.

Tip: Column lookups are useful for adding reference data based on a column's values.

For example, your data contains the two-letter abbreviations for U.S. states, yet the target system is expecting
the full name of each state. You need to replace the XY state abbreviation with the full name of each state in each
row.

Set up Your Lookup Data

Your data table should like the following:

State-2Letter State

AL Alabama

AK Alaska

AZ Arizona

AR Arkansas

CA California

CO Colorado

CT Connecticut

DE Delaware

DC District of Columbia

FL Florida

GA Georgia

HI Hawaii

ID Idaho

IL Illinois

IN Indiana

IA Iowa

KS Kansas

KY Kentucky

LA Louisiana

ME Maine

Copyright © 2022 Trifacta Inc. Page #346

MD Maryland

MA Massachusetts

MI Michigan

MN Minnesota

MS Mississippi

MO Missouri

MT Montana

NE Nebraska

NV Nevada

NH New Hampshire

NJ New Jersey

NM New Mexico

NY New York

NC North Carolina

ND North Dakota

OH Ohio

OK Oklahoma

OR Oregon

PA Pennsylvania

RI Rhode Island

SC South Carolina

SD South Dakota

TN Tennessee

TX Texas

UT Utah

VT Vermont

VA Virginia

WA Washington

WV West Virginia

WI Wisconsin

WY Wyoming

Tip: You can download a version of this table, which also includes some timezone information. See
Dict-TimezoneByState.csv.

This data table must be uploaded as a new dataset.

Perform the Lookup

Steps:

Copyright © 2022 Trifacta Inc. Page #347

1. In the Transformer page, click the drop-down on the column that contains your two-letter state
abbreviations. Select Lookup

2. In the Lookup Wizard, select the dataset to use for your lookup.
3. For the lookup key, select the column in the dataset to use as the key value. In the above example, it is St

ate_2Letter.
4. Click Execute Lookup.
5. The lookup key value is used to locate all of the other column values in the reference dataset. These

values are inserted in separate columns to the immediate right of the source column.
6. You might need to delete some of the imported columns. In the above case, you might decide to delete the

two-letter state identifier column, which has been replaced by the full state name column.

See Lookup Wizard.

Example - Lookup for Timezones

The CSV linked above also contains timezone information for each state, which you can use to provide higher
fidelity information on timestamps.

U.S. timezones are not consistently demarcated by state lines. Some states are split across
multiple timezones. For more accurate representation of timezones, you should download and
use a zipcode database, many of which are freely available online. This CSV is provided for
demonstration purposes only.

In this case, you are working with a dataset that contains timestamps, which are stored in different timezones
based on the location where an event or transaction occurred. However, the timestamps do not contain any
timezone information.

You can use an external source of timezone information to insert timezones into your dataset. In the following
example, timezones are derived based on two-letter abbreviations for U.S. state. A more accurate representation
would be based on zipcode data.

Steps:

1. Complete steps 1-5 in the previous section.
2. Delete all columns except the one containing timezone information. The Time Offsets column identifies

the predominant timezone in each state as an offset of the UTC timezone (Greenwich Mean Time).
3. Move this column to the right of the column containing your timestamps.

NOTE: Depending on the requirements of your target system, you can use the Split transformation to
break up column data so that only the numerical offset (e.g. -6:00) is present. Then, you can use the DA
TEDIF function to apply the timezone offset to your timestamps. In this manner, you can convert
timestamps to the source timezone before they are consumed by the target system.

Copyright © 2022 Trifacta Inc. Page #348

Append Datasets
If you are wrangling datasets that represent transactional or serialized data, you can append together slices of
data to build a larger dataset for richer analysis.

For example, you are cleansing log messages on a weekly basis. You can create separate datasets for each
day's log messages and then bring them altogether into a single dataset for processing through a single recipe. Th
is method works best for datasets that have identical or very similar structures.

Below, you can see two datasets of contact information. These simplified datasets track customer contact records.

Dataset01:

Name Email Last Contact

Jack Jones jack@example.com 06/15/2015

Tina Toms tinat@example.com 08/02/2015

Larry Lyons larry.lyons@example.com 03/22/2015

Dataset02:

Name Last Contact Date Email

Amy Abrams 07/24/2015 amy.abrams@example.com

Tina Toms 05/12/2015 tinat@example.com

Samantha Smith 04/22/2015 samantha@example.com

Notes:

There is one overlapping record for Tina Toms.
There is a mismatch in one column name ("Last Contact" vs. "Last Contact Date").
The columns are in a different order.

Steps:

1. Load your first dataset (Dataset01) .
2. In the recipe panel, add a step. In the Transformation textbox, enter union.
3. In the Union page, you bring together two or more datasets based on a shared set of fields.

a. A union operation appends datasets together.
4. To add another dataset, click Add datasets. Navigate to select the file to add to the union (Dataset02).
5. Initially, fields are mapped based on the column names. However, in this example, the Last_Contact_Da

te field from Dataset02 is not included. You can:
a. Click the + icon next to the Last_Contact_Date field in the left panel. The field is added as a

separate field. However, it is not matched with the other contact date field from the original dataset.
b. From the Match columns drop-down menu, select By Position. In this case, you can see that there

are only three fields, but the order is mismatched.

Tip: When possible, you should try to rename or align columns in your datasets prior to
building a Union transformation step. Otherwise, you might have to edit the columns after
the union has been completed.

To rename a column, click Rename from the column drop-down in the Transformer page.
You can use the same drop-down to move a column.

Copyright © 2022 Trifacta Inc. Page #349

mailto:jack@example.com
mailto:tinat@example.com
mailto:larry.lyons@example.com
mailto:amy.abrams@example.com
mailto:tinat@example.com
mailto:samantha@example.com

6. In this case, you can cancel the union and reposition the Email column after the Last Contact column
in Dataset01.

7. Then, open the Union page again and add Dataset02. Select By Position from the Match columns drop-
down menu. Your columns are matched.

8. Click Add to Recipe.

Dataset02 records have now been added to Dataset01, which now contains all of the records from both
datasets. Note that the record for Tina Toms appears twice in the appended dataset.

If the appended dataset is a record of all contacts, you should leave the duplicate record in place.
If the appended dataset is a record of the most recent contact with each customer, you should remove the
duplicate record with the Deduplicate transformation. For more information, see Deduplicate Data.

NOTE: Be sure to verify that the data type for each column is accurate.

Copyright © 2022 Trifacta Inc. Page #350

Join Data
Contents:

Overview
Create Join

Step - Choose dataset or recipe to join
Step - Choose join keys and conditions
Step - Specify output columns for the join
Step - Review join

Modify Keys and Conditions
Ignore special characters
Create fuzzy join
Create range join
Add multiple join keys

You can join together data based on the presence of one or more keys in your source dataset and the joined-in
dataset or recipe. A join is a data operation in which two or more tables or datasets are merged into one based
on the presence of matching values in one or more key columns that you specify. These shared columns are
called the join keys of the two sets of rows that you are attempting to join.

Overview

Using a Join transformation, you can join a recipe or dataset to any of the following objects:

Another recipe
An imported dataset
A reference dataset

Create Join

You can join datasets through the following mechanisms:

Flow View: Select a dataset or recipe object. Right-click and select Append Join.

Tip: The join you specify from Flow View is added as the last step to the recipe. If you selected a
dataset to which to add the join, a recipe is created from the object, and the join is added as the
first step of the new recipe.

Transform Builder: Search for and select Join.

Joins are created through the Join window. This workflow is described below.

Step - Choose dataset or recipe to join

Steps:

1. In the Choose dataset or recipe panel:
a. Search for a dataset or recipe to which you have access. Your search includes objects outside of

the current flow.
b. You can also select from:

i. Recipes in your current flow
ii. Datasets in your current flow

Copyright © 2022 Trifacta Inc. Page #351

iii. All datasets to which you have access.
2. When you have found the dataset to use in your join, click Accept.

Step - Choose join keys and conditions

Steps:

1. Next, you select the join key columns and other conditions from each dataset.
2. Join type: Select the type of join to apply. See "Join types" below.
3. Join keys:The application attempts to find the best columns to match as the join keys.

a. Mouse over the percentage match to get more detailed statistics.

NOTE: For formatted data types, such as Datetime, the formatting of the join keys must
also match. For example, the values 2021-01-01 and January 01, 2021 may not be
interpreted as matching values.

b. To change a join key, mouse over the key name and then click the Pencil icon. Select your new key.
c. For more information on the options, see "Modify Keys and Conditions" below.
d. Click Save & Continue.

4. Click Next.

Example datasets

For discussion purposes, the following datasets are referenced in the sections below.

The CustId column is shared between both datasets. This column is the join key, as there are no
matches between the other colums.
Some values in CustId in one dataset do not appear in the other.

Dataset A:

The first dataset to which you are joining in another is typically called the left dataset.

CustId LastName FirstName

c001 Jones Jack

c002 Kim Ken

c003 Lee Larry

c004 Miller Mike

c005

Dataset B:

The second dataset that you are joining in to the first is typically called the right dataset.

CustId Region CompanyName

c002 East ACME, Inc.

c003 West Trifax, Inc.

c005 North Example Co.

c006 South Ace Industries

Copyright © 2022 Trifacta Inc. Page #352

Join types

There are multiple types of joins, which generate very different results. When you perform a join, you specify the
type of join that is applied. The joined-together rows that appear in the output dataset are determined by the type
of join that you selected and matching of values in the join key columns.

The following are the basic join types. The Example column references Dataset A (left) and Dataset B (right) from
above.

Join
Type

Description Example

inner
join

If a join key value appears in the left dataset and the right data
included in the output dataset.

set, the joined rows are In the above output, rows c002 a
nd c003 are included only.

left join In a left join, all of the rows that appear in the left dataset appear in the output, even if there In the above output, rows c001,
is no matching join key value in the right dataset. c002, c003, c004, and c005

are included.

Rows c006 is excluded.

right In a right join, all of the rows that appear in the right dataset appear in the output, even if In the above output, rows c002,
join there is no matching join key value in the right dataset. c003 c005 are, , and c006

included.

Rows c001 and c004 are
excluded.

outer An outer join combines the effects of a left and a right join. Each key value from both In the above output, rows c001,
join datasets is included in the output. If the key value is not present in one of the datasets, then c002, c003, c004, c005,

null values are written into the columns from that dataset. and c006 are included.

Rows c001, c004, c005, and
c006 contain some null values.

cross A cross join matches every row in the source dataset with a row in the joined-in dataset, If Dataset A has 5 rows and
join regardless of whether the join keys match. Dataset B has 4 rows, the output

has 20 rows.

NOTE: A cross join can greatly expand the number of rows in your dataset, which
may impact performance.

self A self join matches the rows in the left dataset with a version of itself (dataset or recipe) on
join the right side. Some limitations apply.

Step - Specify output columns for the join

Steps:

1. In the Output columns step, you can specify the columns to include in the output dataset.
a. Include All: To include all columns from the left and right datasets, click the checkbox below All.
b. Use the Search box to search for specific columns to include or exclude.

2. Advanced options: See below.
3. Click Review.

Apply prefix for column names

In the output dataset, the column names are taken directly from the column names in the source dataset.
Potential issues:

In some cases, source column names may be an exact match between datasets.
For development purposes, you may wish to track the source of a column for a period of time.

Copyright © 2022 Trifacta Inc. Page #353

You can apply a prefix to the column names that are sourced from the left dataset, the right dataset, or both.

Name prefix for columns in Current data: Enter a text value to include as the prefix to any output
columns that are sourced from the current (left) dataset. For example, you could enter left_.
Name prefix for columns in Joined-In data: Enter a text value to include as the prefix to any output
columns that are sourced from the joined-in (right) dataset. For example, you could enter right_.

Apply dynamic updates of selected columns

In the recipe step that produces the join, the columns that you select are mentioned specifically by name.
Optionally, you can choose to automatically add in all columns to your output. For example, if your source data
for an imported dataset is augmented with 10 new columns, when you re-run your join, those new columns can
be automatically added to the output dataset.

Tip: You should consider using these options if the schema of your data sources is likely to change in the
future.

Include all columns from Current data: When selected, all columns that are subsequently added to the
Current (left) dataset are automatically included as part of the join.
Include all columns from Joined-In data: When selected, all columns that are subsequently added to
the Joined-In (right) dataset are automatically included as part of the join.

Step - Review join

Steps:

1. In the Review step, you can verify that the specified join is as you expected.
2. You should review the columns that are previewed as in the data grid.
3. To add the join as a recipe step, click Add to Recipe.

Modify Keys and Conditions

NOTE: If you modify the selected dataset to join, the joined dataset, the join keys, or the fields to include
in the output, subsequent steps in your transform recipe can be broken by the change. After you modify
the join, you should select the last step in your recipe to validate all steps in the recipe.

You can apply the following modifications to how keys are matched. To modify a join key and condition, click the
Pencil icon in the Join Keys & Conditions panel.

Ignore special characters

Optionally, you can configure the Trifacta application to ignore the following special characters, when matching
values in join keys:

Ignore case: Ignore differences in case between values in the join key columns. MyValue matches with M
YVALUE.
Ignore special characters: Ignore special characters that appear in the join key values.
Ignore whitespace: Ignore spaces, tabs, and other whitespace values that may appear in join key values.

Create fuzzy join

A fuzzy join applies a fuzzy matching algorithm to String values in the join key column to account for slight
differences in how values are written.

NOTE: Fuzzy joins can only be applied to String data types. Other data types cannot be fuzzy-matched
using the algorithm.

Copyright © 2022 Trifacta Inc. Page #354

This algorithm relies on the doublemetaphone function, which attempts to normalize text values based on how
the string is spoken by an English speaker. For more information, see
https://en.wikipedia.org/wiki/Metaphone#Double_Metaphone.

Fuzzy match: Enable fuzzy matching based on English language pronunciation using the
doublemetaphone function.

Create range join

NOTE: This feature may need to be enabled in your environment. See Workspace Settings Page.

Values in the join key columns are matched across a range of values, instead of matching single value to single
value. When range joins are enabled, you can set the Condition value between the two join key columns when
specifying the join keys. For more information, see Configure Range Join.

Add multiple join keys

For more complex join operations, you can add additional join keys to evaluate. Multi-key joins can be helpful for:

Providing more finely specified join keys. For example, lastName and firstName.
Performance

To add a second join key, click Add when modifying the join keys and conditions. Specify the keys in each
dataset as needed.

Copyright © 2022 Trifacta Inc. Page #355

https://en.wikipedia.org/wiki/Metaphone#Double_Metaphone

Configure Range Join
In most join operations, the values in primary keys across two tables must match exactly for the related columns
to be included in the join. In a range join, you can change the comparative operator for the keys from Equal to
one that specifies a range of matching values.

Comparitive operators:

Not equal to
Greater than
Greater than or equal to
Less than
Less than or equal to

NOTE: A Trifacta administrator may need to enable this feature in your environment. See
Workspace Settings Page.

Limitations:

Range joins allow you to include many more matching values and therefore rows in the join.
Depending on the matches and the included columns, your resulting dataset can become very
large. You should use this feature with some caution.

Range joins apply only keys whose data types can be compared.
For example, for joins involving keys of Binary data type, you can use Equal to or Not equal to joins.

Tip: Range joins cannot be applied to Datetime data type values directly. However, you can
use the UNIXTIME function to convert the values to numeric Unix time values. Then, you
can specify a range join.

Any range comparison that includes one or more string columns as keys uses the string comparison
greater/less than, not the numerical comparison.

After range joins have been enabled, you can specify them as part of performing any join operation.

Steps:

1. In the Search panel, enter join datasets in the search box.
2. Select the dataset with which to join the current one. Then, click Accept.
3. In the Join window, select the join type.
4. In the Join Keys area, click the Pencil icon.
5. Specify the fields in the current dataset and the joined-in dataset.

Copyright © 2022 Trifacta Inc. Page #356

6. From the Condition drop-down, select the range operator to use:

Figure: Select range operator
7. Specify other properties for the matching keys.
8. Click Save and Continue.
9. Specify other elements of the join. When finished, click Add to Recipe.

Copyright © 2022 Trifacta Inc. Page #357

Insert Metadata
Contents:

Insert filepath
Insert source row number
Insert a single metadata column
Insert multiple columns of metadata

Metadata is data about your data. In some use cases, you may need to insert data about your data into your
dataset for downstream consumption.

For example, you might decide that one or more of the following types of information about your dataset should
be tracked:

Source system(s)
Source filepath and filename (for non-uploaded files)
Source creation date
Date of import
Date of wrangling
Name of person who performed the wrangling

This section provides some methods for how to insert metadata into your dataset.

Insert filepath

For file-based data sources that were loaded from a dedicated storage layer, you can insert the path to the
source file in your dataset using the $filepath reference.

Tip: Filepath information can be lost when multi-dataset operations, such as unions and joins, are
performed on your dataset. These steps should be added very early in your recipe.

 In your recipe, insert the following transformation:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula $filepath

Parameter: New column sourceDatasetPath
name

Insert source row number

You can insert the row number in the source file from which rows in your dataset are sourced, using the $source
rownumber reference.

Tip: Source row number information can be lost when multi-dataset operations, such as unions and joins,
are performed on your dataset. These steps should be added very early in your recipe.

In your recipe, insert the following transformation:

Copyright © 2022 Trifacta Inc. Page #358

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula $sourcerownumber

Parameter: New column sourceRowNumber
name

Tip: Use the ROWNUMBER function to derive the current row number in your dataset.

Insert a single metadata column

The following example describes how to insert a single column of metadata. In this case, the full path to the
source is inserted as a new column in the dataset.

Steps:

1. In the Dataset page, locate the imported dataset that is the source for your recipe. Click the Imported filter
to show only the imported datasets.

2. For the imported dataset, click Details.
3. In the Dataset Details page, select the entire value for the Location, which is the storage location of the

source.

Tip: If the full path of the dataset is too long for screen display, be sure to include the ellipsis (...)
at the end of the Location value.

4. Copy the value. Paste the value into a text editor. You should see the full path, like the following:

<root_dir>/uploads/1/2580298d-3477-4907-bfa7-f71978eace04/SF Restaurants - businesses.csv

5. Load the dataset in the Transformer page.
6. Specify the following transformation:

Transformation New formula
Name

Parameter: Single row formula
Formula type

Parameter: '<root_dir>\/uploads\/1\/2580298d-3477-4907-bfa7-
Formula f71978eace04\/SF Restaurants - businesses.csv'

Parameter: New datasetPath
column name

Insert multiple columns of metadata

You might need to track more fields of dataset information. While you might be able to perform these kinds of
individual inserts, it might be easier to build this information from a separate file.

NOTE: This method uses the FILL function, which should be limited to smaller datasets when applied
with a single key. Otherwise, there might be performance impacts when running the job against the full
dataset.

Copyright © 2022 Trifacta Inc. Page #359

Tip: You can perform a similar merging of datasets using the
Join Data.

For example, you want to track the following fields as metadata:

source_system
source_author
source_date_create

You could create a CSV file that looks like the following:

source_system,source_author,source_date_create
Excel,Joe Guy,12/9/15

Join datasets transformation. See

In this case, the column headers are in the first line, and the values for each column are in the second line.

Steps:

1. Use your CSV file as the source for a new dataset within the flow containing the associated dataset.
2. In the data grid, make sure that the first line of data is treated as the header. If not, add a header

transform to your recipe.
3. Open the other (source) dataset in the Transformer page.
4. In the recipe panel of the Transformer page, add a new step. In the Transformation textbox, enter union.
5. Create a union using the Union transformation:

a. Include all columns from both datasets.
b. Configure the step to perform the union by name, instead of by position.

6. Add this step to your recipe.
7. You should see one row in the union recipe that contains the new data.
8.

Sort your data by a key value (e.g. business_id).
9. Determine an appropriate grouping parameter. This step is necessary to simplify the filling process when

the job runs at scale. Ideally, you should choose a grouping column that contains a relative few number of
values in it (e.g. region).

10. Fill values in the data rows with metadata column values. For each metadata column, add the following
transformation, done here for the source_system column of metadata.

Transformation Name Window

Parameter: Formula FILL(source_system)

Parameter: Group by region

Parameter: Order by business_id

11. Repeat the above step for each metadata column you want to insert.
12. Delete the source metadata columns.
13. Rename the window columns to use a more appropriate name.
14. Delete the row containing the original metadata values.

Copyright © 2022 Trifacta Inc. Page #360

Invoke External Function
Contents:

Prerequisites
Invoke
Examples

ConcatUDF
AdderUDF

Through the Search panel, you can access and apply functions that have been developed external to Trifacta®.

NOTE: This method of invocation applies only to Java UDFs created and applied to a specific
deployment of Trifacta Self-Managed Enterprise Edition.

Prerequisites

Also known as user-defined functions, external functions must be developed in an environment
external to the product and then registered for use in it. These steps require developer skills. For
more information, see User-Defined Functions.

Invoke

After an external function has been registered with the product, you can complete the following steps to invoke
the function within your recipe.

Steps:

1. In the Transform Builder, you can search for any of the following:
a. udf
b. invoke external function

NOTE: You cannot search for the name of the external function.

2. Select Invoke external function.
3. The list of available external functions is displayed. Select the function to use.
4. Depending on the function, the following options may be available:

a. Columns: specify the column or columns to which to apply the function.
b. Arguments: If the function accepts arguments, you can enter them on individual lines.
c. New column name: Some functions generate a new column. Enter a new column name.

5. To add the instance of the function to your recipe, click Add.
6. The step is added to your recipe.

Examples

You can create these examples functions in Java for use in the platform. For more information, see Java UDFs.

ConcatUDF

The ConcatUDF function concatenates two strings together.

Copyright © 2022 Trifacta Inc. Page #361

Tip: This function is provided for demonstration purposes only. In practice, you should use the MERGE
function instead.

Transformation Name Invoke external function

Parameter: Column colA, colB

Parameter: Arguments (empty)

Parameter: New column myConcatUDFColumn
name

AdderUDF

The AdderUDF function adds an input value to a constant that is submitted by parameter. The following
invocation of AdderUDF adds colA and the constant 100.

Tip: This function is provided for demonstration purposes only. In practice, you should use the ADD
function instead.

Transformation Name Invoke external function

Parameter: Column colA

Parameter: Arguments 100

Parameter: New column myAdderUDFColumn
name

Copyright © 2022 Trifacta Inc. Page #362

Publishing Tasks
These tasks provide information on the various methods of getting your data out of Trifacta®. These tasks
include imported datasets, recipes, generated results, and work-in-progress versions of them.

Copyright © 2022 Trifacta Inc. Page #363

Create Outputs
Contents:

Create an Output
Create a File-Based Output
Create a Table-Based Output
Create an Output With Parameters

Parameterize path or bucket name with a variable
Parameterize path with a timestamp

Edit an Output
Delete an Output

An output is defined as a set of files or tables, formats, and locations where results are written after a job run on
the recipe has completed. To run a job from a flow, you must create an output object that defines where results
are delivered after a job is successfully executed.

Every flow requires an output in order to publish results. An output object is composed of one or more publishing
actions. A publishing action defines the output type, format, location, and other settings where results from a
recipe are delivered.

You can create publishing actions in multiple formats and publish those to different databases and file storage
formats. The following are the output types:

File-based outputs such as CSV.
Table-based outputs such as Oracle or PostgreSQL.

Create an Output

You can use either of the following methods to create an output object and its related publishing action.

From Flow View:

In Flow View, an output object extends from a recipe, indicating the results of the recipe are delivered to the
output object.

1. Open your flow in Flow View.
2. In Flow View, you can:

a. Right-click a recipe. Select Add Output to run.
b. If an output already exists, select it.

3. The output is displayed in the Details panel on the right-side.
4. In the Details column under Manual Settings, click Edit.
5. In the Publishing Settings page, click Add Publishing Action.

Tip: For scheduled runs of your flow, you must specify Scheduled Settings to automatically generate the
output when the flow is executed by a schedule. For more information on scheduling, see
Overview of Automator.

From Run Job page:

For an existing output, you can create new destinations from the Run Job page.

1. In Flow View, click Run Job.
2. In the Run Job page, click Add Action to add a new destination.

Copyright © 2022 Trifacta Inc. Page #364

Create a File-Based Output

You can create a file-based output by performing the following steps.

For more information on creating an output from Flow View and Run Job page, see above sections.

Steps:

1. In the Publishing action page, select the connection where you wish to write file from the left panel. In the
following example, the HDFS connection has been selected:

Figure: Publishing action page for file output
2. Select the file. You can select the existing file from the search list or click a Create a new file in the right

panel.
a. Enter a file name in the Create a new file field.

3. To create output parameters, click the Parameterize destination link. See "Create an Output with
Parameters" below.

4. From the Data Storage Format drop-down list, select the output format for the file.
5. The publishing actions vary based on the options selected. Select the required publishing actions below

the drop-down list. For more information, see File Settings.
6. Update the Delimiter field, if required.
7. You can choose to generate the file as a Single File or as Multiple Files.
8. To apply compression to the file, select the compression type from the Compression drop-down list.
9. Click Add.

Tip: You can define SQL scripts that are executed before or after generation of your output objects. For
more information, see Create Output SQL Scripts.

Create a Table-Based Output

You can create output objects for publishing to tables by performing the following steps:

For more information on creating an output from Flow View and Run Job page, see above sections.

Steps:

Copyright © 2022 Trifacta Inc. Page #365

1. In the Publishing action page, select the connection to the database where you wish to store the table from
the left panel. In the following example, the postgres connection is selected:

Figure: Publishing action for a table output
2. Search the table. You can select an existing table from the list or click Create a new table in the right

panel.

a. Enter a table name in the Create a new table field.
3. To create output parameters, click the Parameterize destination link. See "Create an Output with

Parameters" below.
4. Select the required publishing actions below the drop-down list. For more information, see

Relational Table Settings.
5. Click Add.

Tip: You can define SQL scripts that are executed before or after generation of your output objects. For
more information, see Create Output SQL Scripts.

Create an Output With Parameters

For any outputs, you can parameterize elements of the output path. You can parameterize your path with the
following options.

Tip: You can define multiple parameters per output.

Timestamps: Inserts a formatted timestamp as part of the output path or filename
Variables: Inserts a value for the variable.

This variable has a default value that you assign.
Whenever you execute a job through the Run Job page, you can pass in the default value or an
override value for the variable.

For more information on parameters, see Overview of Parameterization.

Parameterize path or bucket name with a variable

For file- or table-based publishing actions, you can replace the bucket name (if applicable) or elements of the
output path with variable values. When you define the output, you replace an element of the output path with the
variable name. At runtime, the variable name is replaced by the appropriate value.

Tip: You can use environment parameters to parameterize bucket names across your environment. For
more information, see Environment Parameters Page.

Copyright © 2022 Trifacta Inc. Page #366

1. In the Publishing action page, click the Parameterize destination link. The Define Parameterized
destination dialog is displayed.

2. On the listed output path, highlight the part that you wish to parameterize. You can select part of the path
or bucket name.

3. Then, select Add Variable.

Figure: Define parameterized destination

a. Name: Enter a display name for the variable.

Tip: Type env. to see the environment parameters that can be applied. These parameters
are available for use by each user in the environment.

NOTE: If multiple variables within a flow (or its dependent flows) have the same name then
they are treated as the same variable.

b. Default value: Enter a default value for the parameter.
4. Click Save.
5. To save the parameters for the output path, click Submit.

The created parameter is displayed in the right context menu of the publishing action page.

Tip: If you created a variable parameter, you can apply override values to the variable when you are
running a job. For example, you can modify a variable called baseFileName to generate an output with
a different base filename for your job run.

Parameterize path with a timestamp

Timestamp parameters can be helpful when you want to create outputs based on date and time format, time
zone, or exact and relative start time. For file- or table-based publishing actions, you can create outputs based on
the specific region or time zone for which the data is generated. When you define the output, you can replace an
element of the output path with the timestamp parameters.

Steps:

1. In the Publishing action page, click the Parameterize destination link. The Define Parameterized
destination dialog is displayed. See example above.

2. On the listed output path, highlight the part that you wish to parameterize. Then, select Add Timestamp
Parameter.

Copyright © 2022 Trifacta Inc. Page #367

3. In the Timestamp Parameter dialog, enter the following details:

a. Timestamp format: Specify the format for timestamp values.
i. Example: YYYY-MM-DD_hh_mm.
ii. Values can express both date and time elements. For more information on the available

tokens for formatting date and time values, see Datetime Data Type.
b. Timestamp value: Select the value to record in the path:

i. Exact job start date: recorded timestamp in path is the start time of the job.
ii. Relative to the job start date: recorded timestamp in path is relative to the start time of the

job according to the settings that you specify here.
c. Time zone: Click Change to change the time zone recorded in the timestamp.

i. Example: America/Los Angeles or Asia/Calcutta.
ii. For more information on the available time zones, see Supported Time Zone Values.

4. Click Save.
5. To save the specified parameter for the output path, click Submit.

The created parameter is displayed in the right context menu of the publishing action page.

Edit an Output

From Flow View page:

1. Right-click an output object. The object details are displayed in the context panel.
2. In the context panel, select the Manual Settings tab. Then, click Edit. The Publishing Actions page is

displayed.
3. Make changes as needed in the Publishing Actions page. To save your changes, click Update.

From Run Job page:

In the Run Job page, hover over the publishing action to modify. Click Edit.

Delete an Output

You can delete the output object from the Flow View and from Run Jobs page:

Flow View page:

1. In the Flow View, select the output.
2. In the right panel, select Delete Output from the context menu.

Run Jobs page:

In the Run Jobs page, you can delete publishing actions. From the context menu for a publishing action, select De
lete.

Copyright © 2022 Trifacta Inc. Page #368

Create Output SQL Scripts
Contents:

Script Types
Script execution

Limitations
Enable
Create Output SQL Script

Parameterize values
Monitoring execution

Example Scripts
Example - log entries
Example - updates based on job results

Edit Output SQL Script
Delete Output SQL Script
Create Output SQL Script via API

Create SQL script
List SQL scripts
Edit SQL script
Delete SQL script

As part of job execution for an output, you can define SQL scripts to run before the job, after it, or both. These
SQL scripts are stored as part of the output object definition and can be executed through any database
connection to which the user has access. SQL scripts can be applied to file-based and table-based job
executions.

When flows are shared, the shared user can modify SQL Scripts if the user has Editor permissions on the
flow. See Overview of Sharing.

Example uses:

Insert or update log entries in a database log table before or after a job that publishes to file or database
destinations.
Perform custom inserts, updates, and delete logic to other database tables based on job output data that is
published to a database.
Create and refresh tables or materialized views that join the job’s output data with data from other tables
using CREATE AS SELECT.
Operational tasks such as disabling/enabling indexes and managing partitions on supported databases.

Script Types

NOTE: If one of these scripted steps fails, then all downstream phases of the job also fail.

Pre-job: After a job has been initiated and before data is ingested into the platform, a SQL script can be
executed by the Trifacta application.
Post-job: After job results have been generated and published, a SQL script can be executed.

NOTE: If publishing job fails, then all downstream tasks also fail, including the SQL script, which is
not executed and is recorded as a failed phase of the job execution.

Copyright © 2022 Trifacta Inc. Page #369

Script execution

SQL lines in an individual script are executed in the order listed in the script.
If you have defined multiple scripts of the same type (pre-job, for example), those scripts may be executed
in parallel.

NOTE: The order of listing of scripts in the Trifacta application does not affect the order of
execution of those scripts.

 A warning message is displayed if the pre/post SQL scripts do not have any valid connection.

Limitations

These SQL scripts are executed without validation through the selected database connection.
There are no explicit limitations on the types of SQL statements that can be executed. It is
possible to do harm through this feature.

After each SQL statement in a script, a semi-colon is required.
SQL validation is not supported for some connection types.
When flows containing output SQL scripts are imported, the connection to the database where the script is
to be executed must exist in the new environment. Otherwise, the SQL script is dropped from the import.
Output SQL script actions may not be supported for all connection types. If the connection is not available
in the dropdown for selecting a connection, then the feature may not be available for the connection type.

Output SQL script actions are only supported for default connection types provided with the product.
Custom connection types modified for a specific customer environment are not supported.

Enable

This feature may need to be enabled in your environment.

A workspace administrator can enable the use of SQL scripts. For more information, see
Workspace Settings Page.

Create Output SQL Script

Through the Trifacta application, you add SQL scripts as part of the output object definition.

Tip: Depending on the nature of your SQL script, you may choose to test it first in a demo environment
on a demo database.

Where to add:

You can create SQL scripts for the following types of outputs:

Manual Settings destinations: In Flow View, you can select an output object and then modify one of its
Manual Settings destinations.
Scheduled Settings destinations: In Flow View, select an output object and then modify one of its
Scheduled Settings destinations.

Steps:

1. In Flow View, select the output object for which you wish to create the SQL script.
2. In the Outputs panel on the right, click the Manual Settings tab.

Copyright © 2022 Trifacta Inc. Page #370

3. For the type of destination, click Edit.
4. In the SQL Scripts panel at the bottom of the screen, click Add Script.
5. In the Add SQL Script window:

a. Select the database connection to use for executing the SQL script.
b. Enter the SQL script in the panel.
c. Choose when you would like to execute the script:

i. Run before data ingest - before the job is executed
ii. Run after data publish - after the job results have been written

d. Before you save your changes, click Validate SQL.

NOTE: Some connection types do not support SQL validation.

NOTE: Validating the SQL does not execute the SQL script on the database. It performs a
check of SQL syntax against the selected database.

6. To save your SQL script, click Add.

For more information, see SQL Scripts Panel.

Parameterize values

You can add variable or Datetime parameters to your SQL scripts.

Parameters with the same name that are also defined on input datasets, flow parameters, and output
objects can be referenced during job execution to pass the same value for consistency.

Tip: You can parameterize values in your SQL script. Parameters can be variables, Datetime
parameters, or environment parameters. For more information, see Overview of Parameterization.

Monitoring execution

You can monitor the execution of any SQL scripts that are part of a job execution. For more information, see
Overview of Job Monitoring.

Example Scripts

In the following sections, you can review some common examples for how to use SQL scripts in your data
pipelines.

Example - log entries

In this example, you insert log entries into a log table in your database before and after the execution of your job.

Pre-job:

Your SQL script might look like the following:

CREATE TABLE IF NOT EXISTS "transactions"."log-tri" (
 timestamp date,
jobType varchar(255),
jobStatus varchar(255)

);
INSERT INTO "transactions"."log-tri"(timestamp, jobType, jobStatus)

 VALUES ('2021-06-22','transformation','started');

Copyright © 2022 Trifacta Inc. Page #371

The above script is composed of two statements:

1. CREATE TABLE IF NOT EXISTS - This statement creates the log-tri table in the transactions
database.

a. This table is defined with three fields: timestamp, jobType, and jobStatus, each of which is
assigned a data type.

b. The IF NOT EXISTS keyword ensures:
i. The table is created if it does not exist.
ii. If it exists, then no error is returned, which could stop the job run.

INSERT INTO - This statement inserts a record into the log-tri table, populating each column with an
appropriate VALUE:

Column name Value

timestamp '2021-06-22'

jobType 'transformation'

jobStatus 'started'

Tip: In the above example, the value for the timestamp is a literal value. If needed, you can
parameterize that value, so that a Datetime parameter can be inserted into the record as needed. See
"Parameterize values" above.

Post-job:

After the job results have been published, a post-job SQL script might look like the following:

CREATE TABLE IF NOT EXISTS "transactions"."log-tri" (
 timestamp date,
jobType varchar(255),
jobStatus varchar(255)

);
INSERT INTO "transactions"."log-tri"(timestamp, jobType, jobStatus)

 VALUES ('2021-06-22','transformation','complete');

This script is very similar to the previous:

1. Create the table if it doesn't exist. This statement also provides schema information if you need to make
modifications in the future.

2. Inserts a new row in the table, indicating the transformation job type is now complete.

Example - updates based on job results

If you write your job results through the same connection where you are executing your SQL script, you can
leverage the data directly from your job results into your SQL script.

In the following scenario, a customer account dimension table in the datawarehouse (dw.DimCustAccount
custdim) is updated with data enriched through Trifacta in the job results. In this case the num_emp, industry
_cd, and duns columns are mapped to the corresponding columns in the custenr enriched data table with
values where the customer identifier in the customer dimension table (custdim.custId) matches the customer
identifier in the enriched data table (custenr.custId).

UPDATE TABLE dw.DimCustAccount custdim
 SET num_emp = custenr.empcnt, industry_cd = custenr.ind_cd, duns = custenr.duns_num
 FROM tri.cust_enriched custenr
 WHERE custdim.custId = custenr.custId;

Copyright © 2022 Trifacta Inc. Page #372

Edit Output SQL Script

Steps:

1. In Flow View, select the output object.
2. In the context panel on the right, select the Manual Settings tab.
3. Click Edit next to the type of destination to modify.
4. In the dialog, locate the one to modify in the SQL Scripts panel. Click Edit.
5. Make changes as need. Click Save.

Delete Output SQL Script

After you deleting a SQL script and save the output object, the SQL script is removed
permanently. Before deleting, you may wish to copy the script and paste it into a text editor.

Steps:

1. In Flow View, select the output object.
2. In the context panel on the right, select the Manual Settings tab.
3. Click Edit next to the type of destination to modify.
4. In the dialog, hover over the one to modify in the SQL Scripts panel. From the More menu, select Delete.

Create Output SQL Script via API

You can create SQL scripts via API. These scripts can then be associated with specific output objects.

Create SQL script

Key information:

Attribute Description

sqlScript Text of the SQL script. You should validate this script before inserting it into the API.

type Set type to be:

pre - execute before data ingest
post - execute after data publish

vendor The vendor type of the database to which you are connecting. See Connection Types.

outputObje Internal identifier of the output object to which you are associating the SQL script. When the object is selected in Flow
View, the identifier is part of the URL.ctId

connection Internal identifier of the connection that you are using to execute the SQL script.

Id

Endpoint /v4/sqlScripts

Method POST

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createSqlScript

List SQL scripts

List all SQL scripts.

Copyright © 2022 Trifacta Inc. Page #373

https://api.trifacta.com/ee/es.t/index.html#operation/createSqlScript

Endpoint /v4/sqlScripts

Method GET

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/listSqlScripts

Edit SQL script

Endpoint /v4/sqlScripts/{id}

Method PATCH

where:

{id} is the internal identifier of the SQL script

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/patchSqlScript

Delete SQL script

Endpoint /v4/sqlScripts/{id}

Method DELETE

where:

{id} is the internal identifier of the SQL script

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/deleteSqlScript

Copyright © 2022 Trifacta Inc. Page #374

https://api.trifacta.com/ee/es.t/index.html#operation/listSqlScripts
https://api.trifacta.com/ee/es.t/index.html#operation/patchSqlScript
https://api.trifacta.com/ee/es.t/index.html#operation/deleteSqlScript

Publish Results on Demand
After a set of results have been generated from a job, you can export those results to different environments in
different formats as long as the job remains in Trifacta®.

This feature is also known as ad-hoc publishing.

Steps:

In the left menubar, click the Jobs icon.
In the Jobs page, select the job whose results you wish to publish.

Tip: If you enabled profiling of the results, you can click the job identifier to open the visual profile
of the job results.

Tip: If you know the recipe and flow from which the job was executed, you can also select the
recipe in Flow View and then select the output object for that recipe. In the right panel, you can
click the job identifier in the Jobs tab to open the job results for export.

In the Job Details page, click the Output Destinations tab.
Publishing:

Export file: Click one of the links to the generated output files to download the results in that file
format. If you do not see your preferred export format, please rerun the job.
File path: You can use the provided file path to get the export from the backend datastore outside
of the application.
Create dataset: From the context menu for the output, select Create imported dataset to turn the
results into a new imported dataset in Trifacta.

Tip: In Flow View, you can create a reference object for any recipe in your flow. This
reference object makes the output of the recipe available as an input object in other flows.
So, you can use this as a method of creating a new dataset from the output of your recipe
that is automatically updated without having to regenerate the imported dataset.

Close the window when you are done.

Copyright © 2022 Trifacta Inc. Page #375

Reuse Recipe
Contents:

Reuse Recipe with the Same Flow
Reuse Copy of Recipe in the Same Flow
Move or Copy Recipe to a Different Flow
Reuse Recipe in a Different Environment
Download Recipe

This section describes multiple ways in which you can leverage a recipe developed in one flow in other flows.

Reuse Recipe with the Same Flow

The easiest way to reuse a recipe is to change its inputs in Flow View.

Steps:

1. Open the flow containing the recipe.
2. Select the recipe that you'd like to reuse.
3. From the recipe's context menu, select Change input.... Select the object to be the input to the recipe.

Reuse Copy of Recipe in the Same Flow

You can also create copies of recipes within the same flow. This step also copies:

All outputs attached to the recipe.
(optionally) All inputs to the recipe.

Steps:

1. In Flow View, select the recipe to copy.
2. In the context panel on the right, select Make a copy > Without inputs.
3. The recipe is copied and added to your flow.
4. To apply the recipe to a dataset, select from the new recipe's context menu, Change input....

Move or Copy Recipe to a Different Flow

You can move a recipe from the current flow a different one. These steps move a recipe from one flow to
another.

If you want to reuse the recipe in a different flow, create a copy of it first. See above.
In some cases, it may be easier to duplicate the whole flow and then remove objects from the copied flow.
In the Flow View menu, select Duplicate from the flow context menu.

Tip: When you move a recipe to a new flow, all attached objects appear in the new flow. If the same
objects in the source are used by other recipes, then copies are moved. If the copied object already
exists in the target flow, the moved recipe is attached to the corresponding object in the new flow.

Steps:

1. In Flow View, select the recipe to move.
2. In the context panel on the right, select Move....

Copyright © 2022 Trifacta Inc. Page #376

a. To move to a new empty flow, select Create New Flow. You can specify a name for the new flow.
b. To move to an existing flow to which you have access, select the flow from the drop-down.

3. Click the Move button.
4. The recipe is moved, along with any related objects.

Reuse Recipe in a Different Environment

If you need to reuse a recipe in a different instance of Trifacta®, you have two choices:

1. Export the entire flow and import it into the new environment. Open the flow in the new environment. In
Flow View, remove all objects that are not of interest. See Export Flow.

2. Turn all of the steps of a recipe into a macro. Export the macro and then import into the new environment.
You may choose to remove the macro from the original environment. See Export Macro.

Download Recipe

You can download a recipe in text form in the following ways:

NOTE: A downloaded recipe is in a text form of Wrangle (a domain-specific language for data
transformation). In this form, it cannot be used in the application. Downloaded recipes are for archival
purposes only.

In Flow View, select the recipe to download. From the context menu, select Download recipe....
In the Recipe panel in the Transformer page, click the context menu, and select Download recipe as Wra
ngle .

Copyright © 2022 Trifacta Inc. Page #377

Project Management Tasks
These topics provide guidance on how to better manage your data wrangling efforts in Trifacta®.

Copyright © 2022 Trifacta Inc. Page #378

Take a Snapshot
Contents:

Duplicate
Flows
Recipes

Download Work in Progress
Download Sample Data
Download Recipe

Backup

You can use the following techniques to capture snapshots of your Trifacta® application work in progress.

Duplicate

You can make a copy of individual recipes and flows.

NOTE: Copied recipes and datasets are independent objects and do not continue to inherit any changes
in the original.

Flows

In Flow View, click the context menu and select Duplicate.

NOTE: Sharing permissions are not inherited in the copied flow. You must re-share the flow with any
users who need access to the copy.

Recipes

In Flow View, select a recipe to duplicate. In the right panel, select Make a copy from the context menu. You can
link the recipe to the same inputs or to no inputs.

NOTE: This recipe is still available to all who have access to the flow. If needed, select Move to relocate
the copied recipe to another flow to which other users do not have access.

Select the copied recipe and click Edit Recipe to begin working with the recipe in the Transformer page.

Download Work in Progress

From the Recipe panel in the context panel, you can download your work in progress, including the recipe and
the dataset sample as reflected in the current recipe step.

Download Sample Data

From the Transformer page, you can download the dataset sample as it is currently reflected in the Transformer
page.

Copyright © 2022 Trifacta Inc. Page #379

NOTE: A sample downloaded from the Transformer page reflects all recipe steps up to the step that is
currently selected. Steps that occur after the current one are not applied to the dataset sample.

Tip: You can use this as a work-in-progress backup if you select the final step of the recipe and if the
dataset sample represents the entire dataset.

From the Recipe panel, click the context menu and select Download Sample data as CSV.

The CSV file is written to your desktop.

Download Recipe

In the Recipe panel, click the context menu and select Download recipe as Wrangle .

The entire recipe is downloaded to your desktop as a text file.

Tip: If you are attempting to capture the recipe as a work-in-progress of the dataset sample, you can just
delete the steps that aren't executed from the downloaded file.

Backup

Backups of the Trifacta databases (flows, recipes, and other metadata) and source datastores (imported
datasets) should be executed according to your enterprise requirements.

Copyright © 2022 Trifacta Inc. Page #380

Track Data Changes
Contents:

Create Backup
Track Source Filepath and Filename
Track Source Row Information
Track Steps Affecting a Column
Track Column Value Changes
Track Row Changes

You can use these techniques for tracking changes to your datasets over time.

Create Backup

After you have created the flow and the datasets within the flow and before applying recipe steps to change the
data, create a duplicate of the flow. This becomes a snapshot of your original dataset. Since the imported
datasets are not affected, the storage overhead for creating backups is relatively low.

Track Source Filepath and Filename

When you first load your dataset in the Transformer page, you can add the following to capture the full path to the
original file that is the source of the data:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula $filepath

Parameter: New column sourceRowNumber
name

With a few extra steps, you can extract the filename from the above output.

Track Source Row Information

You can mark the original row numbers of your source data. In the first step in your recipe after initial parsing,
add the following:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula $sourcerownumber

Parameter: New column sourceRowNumber
name

This step generates a new column that contains the source row number from the source dataset.

Copyright © 2022 Trifacta Inc. Page #381

NOTE: Source row information can become invalid if you perform multi-dataset operations such as
lookups, unions, and joins. For more precise tracking of source information, you should consider creating
multi-column keys, including the source row number information. For more information, see
Generate Primary Keys.

Track Steps Affecting a Column

To see all of the steps in your current recipe that reference a specific column, select Show related steps... from
the column menu.

All steps are highlighted in the Recipe panel.

NOTE: If another column is dependent on the selected column, all steps pertaining to that column are
highlighted as well.

Track Column Value Changes

Trifacta® enables you to easily move between steps in your transform recipe so that you can check the state of
your dataset at any point during the transformation. In some cases, you may want to be able to track the changes
made to an individual column side-by-side with the original column. This section provides a generalized approach
for tracking column changes in this manner.

NOTE: Use this workflow only if it is important to monitor which values have changed in a column. For
most use cases, the Transformer page provides sufficient visibility over your sample data to manage
column values.

Steps:

In the following sequence, the original column is called String. For numeric columns, you can perform more
detailed analysis between original and modified column values.

1. After you have completed your general setup steps of your transform, create a copy of the original column:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula String

Parameter: New column String_orig
name

2. You now have a copy of the original column before any manipulations were applied to it.
3. Add any transforms to your recipe, including any that change the values of String. In the example below,

the following transform has been applied:

Transformation Name Edit with formula

Parameter: Columns String

Parameter: Formula TRIM(String)

4. At the point in your recipe where you would like to test the column for changes, insert the following:

Transformation Name New formula

Copyright © 2022 Trifacta Inc. Page #382

Parameter: Formula type Single row formula

Parameter: Formula String <> String_orig

Parameter: New column String_changes
name

5. The String_changes column now contains true values where the values in String have been
changed from their original values (String_orig).

6.

To see just the values that are different, sort in descending order.

Tip: You can reposition this test anywhere in your recipe after you have created the String_orig
column.

7. Before you run your recipe, you may want to remove the tracking columns that you generated (String_or
ig and String_changes in our example).

Figure: Example tracking column changes

Track Row Changes

Steps:

1. In Flow View, create a copy of the flow. Create a name for it that identifies it as your original.
2. In the other flow, create your recipes as normal.
3. When done, you can add the following steps:

a. Union the two datasets together.
b. Sort them by a key column.
c. Add the deduplicate transform.

NOTE: This method may not work if your recipe includes joins or added or removed
columns.

Copyright © 2022 Trifacta Inc. Page #383

4. If the rows are exact duplicates, they are removed. The remaining rows contain data that has been
changed.

Copyright © 2022 Trifacta Inc. Page #384

Add Comments to Your Recipe
As needed, you can insert non-functional comments in your recipes. These comments are stored as a Comment
transformation but do not make changes to the dataset.

Tip: Adding comments to your recipes can be helpful for providing notes or other guidance to yourself for
later or to other recipe builders who are reviewing your recipe.

Steps:

1. In the Transformer page, open the Recipe panel in the context panel.
2. In your list of recipe steps, select the location in the recipe where you wish to insert the comment. From

the recipe step context menu, select the appropriate Insert Step command.
3. In the Search panel, enter comment.

Tip: You can also paste full comments of the following format into the textbox. These comments
are reformatted into the supported format:

// This is a comment.

/* This is also a comment. */

4. In the comment textbox, enter the comment that you would like to include.
5. Click Save.
6. The comment is stored in the recipe as text of a different color.

Copyright © 2022 Trifacta Inc. Page #385

Create Target
Contents:

Create Schema
Before you create
Create

Update Schema
Use Schema
Remove Schema

To assist in building your recipe, you can associate a target with the recipe. This target schema is displayed in
the Target Matching bar in the Transformer page above your column histograms, so that you can track how you
are progressing toward completion of the recipe.

A target is the representation of the columns to which you are building your recipe to match. When you
know the column order, names, and data types for which you are building your recipe, you can more
quickly develop the recipe steps to match this schema.
For more information, see Overview of RapidTarget.

Create Schema

Before you create

A target is created from one of the following sources:

An imported dataset
A recipe in the current flow
A dataset reference from another flow

Before you create a new target, you must identify, create, or import one of the above objects. Your target must be
in a finished state.

NOTE: A target is a snapshot of the target at the time of creation. It does not inherit changes from the
source after creation. To update the target for later changes, you must delete and recreate the target.
Instructions are provided below.

Create

Each recipe can have one and only one target. Please use the following steps to create a target for your recipe.

Steps:

1. Open the flow containing the recipe. In Flow View, create or select the recipe.
2. If a target already exists for the recipe, select Remove Target from the context menu in the right panel.

NOTE: A recipe can have one and only one target associated with it.

3. After deleting the old one, from the context menu, select Assign Target to Recipe.
4. Select the imported dataset, recipe, or reference to use as your target for this recipe. Click Add.
5. If the target looks accurate, click OK. If not, click Cancel.
6. The target is associated with your recipe.

Copyright © 2022 Trifacta Inc. Page #386

Tip: You can also assign a target from the Transformer toolbar in the Transformer page.

Update Schema

NOTE: You cannot edit a target through Trifacta®. To make changes, remove the target and add in a
modified target.

If there are have been changes to the source schema of your target, please complete the following steps to
update your target.

Steps:

1. If the source of the target needs to be re-imported into Trifacta, please do so now.
2. In Flow View, select the recipe to which the target is assigned. From the context menu for the recipe,

select the following:
a. Select Remove Target to remove the current target.
b. Select Assign Target to Recipe to select the new target.

Use Schema

Data grid: After a schema has been associated with your recipe, schema information and a few example
rows are displayed in the data grid of the Transformer page. These examples serve to guide your
transformation operations.
Column Browser: In the Column Browser panel, you can select one or more columns and apply schema-
related transformations to them.

Remove Schema

Steps:

1. In Flow View, select the recipe whose schema you wish to remove.
2. In the right panel, click the context menu. Select Remove Target.

NOTE: Removing a target from a recipe does not remove the underlying dataset from the platform.

NOTE: Deleting a dataset does not remove any target based off of it. You can still perform
alignment operations to match the schema. However, you cannot view example rows from the
target in the Transformer page.

Copyright © 2022 Trifacta Inc. Page #387

Optimize Job Processing
Contents:

Run jobs on the default running environment
Filter data early
Perform joins early
Perform unions late

This page contains a set of tips for how to improve the overall performance of job execution.

Run jobs on the default running environment

When configuring a job, Trifacta analyzes the size of your dataset to determine the best of the available running
environments on which to execute the job. This option is presented as the default option in the dialog. Unless you
have specific reasons for doing otherwise, you should accept the default suggestion.

Filter data early

If you know that you are deleting some rows and columns from your dataset, add these transformation steps
early in your recipe. This reduction simplifies working with the content through the application and, at execution,
speeds the processing of the remaining valid data. Since you may be executing your job multiple times before it
is finalized, it should also speed your development process.

To delete columns:
Select Delete from the column drop-down for individual columns.
Use the Delete Columns transformation to remove multiple discrete columns or ranges of columns.

To delete rows: The following example removes all rows that lack a value for the id column:

Transformation Name Filter rows

Parameter: Condition Is missing

Parameter: Column id

Parameter: Action delete matching rows

To keep rows: The following example keeps all rows that lack a value in the id column:

Transformation Name Filter rows

Parameter: Condition Is missing

Parameter: Column id

Parameter: Action keep matching rows

See Filter Data.

Perform joins early

After you have filtered out unneeded rows and columns, join operations should be performed in your recipe.
These steps bring together your data into a single consistent dataset. By doing them early in the process, you
reduce the chance of having changes to your join keys impacting the results of your join operations. See
Join Data.

Copyright © 2022 Trifacta Inc. Page #388

Perform unions late

Union operations should generally be performed later in the recipe so that you have a small chance of changes to
the union operation, including dataset refreshes, affecting the recipe and the output.

NOTE: If your dataset requires a significant amount of data cleaning, you should perform your unions
early in your recipe, so that all cleaning steps can be applied once across the dataset.

See Append Datasets.

Copyright © 2022 Trifacta Inc. Page #389

Diagnose Failed Jobs
Contents:

Job Types
Identify Job Failures

Invalid file paths
Jobs that Hang
Spark Job Error Messages
Databricks Job Errors

Try Other Job Options
Review Logs

Hadoop logs
Learn More

Use these guidelines and features to begin the process of diagnosing jobs that have failed.

Job Types

The following types of jobs can be executed in Trifacta®:

Convert jobs: Some datasources, such as binary file or JSON formats, must be converted to a format that
can be easily read by the Trifacta application. During data ingestion, the datasource is converted to a
natively supported file format and stored on backend storage.
Transform job: This type of job executes the steps in your recipe against the dataset to generate results
in the specified format. When you configure your job, any set of selected output formats causes a
transform job to execute according to the job settings.
Profile job: This type of job builds a visual profile of the generated results. When you configure your job,
select Profile Results to generate a profile job.
Publish job: This job publishes results generated by the platform to a different location or datastore.
Ingest job: This job manages the import of data from a JDBC source into the default datastore for
purposes of running a transform or sampling job.

For more information, see Run Job Page.

Tip: Information on failed plan executions is contained in the orchestration-service.log file,
which can be acquired in the support bundle. For more information, see Support Bundle Contents.

NOTE: For each collected sample, a sample job ID is generated. In the Samples panel, you can view the
sample job IDs for your samples. These job IDs enable you to identify the sample jobs in the Sample
Jobs page.

Identify Job Failures

When a job fails to execute, a failure message appears in following locations:

Jobs tab in Flow View.
Individual job listings in the Jobs page.

The following is an example from the Jobs page:

Copyright © 2022 Trifacta Inc. Page #390

Figure: Publish job failed

In the above example, the Transform and Profile jobs completed, but the Publish job failed. In this case, the
results exist and, if the source of the problem is diagnosed, they can be published separately.From the job's
context menu, select Download Logs. You can download the jobs logs to look for reasons for the failure. See
below.

Invalid file paths

When your job uses files as inputs or outputs, you may receive invalid file path errors. Depending on the backend
datastore, these can be one of the following:

Path to the file is invalid for the current user. Path may be been created by another user that had access to
the location.
Path contains invalid characters in it. For more information, see Supported File Formats.
Resource was deleted.

Jobs that Hang

In some cases, a job may stay in a pending state indefinitely. Typically, these errors are related to a failure of the
job tracking service. You can try to the following:

Resubmit the job.

Have an administrator restart the platform. See Start and Stop the Platform.

Submit the job again.

Spark Job Error Messages

The following error messages may appear in the Trifacta application when a Spark job fails to execute.

"Aggregate too many columns" error

Your job could not be completed due to one or more Pivot, Window or other Aggregation recipe steps having too
many aggregate functions in the Values parameter.

Solution: Please split these aggregates across multiple Aggregation steps.

"Binary sort" error

Sorting a nested column such as an array or map is not supported.

Codegen error

Your job could not be completed due to the complexity of your recipe.

Tips:

Look to break up your recipe into sequences of recipes. You can chain recipes together one after another
in Flow View.

Copyright © 2022 Trifacta Inc. Page #391

If you have complex, multi-dataset operations, you should try to isolate these into smaller recipes.
Use sampling to checkpoint execution after complex steps.

"Colon in path" error

Your job references one or more invalid file paths. File and folder names cannot contain the colon character.

"Invalid input path" error

Your job references one or more invalid file paths. File names cannot begin with characters like dot or underscore.

"Invalid union" error

Union operations can only be performed on tables with compatible column types.

Tip: Edit the union in question. Verify that the columns are properly aligned and have consistent data
types. For more information, see Union Page.

"Job service unreachable" error

There was an error communicating with the Spark Job Service.

Tip: An administrator can review the contents of the spark-job-service.log file for details. See
System Services and Logs.

"Oom" error

When you encounter out of memory errors related to job execution, you should review the following general items
related to your flow.

General Tips:

Review your recipes to see if you can identify ways to break them up into smaller recipes.
Operations such as joins and unions can greatly increase the size of your datasets.
Resource consumption is also affected by the the complexity of your recipe(s).

If you suspect that there are several jobs running in parallel, you can drop the job launch batch size to 2 or 1
, which serializes job execution while preserving memory. For more information, see
Configure Application Limits.
You might be able to configure overrides to the Spark settings to allocate more memory for job execution.

This feature may need to be enabled in your environment. See Enable Spark Job Overrides.
See Configure User-Specific Props for Cluster Jobs.

"Path not found during execution" error

One or more datasources referenced by your job no longer exist.

Tip: Review your flow and all of its upstream dependencies to locate the broken datasource. Reference
errors for upstream dependencies may be visible in downstream recipes.

"Too many columns" error

Your job could not be completed due to one or more datasets containing a large number of columns.

Tip: A general rule of thumb is to avoid over 1000 columns in your dataset. Depending on your
environment, you may experience performance issues and job failures on narrower datasets.

Copyright © 2022 Trifacta Inc. Page #392

"Version mismatch" error

The version of Spark installed on your Hadoop cluster does not match the version of Spark that Trifacta is
configured to use.

Tip: For more information on the appropriate version to configure for the product, see Configure for Spark.

Databricks Job Errors

The following error messages are specific to Spark errors encountered when running jobs on Databricks.

NOTE: When a Databricks job fails, the failure is immediately reported in the Trifacta application.
Collection of the job log files from Databricks occurs afterward in the background.

Tip: A platform administrator may be able to download additional logs for help in diagnosing job errors.

"Runtime cluster" error

There was an error running your job.

"Staging cluster" error

There was an error launching your job.

Try Other Job Options

You can try to re-execute the job using different options.

Tips:

Disable flow optimizations. If your job is using data from a relational source that supports pushdowns,
you can try to disable flow optimizations and then re-run the job. For more information, see
Flow Optimization Settings Dialog.
Look to cut data volume. Some job failures occur due to high data volumes. For jobs that execute across
a large dataset, you can re-examine your data to remove unneeded rows and columns of data. Use the
Deduplicate transformation to remove duplicate rows. See Remove Data.
Gather a new sample. In some cases, jobs can fail when run at scale because the sample displayed in
the Transformer page did not include problematic data. If you have modified the number of rows or
columns in your dataset, you can generate a new sample, which might illuminate the problematic data.
However, gathering a new sample may fail as well, which can indicate a broader problem. See
Samples Panel.
Change the running environment. If the job failed on Trifacta Photon, try executing it on another running
environment.

Tip: The Trifacta Photon running environment is not suitable for jobs on large datasets. You
should accept the running environment recommended in the Run Job page.

Copyright © 2022 Trifacta Inc. Page #393

Review Logs

Job logs

In the listing for the job on the Jobs page, click Download Logs to send the job-related logs to your local desktop.

NOTE: If encryption has been enabled for log downloads, you must be an administrator to see a clear-
text version of the jobs listed below. For more information, see Configure Support Bundling.

When you unzip the ZIP file, you should see a numbered folder with the internal identifier for your job on it. If you
executed a transform job and a profile job, the ZIP contains two numbered folders with the lower number
representing the transform job.

job.log. Review this log file for information on how the job was handled by the application.

Tip: Search this log file for error.

Support bundle: If support bundling has been enabled in your environment, the support-bundle folder
contains a set of configuration and log files that can be useful for debugging job failures.

Tip: Please include this bundle with any request for assistance to Alteryx Support.

For more information on configuring the support bundle, see Configure Support Bundling.

For more information on the bundle contents, see Support Bundle Contents.

Support logs

For support use, the most meaningful logs and configuration files can be downloaded from the application. Select
Help menu > Download logs.

NOTE: If you are submitting an issue to Alteryx Support, please download these files through the
application.

For more information, see Download Logs Dialog.

The admin version of this dialog enables downloading logs by timeframe, job ID, or session ID. For more
information, see Admin Download Logs Dialog.

Trifacta node logs

NOTE: You must be an administrator to access these logs. These logs are included when an
administrator downloads logs for a failed job. See above.

On the Trifacta node, these logs are located in the following directory:

<install_dir>/logs

This directory contains the following logs:

batch-job-runner.log. This log contains vital information about the state of any launched jobs.
webapp.log. This log monitors interactions with the web application.

Copyright © 2022 Trifacta Inc. Page #394

Issues related to jobs running locally on the Trifacta Photon running environment can appear here.

Hadoop logs

In addition to these logs, you can also use the Hadoop job logs to troubleshoot job failures.

You can find the Hadoop job logs at port 50070 or 50030 on the node where the ResourceManager is
installed.
The Hadoop job logs contain important information about any Hadoop-specific errors that may have
occurred at a lower level than the Trifacta application, such as JDK issues or container launch failures.

Contact Support

If you are unable to diagnose your job failure, please contact Alteryx Support.

NOTE: When you contact support about a job failure, please be sure to download and include the entire
zip file, your recipe, and (if possible) your dataset.

Learn More

https://community.trifacta.com/s/article/how-to-use-the-trifacta-job-log-files

https://community.trifacta.com/s/article/troubleshooting-a-hadoop-job-failure

Copyright © 2022 Trifacta Inc. Page #395

https://community.trifacta.com/s/article/how-to-use-the-trifacta-job-log-files
https://community.trifacta.com/s/article/troubleshooting-a-hadoop-job-failure

Schedule a Job
Contents:

Add a Schedule
Schedule a Destination
Edit Schedule
Disable Schedule
Delete

Delete a schedule
Delete a destination

After you have finished developing the recipes in your flow, you can define scheduled executions of the recipe or
recipes within the flow to deliver outputs to known locations. Using the Automator, you can automate execution of
jobs on source data, which can be replenished with fresh data asynchronously.

NOTE: Before you begin, you should verify that your data management pipeline into and out of the
platform has been appropriately defined. This pipeline includes how data is written to the output location.
For more information, see Overview of Automator.

When you schedule a job, you create two objects in Flow View:

NOTE: You must create both of these objects to schedule a job execution.

Object Description

Schedule A schedule applies to the entire flow. It contains one or more intervals at which the recipes of the flow are executed.
Recipes are executed if their outputs include a scheduled destination.

Scheduled A scheduled destination is an output location, format, and other settings that is populated with the results of executing the
destination related recipes.

Tip: You can create schedules for datasets with parameters. Any overrides specified through Flow View
are automatically applied at runtime for the scheduled job.

Add a Schedule

Steps:

1. Open the flow in Flow View.
2. From the context menu, select Schedule.
3. In the Add Schedule dialog, select your scheduling options:

a. Timezone: Select the timezone to use to determine when to execute the specified schedule.
b. Frequency: Select the time and frequency of execution: Hourly, Daily, Weekly, Monthly, or cron.

NOTE: Scheduling supports a modified version of cron scheduling syntax. For more
information, see cron Schedule Syntax Reference.

Copyright © 2022 Trifacta Inc. Page #396

c. To add another scheduled time, click Add.

4. To save your schedule, click Save.
5. A Calendar icon appears in Flow View to indicate that the flow has a schedule associated with it.

Schedule a Destination

Steps:

1. To specify a destination for your schedule, click the recipe you wish to execute at the scheduled time.
2. If you have not done so already, click the Output icon next to the recipe to create an output for it.
3. In the right panel, locate the Scheduled destinations header. Click Add.
4. Specify an output location, format, and updating method.
5. Click Save.

Edit Schedule

To edit the scheduled times, click the Calendar icon. Then, click Edit. Make changes as needed and save.
To edit a scheduled destination, select the output in Flow View. In the right panel, click Edit next to
the appropriate scheduled destination.

Disable Schedule

To disable a schedule you control, click the Calendar icon in Flow View. Then, move the slider to disable it.
Administrators can disable schedules for all flows in the workspace in the Schedules page.

Delete

Delete a schedule

In Flow View, click the Calendar icon. Then, click Delete.

Delete a destination

Tip: If you have deleted the schedule for the flow, you do not need to delete the scheduled destination. It
cannot run without a schedule.

1. In Flow View, select the output.
2. In the right panel, select Delete Output from the context menu.

Copyright © 2022 Trifacta Inc. Page #397

Create Branching Outputs
From a single collection of datasets, you may need to generate multiple outputs for downstream purposes.

Examples:

You want to preserve the ability to review and profile your source data. For more information, see
Profile Your Source Data.
You need different pivot tables produced from the wrangled data.
You need to filter down the set of rows or columns to deliver to one user community while delivering a
different set of columns to another.

Reshaping Transformations

If your next step is to add any of the following transformations and you wish to preserve the existing data for other
uses, you should consider adding these steps in a separate dedicated recipe.

Transformation Description
Name

Union A union appends one or more datasets to your current one. To preserve the original, you may need to create a
branching output. See Append Datasets.

Join A join combines two datasets based on common values in specified columns in both datasets. These types of
transformations can greatly change the shape of your data. See Join Data.

Similarly, a lookup uses values from a column in your source data to pull in corresponding rows of data from a
reference dataset. These transformations add columns to your dataset. See Add Lookup Data.

Remove duplicate This transformation removes identical rows from your dataset. However, there may be a set of steps required to
rows standardize values in various columns before applying the de-duplication. You may choose to manage this process in

a branching recipe.

Delete columns When a column is removed, it is no longer available for use in any downstream output. See Remove Data.

Filter Rows can be filtered from your dataset to render different perspectives. These changes may be best moved to a
secondary, branching recipe. See Filter Data.

Pivot data When you create a pivot table, all source data that is not explicitly specified in the pivot is dropped from the dataset.
For more information, see Pivot Data.

Group by You can perform aggregation calculations within a table, which may force column data to be dropped. See
Create Aggregations.

Basic Technique

Whenever you are applying a transformation that destroys data or otherwise reshapes your dataset and you wish
to preserve the current state of the dataset, you should do the following:

1. In Flow View, select your current recipe. Click Add new recipe.
2. This recipe becomes the source for a branched output. Give the new recipe an appropriate name. For

example, Pivot-SalesPerProductPerStore.
3. For this recipe, click the Output icon. Specify the appropriate output format and location that you'd like to

generate for this branched output.
4. Select your current recipe again. Click Add new recipe.
5. This recipe becomes the extension of your current recipe. Give the new recipe an appropriate name. For

example, MyRecipe-Part2.
6. Select the Pivot-SalesPerProductPerStore recipe. Click Edit recipe.
7. Build your pivot transformation in this recipe.
8. When ready, run the job. The output should be generated in the appropriate format and location.

Copyright © 2022 Trifacta Inc. Page #398

Tip: When you run a job, all upstream dependencies are generated as part of the job. However, if
you have multiple branches in your flow, you must run multiple outputs to generate all of the
results. Generating these results may be easier if you create scheduled destinations and then add
a schedule to trigger them. For more information, see Overview of Automator.

Figure: Multiple pivot tables sourced from output of a primary recipe for the flow. POS-r01-Part2 can be
used for continued wrangling of primary recipe.

Copyright © 2022 Trifacta Inc. Page #399

Build Sequence of Datasets
Contents:

Chain Recipes in Same Flow
Create Reference Objects
Create Imported Dataset from Output

In some situations, you may need to create a sequence of datasets, in which the output of one recipe becomes
the input of another recipe.

Potential uses:

1. You may want to handle data cleanup tasks in one set, before that data is made available to other users
for customization for their needs.

2. Columns or rows of data may need to be dropped before the dataset is made available to other users.
3. You may want to have different individuals working on each phase of the data transformation process. For

example, one individual may be responsible for cleansing the data, while another may be responsible for
transforming the data into final format.

Depending on your situation, you can apply one of the following solutions.

Chain Recipes in Same Flow

Within a flow, you can chain together recipes. For example, you may wish to use the first recipe for cleansing and
then second recipe for transforming. This method is useful if you are using a single imported dataset for multiple
types of transformations within the same flow.

Steps:

1. Click the imported dataset. Click Add new recipe.
2. Click the new recipe. Name it, Cleanse.
3. With the new recipe selected, click Add new recipe.
4. Click the new recipe. Name it, Transform.

The output of Cleanse recipe becomes the input of Transform recipe.

Figure: Chained recipes

Create Reference Objects

If you need to make the output of a recipe available in other flows, you can create a reference object. This
reference is available in other flows that you control.

Steps:

Copyright © 2022 Trifacta Inc. Page #400

1. In Flow View, select the recipe whose output you wish to make available to other flows.
2. Click the Create Reference icon:

Figure: Create reference object
3. To use it in one of your other flows, click Add to Flow....
4. In the target flow, the reference object appears as a reference dataset. It works like an imported dataset

with the following considerations.

Key Considerations:

When you run a job in a flow that contains a reference dataset, all upstream dependencies of that
reference dataset are executed. For the source reference object, all imported datasets and recipes are
gathered and executed to populate the reference dataset with fresh data.
The above has the following implications:

If the user running the job in flow #2 does not have permissions to access all of the upstream
dependencies of the reference dataset, the job may fail. These dependencies include imported
datasets and any connections.
If the upstream objects are owned by other users, you may not be able to review these items. For
example, if the source recipe is changed by another user, your downstream recipe may break
without notice. If you cannot review that recipe, then you can see what was changed and how to fix
it.

Create Imported Dataset from Output

If any of the above considerations are a concern, you can create an imported dataset from the job results of flow
#1.

In the Job Details page, click the Output Destinations tab. For the generated output, select Create imported
dataset from its context menu.

From the results of wrangling your first dataset, you can create a new dataset. This dataset is wrangled in a
separate recipe, the output of which can become a third dataset. In this manner, you can create sequences of
datasets.

Key Considerations:

The imported dataset in flow #2 is not refreshed until you run the job that generates it in flow #1.

Copyright © 2022 Trifacta Inc. Page #401

If the output of flow #1 uses the same filename each time, you may not know if the data has been
refreshed. When the job is executed in flow #2, it collects the source imported dataset and executes,
whether the data is new or not. Workarounds:

Dataset with parameters: In flow 2, you can create a parameterized dataset, which collects source
data, with some variation in parameters. As long as the output of flow #1 follows the naming
convention for the parameterized dataset for flow #2, you should be able to run the job on fresh
data on-demand.

After the job in flow #2 executes, rename or remove the output of flow #1 from its target location.
That way, whenever job #2 executes again, any data that it collects from the source location is likely
to be newer.

Copyright © 2022 Trifacta Inc. Page #402

Fix Dependency Issues
Contents:

How to Identify
Dependent datasets
Broken data integrations
Hidden breakages

Fixing Dependencies

This section describes how to identify dependency issues between your current recipe and other recipes or
datasets and includes general steps for fixing them.

Where possible, changes made in one dataset or recipe propagate to the datasets that consume it. Datasets that
join, union, or lookup against your dataset are likely to be impacted if you delete columns or rows or otherwise
change the data. In some cases, the recipes of these dependent datasets can break.

How to Identify

Dependent datasets

When making edits to a recipe, you can verify if your changes potentially impact other recipes or reference
datasets that rely on it. In the Transformer page, click the drop-down next to the current dataset's name to open
the Recipe Navigator. Select the Flow View tab.

Tip: If your current dataset is connected to datasets to the right of it, those datasets are dependent on
the current one. After you make changes to the current one, you should use the Recipe Navigator to
open recipes and datasets that are connected to it and to the right of it in flow view.

Broken data integrations

When you make some changes in an upstream recipe or dataset, the recipes for any downstream datasets can
break, such that you cannot generate satisfactory results. In the downstream recipe, you may see errors in the
Recipe panel, such as the following:

Figure: Dependency error in the Recipe panel

In the above, the column Day does not exist in the current dataset, which is causing problems in the last two
recipe steps. These types of errors may be generated when a column in the upstream dataset has been dropped
or renamed .

Steps:

Copyright © 2022 Trifacta Inc. Page #403

1. Open the object where the column was dropped:
a. If the recipe or dataset is from the same flow, you can use the Recipe Navigator in the Transformer

Page. See Recipe Navigator.
b. If the recipe or dataset is in a different flow, use the Flows page to locate it (REF_CAL.txt in the

above).
2. In the Flow View tab, open the dataset referenced in the error message.
3. In the Recipe panel, locate the step where the column was removed.
4. Fix the issue. Details are below.

Hidden breakages

If you make changes to specific values in a dataset, recipe steps in downstream datasets can break if they rely
on detecting specific values. Depending on the usage, the step may not actually be broken, but the generated
results are incorrect.

For example, a downstream dataset recipe includes the following step:

Transformation Name Filter rows when value is exactly

Parameter: Condition Is exactly

Parameter: Column company_name

Parameter: Value 'My Co.'

Parameter: Action Delete matching rows

If the company_name column is sourced from another dataset and the My Co. value is changed to My Company,
the downstream dataset that includes this transform doesn't break in an easily noticeable way. The data is simply
not removed from the dataset and any generated results.

Fixing Dependencies

When you locate a dependency issue in the upstream dataset, you can fix it using one of the following methods:

1. Fix the issue in the source dataset. Verify that the change does not impact other datasets.

NOTE: If you fix the issue in the source dataset, you should verify if any other downstream
datasets are impacted by this change.

2. Change the input dataset to use a dataset that is not broken.

Tip: If you must freeze the data in the dataset that you are using as an input, you can create a
copy of the dataset as a snapshot from the Dataset Details page.

To use the copy, repair or rebuild the integration using the copied version.

3. Fix the issue in the dataset that depends on it. In this case, you must redefine the transformation that
brings in the data.

Copyright © 2022 Trifacta Inc. Page #404

Share a Flow
You can allow other users to work on flows that you own. Flow collaborators have almost all of the same
permissions as flow owners.

NOTE: Users of a shared flow must have read access to the underlying data sources to access the
datasets of a shared flow. If they do not have dataset access, collaborators can still access the flow but
have more limited capabilities.

NOTE: When you share a flow that contains a dataset sourced from Microsoft Excel, the user with whom
the flow is shared may receive a Could not parse error. In this case, the user does not have access
to the original sample. The workaround is to take a new sample or to run a job on the full dataset.

Steps:

1. In the Flows page, locate the flow to share.
2. From the context menu on the right side of the screen, select Share.
3. In the Share Flow dialog, enter the name of the user or users with whom you would like to share the flow.
4. You can specify the privilege level of the user to whom you are sharing.
5. Click Add.
6. The selected users can now see the flow and interact with its objects in the Shared with Me tab of the

Flows page.

For more information on the privileges of collaborators, see Overview of Sharing.

Copyright © 2022 Trifacta Inc. Page #405

Export Flow
As needed, you can export a flow from Trifacta®. An exported flow is stored in a ZIP file that contains all objects
needed to use the flow in any instance of that platform that can access the flow's sources. Exported flows can be
imported into the same system or different systems.

Flow export is useful for:

Backups of work in progress

You cannot import flows that were exported from a version before Release 6.8.

Archiving of completed development work
Migrating flows from one instance to another

Deployment of work to Production environments

An exported flow ZIP also includes:

Any .data files, which may be included as artifacts of feature usage.
For transformation by example, artifact files include the value transformation information for the TBE
step. For more information, see Overview of TBE.
For cluster clean, artifact files contain the mappings between source values and clustered values.
For more information, see Overview of Cluster Clean.

Any configured webhook tasks are part of the flow definition. For more information, see
Create Flow Webhook Task.

Export from Flows Page

Steps:

1. From the menu, select Flows.
2. In Flows page, locate the flow to export. From the context menu, select Export.
3. To export, click Download.
4. The ZIP file is downloaded to the default download location on your local desktop.

Tip: You can also export from Flow View.

NOTE: When you import a flow, you import this ZIP file. You cannot import the contents of the ZIP. If
your local environment automatically unzips ZIP files, please re-ZIP before you import. For more
information, see Import Flow.

Export from Production instance

Tip: In general, avoid making changes in a Production environment. Instead, you should make changes
in a Development environment, export from there, and reimport into the Production environment.

Copyright © 2022 Trifacta Inc. Page #406

Steps:

1. Login to the Production instance. The Deployment Manager is displayed.
2. From the menu, select Deployments.
3. Select the deployment that you wish to export.
4. In the list of releases, locate the release to export. From the context menu, select Export.
5. Add any optional notes for the export. When the flow is imported into another environment, this notes are

displayed in the user interface.
6. To export, click Download.
7. The ZIP file is downloaded to the default download location on your local desktop.

This file can be stored for safekeeping or imported back into the instance. For more information, see Import Flow.

Copyright © 2022 Trifacta Inc. Page #407

Import Flow
Contents:

Limitations
Define import rules
Import
Import into Prod instance

An exported flow can be imported into Trifacta®.

Dev instance: If you are using an instance of the platform for developing and testing your flows, you can
import a new flow through the Flows page.

NOTE: Unless your instance of the platform has been specifically configured to support
deployment management, you are using a Dev instance of the platform.

NOTE: If you are attempting to share a flow with other users on the same instance of the platform,
you should use the sharing functions. See Overview of Sharing.

Prod instance: If you are importing a flow into a Production instance of the platform, you import it as a
package through the Deployment Manager.

NOTE: Deployment Manager is a feature that enables segmentation of platform usage between
Dev instances and Prod instances. This feature must be enabled and configured. For more
information, see Overview of Deployment Manager.

Limitations

You cannot import flows that were exported before Release 6.8. See Changes to the Object Model.

NOTE: You cannot import flows into a version of the product that is earlier than the one from which you
exported it. For example, if you develop a flow on free Trifacta Wrangler, which is updated frequently, you
may not be able to import it into other editions of the product, which are updated less frequently.

Imported flows do not contain the following objects:

NOTE: Depending on the import environment, some objects in the flow definition may be incompatible.
For example, the connection type may not be valid, or a datasource may not be reachable. In these
cases, the objects may be removed from the flow, or you may have to fix a reference in the object
definition. After import, you should review the objects in the flow to verify.

Copyright © 2022 Trifacta Inc. Page #408

Reference datasets
Samples

Connections

NOTE: Exported flows do not contain connections. If your flow relies on a connection to the
source, you must create the connection in the Prod environment and create an import mapping
rule to assign the local connection ID to the import package. Flows that do not require connections
may not require remapping before import. See Define Import Mapping Rules.

NOTE: If the flow's output object uses connections that are not used for importing datasets in the
flow, the output is broken on import. Those outputs and their associated connections must be
recreated in the environment into which the flow is imported.

Imported datasets that are ingested into backend storage for Trifacta may be broken after the flow has been
imported into another instance. These datasets must be reconnected to their source. You cannot use import
mapping rules to reconnect these data sources. This issue applies to the following data sources:

Microsoft Excel workbooks and worksheets. See Import Excel Data.

PDF tables. See Import PDF Data.

Define import rules

Before you import a package, you may need to create import mapping rules to apply to your package. For
example, if the Development data is stored in a different location than the Production data, you may need to
create import rules to remap paths and connections to use to acquire the data from the Production environment.

NOTE: Import rules are applied at the time of import. They cannot be retroactively applied to releases
that have already been imported.

For more information, see Define Import Mapping Rules.

Import

NOTE: You cannot import into a Dev instance if your account for the instance contains the Deployment
role.

NOTE: If the exported ZIP file contains a single JSON file, you can just import the JSON file. If the export
ZIP also contains other artifact files, you must import the whole flow definition as a ZIP file. For best
results, import the entire ZIP file.

Steps:

1. Export the flow from the source system. See Export Flow.
2. Login to the import system, if needed.
3. Click Flows.

Copyright © 2022 Trifacta Inc. Page #409

4. From the context menu in the Flow page, select Import Flow.

Tip: You can import multiple flows (ZIP files) through the file browser or through drag-and-drop.
Press / + click or SHIFT + click to select multiple files for import.CTRL COMMAND

5. Select the ZIP file containing the exported flow. Click Open.

If there are issues with the import, click the Download link to review the missing or malformed objects.

Tip: When you import the flow, click the Warnings link to review the list of objects that must be remapped.

The flow is imported and available for use in the Flows page. After import:

You may need to reconnect your imported datasets to data sources that are available in the new
workspace or project. See Reconnect Flow to Source Data.
You may also need to reconnect your outputs. See Reconnect Flow to Outputs.

Import into Prod instance

After creating any import rules in your Prod instance, please do the following.

Steps:

1. Export the flow from the source system. See Export Flow.
2. Login to the Prod instance. The Deployment Manager is displayed.
3. Click Deployments.
4. Select or create the deployment into which to import the package.
5. Within the deployment, click Import Package.
6. Select the ZIP file containing the exported flow. Click Open.

a. Any defined import rules are applied to the package during import.
b. The package is selected as the active one for the deployment.
c. If there are issues with the import, click the Download link to review the missing or malformed

objects.

Tip: After you import, you should open the flow in Flow View and run a job to verify that the import was
successful and the rules were applied. See Flow View Page.

Copyright © 2022 Trifacta Inc. Page #410

Reconnect Flow to Source Data
When you import a flow into a new project or workspace, you may need to remap the imported datasets in the
flow to source data.

Tip: When you import the flow, click the Warnings link to review the list of objects that must be remapped.

When the flow is imported from one instance to another instance, the imported datasets may be broken after the
flow has been imported into another instance. You must map the imported flow to the corresponding data sources.

Steps:

1. Open the imported flow.
2. In Flow View, the datasets that need remapping have a red dot in the corner of their icon. This dot means

that the Trifacta application is unable to connect to the dataset.
3. In the Connections page, you may need to recreate the connections that were used to the import the

dataset in the original workspace.
4. For each broken dataset:

a. Right-click the dataset and click Replace.
b. From the Replace dialog, select the existing dataset or click Import Datasets and select the

required dataset.
c. Select Replace.
d. The selected dataset is replaced with an another dataset.

5. Repeat the above steps for each broken dataset in the flow.

You may also need to remap the flow's outputs.

Copyright © 2022 Trifacta Inc. Page #411

Reconnect Flow to Outputs
When you import a flow into a new project or workspace, you may be required to remap the flow outputs to
accessible publishing destinations.

Tip: When you import the flow, click the Warnings link to review the list of objects that must be remapped.

Tip: You should remap the data sources first. See Reconnect Flow to Source Data.

Steps:

1. Open the imported flow.
2. In Flow View, for each output:

a. Select the required output. The object details are displayed in the Details panel.
i. If you cannot connect to the data, you do not have permissions to use the connection

specified in the flow or the connection may not be available in the current project or
workspace. You must create a new connection to access the source data.

b. In the Details panel, click Edit or Add. The Publishing Settings page is displayed.
c. Edit the changes as required.
d. To save your changes, click Update.

3. Repeat the above steps for the other outputs in the flow.
4. To verify, run a job that generates one of the outputs.

Copyright © 2022 Trifacta Inc. Page #412

Define Import Mapping Rules
Contents:

Import Rules
Notes on import rules

Import Rule Requirements
Import Rule Types

Object Mapping Types
Value Mapping Types

Examples
Example - Replace a connection
Example - Remap an HDFS location
Example - Remap an S3 location
Example - Remap a WASB location
Example - Remap an ADLS Gen2 location
Example - Remap an ADLS Gen1 location
Example - Remap a relational datasource

Import Dry-Run

Before you import a packaged flow into a Production environment, you may need to apply import rules to remap
objects and locations from the source instance to the new instance. Import mapping rules are not required when
importing into the same environment, although they may be helpful in some cases.

Tip: If you are importing a flow that references file-based sources and wish to use the original files in
your imported file, you may find it easier to configure the importing user's permissions to access the
appropriate directories of the sources and then to swap datasets as needed after you complete the
import. This method is suitable and easier to do across a fewer number of flows.

NOTE: Import mapping rules apply to deployments in a Production instance under deployment
management. You cannot apply import mapping rules between two Dev instances.

NOTE: Import mapping rules require the use of the APIs made available from the Trifacta® platform. API
usage is considered a developer-level skill.

For more information on creating an export package, see Export Flow.
For more information on how to import, see Import Flow.

You can apply the following types of remappings:

Type Description

Value For value remappings, you can specify rules to match on specific values or patterns of values in the import package and remap
those values for use in the new instance.

NOTE: In this release, value remapping is supported only for S3 bucket names and paths to imported datasets and
output locations. Examples are provided below.

Object For object remappings, you can specify rules to match a value listed in the import package and remap that value to a defined
object in the new instance.

NOTE: In this release, object remapping is supported only for connections. An example is provided below.

Copyright © 2022 Trifacta Inc. Page #413

Import Rules

When a flow is imported, references in the flow definition that apply in the source instance may not apply in the
target instance. For example, the location paths to the source datasets may need to be rewritten to point to a
different location in the target instance.

Before you import your flow definition, you need to define rules for any value or object remapping that must be
done in the target environment.

Notes on import rules

1. Value and object remapping rules should be completed before you import the flow. The flow may be non-
functional until the rules are applied.

Tip: After you create your import rules, you can perform via API a dry run of the import. Any errors
are reported in the response. Details are provided below.

2. Value and object remapping rules are applied at the time of import. If you add new rules, they are not
retroactively applied to release packages that have already been imported.

3. When changing rules:
a. Any previously applied rules to the same import object are deleted.
b. You can apply multiple rules in the same change.
c. Rules are applied in the order in which they are listed in the request. Rules listed later in the request

must be compatible with expected changes applied by the earlier rules.
4. Value and object remapping must be completed via API. API usage is considered a developer-level skill.

Examples are provided below.

NOTE: Import mapping rules do not work for parameterized datasets. If the imported dataset with
parameters is still accessible, you should be able to run jobs from it.

Import Rule Requirements

If you are importing into the same instance from which you exported (Dev/Test/Prod on the same instance):
Import rules are not required.
If you want to use a different source of data in your Prod flow, you must create import rules.

If you are importing into a different instance from which you exported (Dev and Prod on different instances):
Import rules are required, except in unusual cases.

Import Rule Types

The following types of rules can be applied to import mappings.

NOTE: Depending on the type of mapping, some of these rules may not apply. Please be sure to review
the Examples below.

Object Mapping Types

Type Description

table Set this value to connections. You must then specify the uuid of the connection identifier in the imported flow and
Name replace it with the internal identifier of the connection in the importing instance.

Copyright © 2022 Trifacta Inc. Page #414

Value Mapping Types

Type Description

fileLocati This type is used to remap paths to files.

on

NOTE: filelocation rules apply to both input and output paths. Paths and their rules should be
defined with care.

s3Bucket (AWS) Name of the S3 to remap.

dbTableName (relational source) Name of the table to remap.

dbPath (relational source) Path to the database table. This value is an array.

host (Azure) Depending on the Azure datastore, this rule replaces:

WASB: blobhost name
ADLS Gen2: storage account
ADLS Gen1: datastore in the datalake

userinfo (Azure) Depending on the Azure datastore, this rule replaces:

WASB: container name
ADLS Gen2: filesystem name

Examples

The following are some example import rules to address specific uses.

Example - Replace a connection

In this following example, you must remap the connection from the source instance of the platform to the
corresponding connection in the instance where you are importing.

First, you must be able to uniquely identify the connection from the source that you wish to remap.

While the connection Id may work in a limited scope, that identifier is unlikely to be unique within your
environment.
If you do know the connect Id from the source system, you can skip the first step below.

In the API response in a connection definition, you can acquire the uuid value for the connection, which is a
unique identifier for the connection object across all instances of the platform:

Item v4 APIs

API Endpoint From the source instance:

/v4/connections

Method
GET

Request Body None.

Response Body
{

Copyright © 2022 Trifacta Inc. Page #415

 "data": [
 {

 "connectParams": {
 "vendor": "redshift",
 "vendorName": "redshift",
 "host": "redshift.example.com",
 "port": "5439",
 "extraLoadParams": "BLANKSASNULL EMPTYASNULL TRIMBLANKS TRUNCATECOLUMNS",
 "defaultDatabase": "test"

 },
 "id": 2,
 "host": "redshift.example.com",
 "port": 5439,
 "vendor": "redshift",
 "params": {

 "extraLoadParams": "BLANKSASNULL EMPTYASNULL TRIMBLANKS TRUNCATECOLUMNS",
 "defaultDatabase": "test"

 },
 "ssl": false,
 "vendorName": "redshift",
 "name": "redshift",
 "description": null,
 "type": "jdbc",
 "isGlobal": true,
 "credentialType": "iamRoleArn",
 "credentialsShared": true,
 "uuid": "097c2300-2f6a-11e9-a585-57562e0d9cd6",
 "disableTypeInference": false,
 "createdAt": "2019-02-13T08:33:28.368Z",
 "updatedAt": "2019-02-13T08:33:28.381Z",
 "credentials": [

 {
 "iamRoleArn": "arn:aws:iam:something",
 "username": "UserName"

 }
],
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "workspace": {

 "id": 1
 }

 },
 {

 "connectParams": {
 "vendor": "hive",
 "vendorName": "hive",
 "host": "hadoop",
 "port": "10000",
 "jdbc": "hive2",
 "defaultDatabase": "default"

 },
 "id": 1,
 "host": "hadoop",
 "port": 10000,
 "vendor": "hive",
 "params": {

 "jdbc": "hive2",
 "connectStringOptions": "",
 "defaultDatabase": "default"

 },
 "ssl": false,
 "vendorName": "hive",
 "name": "hive",
 "description": null,
 "type": "jdbc",
 "isGlobal": true,
 "credentialType": "conf",

Copyright © 2022 Trifacta Inc. Page #416

https://redshift.example.com
https://redshift.example.com

 "credentialsShared": true,
 "uuid": "08a1a180-2f6a-11e9-b2b2-85d2b0b67f5e",
 "disableTypeInference": false,
 "createdAt": "2019-02-13T08:33:26.936Z",
 "updatedAt": "2019-02-13T08:33:26.952Z",
 "credentials": [],
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "workspace": {

 "id": 1
 }

 }
],
 "count": 2

}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/getConnection

In the above, you identify that the connection used for the exported flow is the Redshift one. This object has the
following unique identifier:

"uuid": "097c2300-2f6a-11e9-a585-57562e0d9cd6"

In the target system, you must now create a rule in the deployment into which you are importing that searches for
this unique value. In the following example:

The deploymentId is known to be 4.
The connectionId for the equivalent Redshift connection in the target system is 1.

The uuid field in the import package is searched for the matching string. If it is found, the connection in the
import package is replaced with the connection in the target system with an Id of 1:

Item v4 APIs

API Endpoint
/v4/deployments/4/objectImportRules

Method PATCH

Request Body
[
 {

 "tableName": "connections",
 "onCondition": {

 "uuid": "097c2300-2f6a-11e9-a585-57562e0d9cd6"
 },
 "withCondition": {

 "id": 1
 }

 }
]

Status Code 200 - OK
- Success

Response

Copyright © 2022 Trifacta Inc. Page #417

https://api.trifacta.com/ee/es.t/index.html#operation/getConnection

Body When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
 "deleted": {

 "data": []
 }

}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateObjectImportRules

To test your rule, perform a dry run of the import. See below.

Example - Remap an HDFS location

In this example, your import rule must remap the path to the source from your Dev paths to your Prod paths.
Suppose the pattern looks like this:

Dev Path hdfs://datasets/dev/1/164e0bca-8c91-4e3c-9d0a-2a85eedec817/myData.csv

Prod hdfs://datasets/prod/1/164e0bca-8c91-4e3c-9d0a-2a85eedec817/myData-Prod.
Path csv

Note the differences:

The /dev/ part of the path has been replaced by /prod/.
The filename is different.

You can use the following value import rules to change the path values. In the following example, the rules are
applied separately.

NOTE: You can specify multiple rules in a single request. Rules are applied in the order that they are
listed. Latter rules must factor the results of earlier rules.

Request:

Item v4 APIs

API Endpoint
/v4/deployments/4/valueImportRules

Method PATCH

Request Body:

[
 {"type":"fileLocation","on":"/\/dev\//","with":"/prod/"},
 {"type":"fileLocation","on":"/\/([a-zA-Z0-9_]*).csv/","with":"$1-Prod.csv"}

]

Response:

Copyright © 2022 Trifacta Inc. Page #418

https://api.trifacta.com/ee/es.t/index.html#operation/updateObjectImportRules
hdfs://datasets/dev/1/164e0bca-8c91-4e3c-9d0a-2a85eedec817/myData.csv
hdfs://datasets/prod/1/164e0bca-8c91-4e3c-9d0a-2a85eedec817/myData-Prod

Item v4 APIs

Status Code 200 - OK
- Success

Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
 "deleted": {

 "data": []
 }

}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules

To test your rule, perform a dry run of the import. See below.

Example - Remap an S3 location

For S3 sources, you can apply remapping rules including changing to a new S3 bucket.

In this example, your import rule must remap the path to the source from your Dev paths to your Prod paths.
Suppose the pattern looks like this:

Dev S3 Bucket Name wrangle-dev

Dev Path /projs/tweets/v04/tweets_month.csv

Prod S3 Bucket Name wrangle-prod

Prod Path /tweets/tweets_month.csv

You can use the following value import rules to change the bucket name and path values.

NOTE: You can specify multiple rules in a single request. Rules are applied in the order that they are
listed. Latter rules must factor the results of earlier rules.

s3Bucket name rule: This rule replaces the name of the S3 bucket to use with the new one: wrangle-prod.

fileLocation rule: This rule uses regular expressions to match each segment of the path in the bucket's paths.

Files are located at a consistent depth in the source bucket.
Path segments and filename use only alphanumeric values and underscores (_).
The replacement path is shortened to contain only the parent name ($2) and the filename ($4) in the path.
This rule applies to both input and output object file paths.

Request:

Item v4 APIs

API Endpoint
/v4/deployments/4/valueImportRules

Copyright © 2022 Trifacta Inc. Page #419

https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules

Method PATCH

Request Body:

[
 {"type":"s3Bucket","on":"wrangle-dev","with":"wrangle-prod"},
 {"type":"fileLocation","on":"/\/([a-zA-Z0-9_]*)\/([a-zA-Z0-9_]*)\/([a-zA-Z0-9_]*)\/([a-zA-Z0-9_]*).csv/","

with":"/$2/$4.csv"}
]

Response:

Item v4 APIs

Status Code 200 - OK
- Success

Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
 "deleted": {

 "data": []
 }

}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules

To test your rule, perform a dry run of the import. See below.

Example - Remap a WASB location

For WASB sources, you can apply remapping rules during import.

In this example, your import rule must remap the blob host, container, and file location:

Dev Blobhost storage-wasb-account-dev.blob.core.windows.net

Dev Container container-dev

Dev File Location /projs/work/orders.csv

Prod Blobhost storage-wasb-account-prod.blob.core.windows.net

Prod Container container-prod

Prod File Location /2003/transactions/orders.csv

You can use the following value import rules to change the blobhost, container, and file paths.

NOTE: You can specify multiple rules in a single request. Rules are applied in the order that they are
listed. Latter rules must factor the results of earlier rules.

Copyright © 2022 Trifacta Inc. Page #420

https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules
https://storage-wasb-account-prod.blob.core.windows.net
https://storage-wasb-account-dev.blob.core.windows.net

host rule: This rule replaces the blobhost name to use with the new one: storage-wasb-account-prod.
blob.core.windows.net.

userinfo rule: This rule replaces the container name to use with the new one: container-prod.

fileLocation rule: This rule performs a text substitution to replace the file path. This rule applies to both input and
output object file paths.

Request:

Item v4 APIs

API Endpoint
/v4/deployments/4/valueImportRules

Method PATCH

Request Body:

[
 {"type":"host","on":"storage-wasb-account-dev.blob.core.windows.net","with":"storage-wasb-account-prod.blob.

core.windows.net"},
 {"type":"userinfo","on":"container-dev","with":"container-prod"},
 {"type":"fileLocation","on":"/projs/work/orders.csv","with":"/2003/transactions/orders.csv"}

]

Response:

Item v4 APIs

Status Code 200 - OK
- Success

Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
 "deleted": {

 "data": []
 }

}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules

To test your rule, perform a dry run of the import. See below.

Example - Remap an ADLS Gen2 location

For ADLs Gen2 sources, you can apply remapping rules during import.

In this example, your import rule must remap the storage account, filesystem, and file location:

Dev Storage Account storage-adlsgen2-account-dev.blob.core.windows.net

Copyright © 2022 Trifacta Inc. Page #421

https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules
https://storage-adlsgen2-account-dev.blob.core.windows.net
https://core.windows.net
https://blob.core.windows.net

Dev Filesystem filesystem-dev

Dev File Location /projs/work/orders.csv

Prod Storage Account storage-adlsgen2-account-prod.blob.core.windows.net

Prod Filesystem filesystem-prod

Prod File Location /2003/transactions/orders.csv

You can use the following value import rules to change the storage account, filesystem, and file paths.

NOTE: You can specify multiple rules in a single request. Rules are applied in the order that they are
listed. Latter rules must factor the results of earlier rules.

host rule: This rule replaces the storage account name to use with the new one: storage-adlsgen2-
account-prod.blob.core.windows.net.

userinfo rule: This rule replaces the filesystem name to use with the new one: filesystem-prod.

fileLocation rule: This rule performs a text substitution to replace the file path. This rule applies to both input and
output object file paths.

Request:

Item v4 APIs

API Endpoint
/v4/deployments/4/valueImportRules

Method PATCH

Request Body:

[
 {"type":"host","on":"storage-adlsgen2-account-dev.blob.core.windows.net","with":"storage-adlsgen2-account-

prod.blob.core.windows.net"},
 {"type":"userinfo","on":"filesystem-dev","with":"filesystem-prod"},
 {"type":"fileLocation","on":"/projs/work/orders.csv","with":"/2003/transactions/orders.csv"}

]

Response:

Item v4 APIs

Status Code 200 - OK
- Success

Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
 "deleted": {

Copyright © 2022 Trifacta Inc. Page #422

https://prod.blob.core.windows.net
https://account-prod.blob.core.windows.net

 "data": []
 }

}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules

To test your rule, perform a dry run of the import. See below.

Example - Remap an ADLS Gen1 location

For ADLS Gen1 sources, you can apply remapping rules during import.

In this example, your import rule must remap the Azure data lake store and file location:

Dev data store adl://storage-adlsgen1-account.azuredatalakestore.net

Dev File Location /projs/work/orders.csv

Prod data store adl://storage-adlsgen1-account-prod.azuredatalakestore.net

Prod File Location /2003/transactions/orders.csv

You can use the following value import rules to change the datastore and file paths.

NOTE: You can specify multiple rules in a single request. Rules are applied in the order that they are
listed. Latter rules must factor the results of earlier rules.

host rule: This rule replaces the datastore name to use with the new one: storage-adlsgen1-account-
prod.azuredatalakestore.net.

fileLocation rule: This rule performs a text substitution to replace the file path. This rule applies to both input and
output object file paths.

Request:

Item v4 APIs

API Endpoint
/v4/deployments/4/valueImportRules

Method PATCH

Request Body:

[
 {"type":"host","on":"storage-adlsgen1-account-dev.azuredatalakestore.net","with":"storage-adlsgen1-account-

prod.azuredatalakestore.net"},
 {"type":"fileLocation","on":"/projs/work/orders.csv","with":"/2003/transactions/orders.csv"}

]

Response:

Copyright © 2022 Trifacta Inc. Page #423

https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules
adl://storage-adlsgen1-account.azuredatalakestore.net
adl://storage-adlsgen1-account-prod.azuredatalakestore.net
https://prod.azuredatalakestore.net
https://prod.azuredatalakestore.net

Item v4 APIs

Status Code 200 - OK
- Success

Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
 "deleted": {

 "data": []
 }

}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules

To test your rule, perform a dry run of the import. See below.

Example - Remap a relational datasource

When you migrate a relational source from a Dev instance to a Prod instance, you may need to remap your flow
to use the production database and table.

NOTE: These rules can be applied to sources or publications of a flow.

In this example, you are replacing the input and output source databases and tables with the corresponding
production DB values.

Item Dev value Prod value

Table name 1 dev_trans prod_trans

Path value 1 dev_db2_src prod_db2_src

Table name 2 dev_trans_out prod_trans_out

Path value 2 dev_db2_out prod_db2_out

In a single request, you can apply the rules changes to map the above Dev values to the Prod values.

NOTE: You can specify multiple rules in a single request. Rules are applied in the order that they are
listed. Latter rules must factor the results of earlier rules.

The on parameter accepts regular expressions. In the following example request, the on parameter has been
configured to use a regular expression, under the assumption that all current and future imports will respect the
current pattern or database paths and table names.

dbTableName rule: This rule replaces the name of the table to use.

dbPath rule: This rule replaces the path value to database table.

NOTE: The content of a dataset or output dbPath is an array. The regular expression for on is applied to
every element in the dbPath value. Typically, there's only one element in the dbPath array. In some
cases, there may be multiple elements, so be careful when specifying the on value.

Copyright © 2022 Trifacta Inc. Page #424

https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules

Request:

Item v4 APIs

API Endpoint
/v4/deployments/4/valueImportRules

Method PATCH

Request Body:

[
 {"type":"dbTableName","on":"/dev_([a-zA-Z0-9_]*)/","with":"prod_$1"},
 {"type":"dbPath","on":"/dev_([a-zA-Z0-9_]*)_src/","with":"prod_$1_out"}

]

Response:

Item v4 APIs

Status Code 200 - OK
- Success

Response When the new rules are applied, all previously existing rules for the object in the deployment are deleted. The response
Body body contains any rules that have been deleted as part of this request.

In the following example, there were no rules, so nothing was deleted:

{
 "deleted": {

 "data": []
 }

}

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules

To test your rule, perform a dry run of the import. See below.

Import Dry-Run

After you have specified a set of import rules, you can perform a dry-run of an import of an import package. This
dry-run does not perform the actual import but does report any permissions errors or other issues in the
response.

In this example, the flow2import.zip file contains the package to import into deployment 4.

Request:

Item v4 APIs

API Endpoint
/v4/deployments/4/releases/dryRun

Method POST

Copyright © 2022 Trifacta Inc. Page #425

https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules

Request Body In form data submitted with the request, you must include the following key-value pair:

Key Value

data "@flow2import.zip"

Response:

Item v4 APIs

Status Code - Success 200 - OK

Response Body The response body contains any import remapping rules that have been applied during the import process.

Documentation See https://api.trifacta.com/ee/es.t/index.html#operation/importPackageForDeploymentDryRun

After the above dry-run has been executed, the import package can be imported and is automatically connected
to the appropriate connection. See
https://api.trifacta.com/ee/es.t/index.html#operation/importPackageForDeployment

Copyright © 2022 Trifacta Inc. Page #426

mailto:"@flow2import.zip
https://api.trifacta.com/ee/es.t/index.html#operation/importPackageForDeploymentDryRun
https://api.trifacta.com/ee/es.t/index.html#operation/importPackageForDeployment

Create or Replace Macro
Contents:

Create Macro
Define macro inputs

Edit Macro
Convert Macro to Steps
Replace Macro

Replace macro with another macro
Replace macro with steps
Update macro inputs

Inspect Macro
Apply Macro
Manage Macros

<ac:structured-macro ac:name='excerpt' ac:schema-version='1'><ac:parameter ac:name='atlassian-macro-output-
type'>BLOCK</ac:parameter><ac:rich-text-body>You can create reusable macros from sequences of steps in
your recipe. These macros can be applied in other locations of the recipe or in other recipes. If needed, you can
modify the steps in an instance of the macro to replace the existing steps, allowing you to make changes and
updates to your macros.</ac:rich-text-body></ac:structured-macro>

Macro Definition:

Macros are user-defined sequences of recipe steps that can be referenced independently and parameterized as
needed. A macro is composed of the following types of information:

Steps are the recipe steps that are executed each time that the macro is invoked. A macro contains one or
more steps.
Inputs are variables that can be modified wherever the macro is placed. For example, you might have an
input that contains the name of a column. This column name may change between recipes, so you can
create a macro input to capture the column name, which is the input value for the macro input. A macro
input can be referenced one or more times in your macro steps.

For more information, see Overview of Macros.

Create Macro

Steps:

1. In the Recipe panel, select the step or steps to include in your macro.

NOTE: Source steps from your recipe do not have to be consecutive. In the macro, steps are
listed in the order in which they appear in the recipe.

2. From the recipe toolbar context menu, select Create or replace macro.

NOTE: The dialog name and options vary based on the selection of create or replace macros.

3. From the drop-down, select Create a macro. Enter a Name and an optional Description.

Copyright © 2022 Trifacta Inc. Page #427

NOTE: The Name of the macro appears in the Trifacta application. Please verify that the Name is
unique.

4. Click Next.
5. In the Create macro dialog, you can review the selected steps and the inputs for the macros:

Figure: Create macro inputs
6. For each step in the macro:

a. Left column: Select the step.
b. Middle column: For the selected step, review the values that were specified for the step in the

original recipe.
c. Right column: As needed, you can provide values for the currently selected inputs from the middle

column. For a selected value, you can choose to create a new input or use an existing input.
7. You can review the macro inputs separately in the Inputs tab. For more information, see "Define macro

inputs" below.
8. When you have finished specifying your macro and its inputs, click Create.
9. The macro is created.

10. In the recipe location where you created it from, the steps from which you created your macro are replaced
with an Apply transformation step that references your macro name.

Define macro inputs

A macro input is a variable within the macro whose value can be set to a default or, if needed, modified in each
instance of the macro.

When you are specifying a macro, the Trifacta application reviews the steps of the macro to identify the values
that can be modified in it. In the middle column of Steps tab:

Value type Description

Column names are automatically turned into inputs.

These two values could be turned into macro inputs but are not currently
defined as such.

IFMISMATCHED is a a function name, which cannot be parameterized
as inputs.

Copyright © 2022 Trifacta Inc. Page #428

These two values have been turned into macro inputs.

Create macro inputs:

When you are defining a macro, you can create or modify macro inputs.

Tip: Macro inputs can be created or modified in the Steps or Inputs tabs.

Tip: Column names are always recognized as inputs. They can be modified as needed in each instance
of the macro.

Steps:

1. To create a new macro input, select a value that is not highlighted.
2. In the right column, enter a name for this new macro input.
3. Specify its default value, and click Create .
4. The macro input is created. In the middle column, the highlighted value has been replaced by the name of

the macro input.

To modify a macro input, click the entry in the middle column. Then, specify values as needed in the right column,
and click Save.

To delete a macro input, select it in the middle column. In the right column, click Remove.

NOTE: You cannot delete column names as macro inputs.

Edit Macro

When you edit a macro, you can modify the name, description of the macro, as well as the names for any of its
inputs.

Tip: To modify the steps of a macro, you must replace it. See "Replace Macro" below.

Steps:

1. You can use either of the following methods to edit the macro:
a. In the Macros page, click Edit from the context menu of the macro.
b. From the recipe toolbar context menu, select Edit macro.

2. In the Edit macro dialog, modify the name and description as needed.
3. Click Next.
4. In the Edit Macro dialog, click the Inputs tab.
5. Review the listed inputs:

a. To change the name of any input, select it.
b. In the right panel, enter a new name and description value for the input. Click Save.

6. Repeat the previous step for other macro inputs as needed.
7. To save your modifications to the macro definition, click Save.

Copyright © 2022 Trifacta Inc. Page #429

Convert Macro to Steps

After you have created a macro, you may need to convert an instance of a macro to plain steps in your recipe for
any of the following reasons:

The macro definition is going to be changed, and you do not want this instance of the original macro steps
to be affected by that change.
The macro definition is going to be changed, and you want to use this instance as the basis for the new
definition. See "Replace Macro" below.

To convert a macro to steps, select the macro instance in your recipe. Then, select Convert macro to steps in
the context menu of the recipe toolbar.

NOTE: This operation converts the selected instance of the macro to a set of steps. It does not modify
the definition of the macro. If preferred, you can delete the macro from the Macros page, which forces all
instances of the macro in the workspace to be automatically converted to steps.

Replace Macro

To modify the steps in your macro, you must perform a replacement of all steps in the current definition.

Replace macro with another macro

You can replace a macro's steps with all of the steps of a macro that you have exported to your desktop.

Tip: This method is useful for publishing changes to a macro from one workspace to other workspaces.

Steps:

1. Export a macro definition to your desktop.
2. In the Macros page, find the macro whose steps you'd like to replace with a macro that you've exported to

your desktop. From its context menu, select Replace.
3. You may need to remap macro inputs in the imported steps to the existing references. See "Update macro

inputs" below.

Replace macro with steps

The following method can be used to replace a macro definition with steps that you have created in a recipe.

Tip: When replacing a macro, you can create new inputs for new steps and reassign inputs from the
previous version to the steps that haven't changed.

Please complete the following steps.

Steps:

1. To replace all steps in the macro with new ones:
a. Create the steps in a recipe that you wish to use.
b. When you are ready to use them to replace a macro, select Create or replace macro from the

context menu.
2. To modify the steps currently in the macro:

a. Open a recipe containing an instance of the macro.
b. Select the step that applies the macro. From the context menu, select Convert macro to steps.
c. All of the macro steps are now listed as individual steps in your recipe.
d. Add, remove, or modify steps to define your new macro.

Copyright © 2022 Trifacta Inc. Page #430

Tip: You may want to remove the comment steps that mark the beginning and ending of
the converted macro.

e. When you are ready to use them to replace the macro, select all of the steps. From the context
menu, select Create or replace macro.

3. In the Create macro dialog, select Replace an existing macro from the drop-down.
4. From the Replace macro dialog, select the existing macro to replace.
5. If you want to save the copy of the existing macro, select the corresponding checkbox.

NOTE: Replacing an existing macro replaces all the macro steps with the steps of the new macro.
All instances of the previous definition of the macro now reference the new macro definition. In
some cases, you may need to reassign input values on old instances to align with the inputs in the
updated macro definition.

6. Define macro inputs:

a. If the old version of the macro contained inputs, you should review those inputs and reassign them
to values in the new macro definition.

NOTE: If you do not reassign the macro inputs from the old definition to the new one, then
the values used for those inputs in macro instances created under the old definition are lost.
After the replacement version is saved, you must review each instance of the macro to
verify that it is working properly.

b. You can also create new macro inputs that apply to the added or modified steps.
c. See "Update macro inputs" below.

7. After you have reviewed the input, to replace the macro with the existing inputs, click Replace.

a. If you do not specify a relationship between the existing inputs and the replacement macro's inputs,
a warning message is displayed.

NOTE: If you discard and save the changes, then any references to those inputs in the
instances of the macro in the previous definition are broken.

b. Click Discard to save the macro.

Update macro inputs

When you are replacing a macro, the macro inputs from the old version are carried over into the new version that
you are defining.

NOTE: To preserve the values that are stored in the macro inputs from the old version, you must
reassign the old macro input to its corresponding input in the new version. If this reassignment is not
completed, the input values specified in the old version are lost, and each existing instance of the macro
must be reviewed and updated with new macro input values.

Copyright © 2022 Trifacta Inc. Page #431

Figure: Reuse existing macro inputs

1. For each step in the new macro definition,
a. Review the inputs in the middle column.
b. If a listed input has a corresponding macro input in the old version, select the input. In the right

column, select Use existing input from the drop down. Then, select the existing input to reassign
to the new one. Click Save. The input values from the old macro input are preserved.

c. If needed, you can create new macro inputs from values in the middle column. See "Define macro
inputs" above.

2. Repeat the above steps for each input.

Inspect Macro

When you inspect a macro definition, you review the steps that comprise the macro.

1. You can use either of the following methods to inspect the macro:
a. In the Macros page, click Inspect from the context menu of the macro.
b. From the recipe toolbar context menu, select Inspect macro.

2. The steps of the macro are displayed in raw Wrangle .

Tip: You can see the raw Wrangle for your macros in the Macros page in the Library.

Apply Macro

You can use macros that you have created in other recipe locations. See Apply a Macro.

Manage Macros

You can manage macros through the Library page.

Copyright © 2022 Trifacta Inc. Page #432

Apply a Macro
Contents:

Insert in Recipe
Modify a Macro Instance

Replace the macro definition

After you have created a macro, you can apply it into any of your recipes.

Macros are user-defined sequences of recipe steps that can be referenced independently and
parameterized as needed.
For more information, see Overview of Macros.

Insert in Recipe

Steps:

1. Through Flow View, edit the recipe into which you are inserting the macro.
2. In the Recipe panel, click the recipe cursor to the location where you are inserting it.
3. In the Transformer toolbar, click the Macros icon.

Tip: In the Search panel in the Transform Builder, you can search for Macro and then select the
macro to use.

4. Search for and select the macro to insert. The macro is displayed in the Transform Builder.
5. Specify any macro input values required for the macro.

NOTE: Macro input values must be literal values. Use of flow parameters or metadata references
is not supported.

6. To add the macro to the recipe, click Add.
7. The macro is added as an Apply step.

Modify a Macro Instance

After a macro has been added to your recipe, the following options are available in the Apply step's context
menu:

Inspect macro: Click to see the definition of the macro. Definition is displayed in Wrangle .
Convert macro to steps: Convert the instance of the macro to a set of static steps.

NOTE: This option converts the instance of the macro. The macro still exists.

Replace the macro definition

If you want to modify the steps in your macro, please do the following:

1. Convert the macro to steps.
2. Perform your modifications to the steps. You can add or remove steps, too.
3. Select all of the steps that are to be used in the new version of the macro.

Copyright © 2022 Trifacta Inc. Page #433

4. From the context menu, select Create or replace macro.

Copyright © 2022 Trifacta Inc. Page #434

Export Macro
As needed, you can export a macro from Trifacta®. An exported macro is stored in a JSON file that contains all
of the information required to use the macro in any instance of the product.

NOTE: Only the creator of a macro can export it.

Exported macros can be imported into the same system or different systems. Macro export is useful for:

Backups of work in progress

You cannot import macros into an earlier release of the product.

Archiving of completed development work
Migrating macros from one instance to another

Export

Steps:

1. From the left navigation bar, select Library.
2. In the Library page, click Macros.
3. In the Macro page, locate the macro that you wish to export. In its context menu, select Export.
4. The JSON file is downloaded to the default download location on your local desktop.

When you import a macro, you import this JSON file.

Export via API

You can export macro definitions using the APIs.

Tip: This method is useful for publishing macro definitions across all deployments in your organization.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/getMacroPackage

Copyright © 2022 Trifacta Inc. Page #435

https://api.trifacta.com/ee/es.t/index.html#operation/getMacroPackage

Import Macro
Contents:

Limitations
Import
Import via API

A macro that has been exported from the Trifacta® can be imported back into the product.

A macro is a reusable set of steps that are specified from within a recipe. For more information, see
Overview of Macros.

Limitations

You cannot import macros that were exported from a later release of the product.

You cannot modify the macro definition JSON file outside of Trifacta.

If you are importing a flow into a Production instance of the platform, any macros referenced in the
imported flow are expanded into their original steps in the recipes where they are referenced.

Macros cannot be imported, referenced, or viewed directly in a Production instance.
A Production instance is available only if you have enabled the Deployment Manager. For more
information, see Overview of Deployment Manager.

Import

Tip: If you re-import a macro into the same instance that still contains the source macro, the imported
version is named the same as the source and automatically versioned for you.

Steps:

1. Export the macro from the source system. See Export Macro.
2. Login to the import system, if needed.
3. In the left nav bar, click Library.
4. In the Library page, click Macros.
5. In the Macros page, click Import Macro.
6. Select the JSON file containing the exported macro.

Tip: You can import multiple macros at the same time. Select each JSON file in the dialog box that
you wish to import. Press CTRL/COMMAND + click or SHIFT + click to select multiple macros for
import.

7. Click Open.

The macro is imported and available in the Macros page.

To use an imported macro, enter macro in the Search panel in the Transform Builder. Select your macro and
modify any macro inputs. For more information, see Apply a Macro.

Copyright © 2022 Trifacta Inc. Page #436

Import via API

If you have exported your macro using the APIs, you can import it into a new environment. For more information,
see

https://api.trifacta.com/ee/es.t/index.html#operation/importMacroPackage

Copyright © 2022 Trifacta Inc. Page #437

https://api.trifacta.com/ee/es.t/index.html#operation/importMacroPackage

Create Flow Parameter
Contents:

Limitations
Limitations on usage

Create Parameter
Parameter Names
Apply Parameter Override
Override Evaluation

Use Parameter
Examples

Example - String parameter
Example - parameter with multiple values
Example - Date parameter

Apply Parameter Override via API

At the flow level, you can define flow parameters to reference in your recipes. A flow parameter is a variable that
is assigned a String value.

NOTE: Flow parameters apply to recipe steps only.

To flow parameters and parameters of other types, you can apply override values at the flow level through
the same interface. Details are below.
For more information on flow parameters, see Overview of Parameterization.

Limitations

Flow parameters are of String data type.

Tip: You can wrap flow parameter references in your transformations with one of the PARSE
functions. See "Examples" below.

Flow parameters are converted to constants in macros. Use of the macro in other recipes results in the
constant value being applied.

Limitations on usage

A flow parameter cannot be used in the following transformation steps or fields.

Transformations:

Rename columns: Cannot use a flow parameter as a new column name.

Transformation fields:

The as clause when creating a New formula transformation.

Create Parameter

Steps:

Copyright © 2022 Trifacta Inc. Page #438

1. Open the flow where you wish to apply the flow parameter.
2. From the Flow View context menu, select Parameters.
3. In the Manage Parameters dialog, click the Parameters tab.
4. Click Add parameter.
5. Enter a Name for your parameter.

NOTE: Name values are case-sensitive. After saving a flow parameter, its name cannot be
changed.

6. Enter a default value for this parameter.

NOTE: Input Values are evaluated as String type.

7. Click Save.

The parameter is available for use in any recipe in your flow. See "Use Parameter."

Parameter Names

Parameter names can contain alphanumeric characters and spaces. in the following table, you can see how
parameter names must be referenced in recipe steps.

Parameter Valid Notes
name references

Both references are valid.paramRe $paramRe
gion gion

${paramR
egion}

param ${param NOTE: If the parameter name contains a space, the curly brackets are required. As a matter ofRegion Region} habit, you might want to use the curly brackets for all parameter references. This syntax also
helps to distinguish your named parameters from metadata references, which are fixed. See
Source Metadata References.

Apply Parameter Override

NOTE: Parameter overrides that were defined in a pre-Release 7.1 version of the software now appear in
the Overrides tab.

You can apply overrides to all parameter types, including flow parameters, at the flow level. An overridden value
applies to all references of the parameter within the flow.

NOTE: You can apply override values for any parameter of any type that is referenced in the flow:
dataset parameters, flow parameters, and object parameters.

Upstream parameter values: Parameter values can be inherited from upstream recipes and datasets.

NOTE: Override values applied in a downstream flow are applied to the upstream flow when its
objects are invoked for purposes of generating data for use in the downstream flow.

Copyright © 2022 Trifacta Inc. Page #439

Downstream parameter values: Downstream flows receive parameter values, default or overridden,
from upstream flows. These values can be overridden at the flow level.

Steps:

1. Open the flow where you wish to apply the flow parameter.
2. From the Flow View context menu, select Manage parameters.....
3. In the Manage Parameters dialog, click the Overrides tab.
4. Click Add override.
5. Select the parameter to override from the drop-down list.
6. Set the override value for this flow. Click Save.
7. Click Save.

This override value is applied to all references to the parameter in the flow.

Tip: Through Flow View, overrides can also be applied to the recipe parameters that are included when
flow tasks are executed as part of a plan.

Override Evaluation

Override values can be applied in multiple locations. Parameter values are evaluated in the following order of
precedence (highest to lowest):

1. Overrides at run-time in the Run Job page.
2. Overrides at the flow level.
3. Default values for the flow.
4. Inherited values from upstream flows.

For more information, see Overview of Parameterization.

Use Parameter

In your recipe step, you can add references to your flow parameter in the following format:

${MyRecipeParameter}

In a recipe, flow parameters can be applied to:

Function parameters
Replacements for String values

Examples

Below are examples of how to use flow parameters.

NOTE: When a parameter value is displayed in a column, the column type in the data grid may be
correctly inferring the type to your desired data type. However, the underlying type is still String type. To
convert the underlying type, you must use one of the PARSE functions on your String values.

Example - String parameter

In this example, data is segmented by time zone. You must create a parameter to capture the following U.S. time
zones, which must be specified explicitly:

Copyright © 2022 Trifacta Inc. Page #440

'Hawaii'
'Alaska'
'Pacific'
'Mountain'
'Central'
'Eastern'

In your flow, you create the following flow parameter:

Setting Value Notes

Name para
Tip: It's a good habit to specify named variables in an identifiable way. By adding the param prefix, youmTim
identify references to it as a parameter. If you change the name to param-recipeTimeZone oreZone
similar to distinguish it as a flow parameter, then overrides specified at the flow level do not apply to any
other parameter types that are performing the same function in the data.

Value ##UN Since this value must be specified explicitly, you set this value as thee default value. If this value appears in the
generated output, then the flow parameter was not specified when the job was run.SPEC

IFIE
D## NOTE: Before you begin working with this parameter in your dataset, you should consider setting an

override for it to a valid value.

In the following transformation, the parameter value is inserted into a new column, paramTZ in your dataset:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula ${paramTimeZone}

Parameter: New column 'paramTZ'
name

You can also use the parameter as an input to a function. In the following example, the paramTimeZone
parameter is merged with the values in the Store_Nbr to compute primary key storeId field:

NOTE: You cannot use the Merge transformation column for the following transformation, since it
requires named columns as inputs.

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula merge([$paramTimeZone,Store_Nbr], '-')

Parameter: New column 'storeId'
name

Example - parameter with multiple values

Suppose you wish to create a flow parameter that contains multiple values. Typically, you must track these
values through an array, such as the following containing a set of colors:

["red","white","blue","black"]

Copyright © 2022 Trifacta Inc. Page #441

Flow parameters that are literals are String values only. As a workaround, you can define the above as a Pattern
.

Setting Value Notes

Name myColors

Value Note how the value is specified using backticks (`), which are used to indicate a Pattern .`red|white|blue|blac
k`

The vertical bars are delimiters to separate the values, when they are processed within the
application.

Within your recipe, you can test for the presence of a parameter value. In the following transformation, a value of
true is set in the new column isBlue if the value of $myColors is blue:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula MATCHES([blue], $myColors, true)

Parameter: New column 'isBlue'
name

Example - Integer parameter

Instead of segmenting the data by named time zone values, suppose your data is segmented by regions, which
are numeric in number. Your flow parameter definition could look like the following:

Setting Value Notes

Name paramRe Note the more appropriate name.

gionId

Value 0 In this case, there is no region identifier value 0. You choose to set the default to a value that is valid for the
target data type (Integer) but is invalid for the scope of the data itself.

To use this flow parameter as an integer, you must reference it wrapped in the PARSEINT function, which
evaluates the input value against the Integer data type:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula PARSEINT(${paramregionId})

Parameter: New column paramRegionId
name

In the column histogram for the paramRegionId column, you can verify that the value 0 is present. Set an
override outside at the flow level to insert a different value in the column.

Example - Date parameter

Suppose you need to be able to pass a date into the execution of a recipe. If no date is passed in, then the
current time is used. The variable is declared as follows:

Copyright © 2022 Trifacta Inc. Page #442

Instead of segmenting the data by named time zone values, suppose your data is segmented by regions, which
are numeric in number. Your flow parameter definition could look like the following:

Setting Value Notes

Name paramDate Note the more appropriate name.

Value In this case, the value is left empty to be overridden as needed in the application with the current timestamp.

You should decide on the expected values for this parameter, as you must apply them to:

Parameter overrides
Recipe steps (e.g PARSEDATE function parameters)

It may be easier to insert the format string here as the default value. For example:

yyyy-mm-dd HH:MM:SS

You can use the following to insert the parameter value into your dataset. Note that the value is initially inserted
as a String value, so the PARSEDATE function is used as a wrapper:

Transformation Name New formula

Parameter: Formula type Single row formula

Parameter: Formula PARSEDATE(${paramDate},['yyyy-mm-dd HH:MM:SS'])

Parameter: New column paramDate
name

If the inserted value is empty or null, you can insert the current timestamp:

Tip: You could also overwrite invalid values in the following manner. However, that may mask problems
with your inserted values.

Transformation Edit column with formula
Name

Parameter: Columns execDate

Parameter: Formula IF((execDate == '') || ISNULL(execDate), NOW('UTC'),
execDate)

In the above, the value in execDate is tested to see if it is either:

empty
null

If so, the output of the NOW function is written. By default, this function returns the timestamp value at UTC time.

If there is a valid value, then it is written back to the column.

You can use the following to extract the time value from the parsed date param:

Transformation Name New formula

Parameter: Formula type Single row formula

Copyright © 2022 Trifacta Inc. Page #443

Parameter: Formula DATEFORMAT(execDate, 'HH:MM:SS')

Parameter: New column Time
name

Since this value is not the parameter value specifically, the column name was listed simply as Time.

Apply Parameter Override via API

When you run a job via the APIs, you can apply parameter overrides to the following parameter types:

dataset parameters
output parmeters
flow parameters

For more information, see API Workflow - Run Job.

Copyright © 2022 Trifacta Inc. Page #444

Flag for Review
Contents:

Enable
Limitations
Flag for Review
Context menu

Mark as reviewed
Mark as pending review
Rename review step
Unflag for review

As needed, you can flag recipe steps for review in the recipe panel. You can use flags to set up checkpoints in
your recipes, which enable flow users to to evaluate the data, provide inputs, and sign off before jobs are
executed based on the recipe.

Examples:

You could flag steps in recipes within flows that other users may copy. These flags and their related
descriptions can be used to provide guidelines for how to implement the step in any copy.
Among your collaborators, you may have experts in specific aspects of the data. You can flag steps for
their review, perhaps even including their name in the description value for easy review.

When you flag a step for review:

The step is marked for review in the recipe panel.

NOTE: A flagged step must be reviewed before you can edit later steps in the recipe or run jobs
based on the recipe.

In Flow View, the recipe icon is highlighted with a warning.
The Flow View page header summarizes the total number of flagged steps and recipes that are pending
for review.
If you have created a reference dataset, it is also highlighted with a warning wherever it is used.

Enable

This feature may need to be enabled in your environment.

Steps:

1. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json .
For more information, see Platform Configuration Methods.

2. In the Admin Settings page, set the following to true:

"feature.haltExecution.enabled": true,

3. Save your changes and restart the platform.

Limitations

When a step is flagged for review, all downstream steps are disabled.

Copyright © 2022 Trifacta Inc. Page #445

Steps must be reviewed in descending, top-to-bottom order.
You cannot run the job until all flagged steps are reviewed.
Flags can be applied and cleared one at a time.
Undo / Redo options are not applicable to flagged steps.
Flag for Review is not supported for the following features: Join, Union, Standardize, Transform by
Example, or Macros.

Tip: You can flag the following step or add a comment step and flag the comment if you want to
call attention for these transforms.

Flag for Review

Steps:

1. In the Recipe panel, select the step to flag.
2. From the Recipe toolbar context menu, select Flag for review.
3. In the Flag for review dialog:

a. (optional) Enter a name or title for the flag.
b. (optional) Enter a description.
c. Click Flag.

4. A warning icon is displayed over the selected step. You can hover the warning icon to read the description.
5. The step has been marked for review.

NOTE: When one or more steps has been flagged in your recipe, the New Step and Run options
are disabled.

Context menu

The following menu options are available in the context menu for flagged steps.

Mark as reviewed

From the Recipe toolbar context menu, select the required step and select Mark as reviewed. A tick mark is
displayed over the reviewed step, indicating that the step has been cleared.

NOTE: If there are no additional flagged steps, you can add new recipe steps or run jobs for your recipe.

Mark as pending review

Revert the Mark as reviewed flag. The tick mark is replaced by the warning icon over the selected step.

NOTE: You can toggle between Mark as reviewed and Mark as pending review options to mark the
review as complete or to mark the step as pending review.

Rename review step

Edit the name and description values.

Tip: You can add hyperlinks as part of the Description value.

Copyright © 2022 Trifacta Inc. Page #446

Unflag for review

Removes the flag for review from the step.

NOTE: The step is now cleared of the flag. If there are no additional flagged steps, you can add new
recipe steps or run jobs for your recipe.

Copyright © 2022 Trifacta Inc. Page #447

Manage Environment Parameters
Contents:

Create Environment Parameter
Use Environment Parameter

Limitations
Edit Environment Parameter Value
Delete Environment Parameter
Export Environment Parameters
Import Environment Parameters

You can define parameters that are applicable across the entire project or workspace environment.

An environment parameter is a variable of String type defined by an administrator that any user of the
environment can reference in their flows and flow-related objects.

NOTE: You must be a project owner or workspace administrator to manage environment parameters.

For more information on parameters, see Overview of Parameterization.

Create Environment Parameter

Steps:

1. A project owner or workspace administrator can select User menu > Admin console > Environment
parameters.

2. In the Environment Parameters page, click Create.
3. Specify the parameter:

a. Name: Enter the display name for the parameter.

NOTE: All environment parameter names are automatically prepended with env..

b. Default value: Enter the default value.

NOTE: The default value is stored as a String value.

4. To create another environment parameter, click Add another.
5. To save your changes, click Save.

Use Environment Parameter

Environment parameters can be referenced in the following locations:

Tip: When specifying a variable, enter $env to see the list of available environment parameters.

Parameterized datasets. See Create Dataset with Parameters.

Copyright © 2022 Trifacta Inc. Page #448

Datasets created with SQL. See Create Dataset with SQL.
Output paths. See Create Outputs.

Limitations

You cannot use environment parameters in recipes.
You cannot use environment parameters in plans.
Environment parameter names must be unique within the project or workspace. You can apply override
values to them at runtime.

You cannot use environment parameters in Deployment Manager. For more information, see
Overview of Deployment Manager.

Edit Environment Parameter Value

Administrators can change the default value for an environment parameter.

NOTE: Modifying the default value of an environment parameter immediately applies the change across
the entire environment. All subsequent job and plan runs are affected.

NOTE: After you have created an environment parameter, you cannot change the name. You must
create a new environment parameter.

Steps:

1. In the Environment Parameters page, locate the parameter whose default value you wish to modify.
2. In the More menu, select Edit value.
3. Enter a new value, and click Save.

Delete Environment Parameter

When you delete an environment parameter, all references to the parameter are converted to
empty string values. Job executions can fail, and recipe steps can break.

Tip: If you delete an environment parameter and then recreate it using the exact same name, references
to the parameter are updated with the new default value, which replaces the empty string value for the
deleted parameter.

Steps:

1. In the Environment Parameters page, locate the parameter whose default value you wish to modify.
2. In the More menu, select Delete.

Export Environment Parameters

You can export the environment parameters from your project or workspace.

Copyright © 2022 Trifacta Inc. Page #449

NOTE: All environment parameters are exported at the same time into a ZIP file. Do not modify this file
outside of the Trifacta application.

Steps:

1. In the Environment Parameters page, select More menu > Export.
2. The ZIP file is downloaded to your local desktop.

Import Environment Parameters

If you have exported a set of environment parameters, you can import them into another workspace or project.

NOTE: If an environment parameter that you are importing has a name that conflicts with an environment
parameter that already exists, you must either rename the imported parameter or delete it from the import
set.

Steps:

1. In the Environment Parameters page, select More menu > Import.
2. Select or drag-and-drop the ZIP file. Click Import.

NOTE: Select the ZIP file or its embedded JSON5 file for import.

3. The Import environment parameters dialog is displayed:

Figure: Import environment parameters dialog
4. Review each environment variable and its assigned value from the import package:

a. Modify values as needed.
b. To delete a parameter from the import process, click the Trash icon.
c. To add another parameter as part of the import package, click Add another.

5. To save your changes and complete the import, click Save.
6. The environment parameters and your modifications to them are imported.

Copyright © 2022 Trifacta Inc. Page #450

Operationalization Tasks
These topics cover how to operationalize your Trifacta® flows for use in your enterprise data pipelines.

Operationalization includes all tasks that occur after principle flow development has completed. After you have
your flow working and delivering useful data, operationalization can include:

Scheduling. For more information, see Schedule a Job.
SQL scripting. Before or after job execution, you can configure your job to execute a specified SQL script.
For more information, see Create Output SQL Scripts.
Macros. You can build reusable sets of recipe steps, which can be used in other flows and workspaces for
consistency. See Create or Replace Macro.
Flow Webhooks. After a flow has executed, you can configure a webhook task to deliver messages about
the flow execution to other systems. See below.
Plans. A plan is a sequence of tasks that can be executed based on logic and can be scheduled. See
below.

Copyright © 2022 Trifacta Inc. Page #451

Create Flow Webhook Task
Contents:

Limitations
Prerequisites

Requirements for receiving application
Steps

Flow metadata references in body
Examples

Run another job
Slack channel message

Verify Webhook Signatures
Webhook Signature Header
Check Application Tools
Process Signed Requests

You can send webhook messages to third-party applications based on the results of job executions in your flow.

A webhook task is a callback message between Trifacta® and another application. They are typically
delivered using JSON over HTTP and can be interpreted by the receiving application to take action.

NOTE: Your receiving application may require that you whitelist the host and port number or IP
address of the platform. Please refer to the documentation for your application.

A webhook task is defined at the flow level, although an individual webhook task can be restricted to
specific outputs. It is shared between ad-hoc and scheduled executions.

This capability may need to be enabled in your environment. For more information, see
Workspace Settings Page.

Additional configuration may be required. See Configure Webhooks.

For more information on how to orchestrate execution of your flows, see Overview of Operationalization.

Limitations

Custom security certificates cannot be used.
HTTP-based requests have a 30-second timeout limit.
Webhook tasks are not included when a flow is copied. They are available to collaborators for review,
editing, and execution, when a flow is shared.

Tip: You can export and import the flow, which includes the webhook task definition.

You can create a maximum of 50 webhooks per flow.

NOTE: Administrators can change this limit as needed. For Configure Webhooks.

Copyright © 2022 Trifacta Inc. Page #452

Prerequisites

NOTE: It's possible that webhook requests can be submitted back to the platform to execute API tasks
within the platform. However, there are security concerns. Additional configuration is required. For more
information, see Configure Webhooks.

Requirements for receiving application

To send webhooks to a target application, the application must be configured to receive the webhook:

Incoming webhooks must be enabled.

NOTE: Your receiving application may require that you whitelist the host and port number or IP
address of the platform. Please refer to the documentation for your application.

You must acquire the URL of the endpoint to which to send the webhook request.
You must acquire any HTTP headers that must be inserted with each webhook request.
If the request must be signed, additional configuration is required. Details are below.

Steps

1. Open your flow in Flow View. From the flow context menu, select Webhooks.
2. In the right panel, select Create webhook task.
3. Set the following parameters:

Parameter Description

Name User-visible name of the task.

Url URL where the webhook message is received by the other application.

Trigger Select the event that triggers the message.
event

Trigger Select the object or objects that can trigger the message: Any job executed in this flow - Any
object scheduled or ad-hoc job triggers the message Only specific objects - Select the output or outputs

whose success or failure triggers the message

Headers Insert HTTP content headers as key-value pairs. For example, if your body is in JSON format, you should include
the following header:

key: Content-Type
value: application/json

NOTE: You may be required to submit an authentication token as the value for the Authorization
key.

Please refer to the documentation for your receiving application about the required headers.

Body (POST, PUT, or PATCH methods only) The body of the request submitted to the receiving application. In the
body, you can use the following references: jobId - the internal identifier for the jobGroup that was executed. jo
bStatus - the status for the job after execution. For more information, see Jobs Page. You can apply metadata
references to the flow in the Body text. See below for examples.

Method Select the HTTP method to use to deliver the message. The appropriate method depends on the receiving
application. Most use cases require the POST method.

Secret key

Copyright © 2022 Trifacta Inc. Page #453

(Optional) A secret key can be used to verify the webhook payload. This secret value must be inserted in this
location, and it must be included as part of the code used to process the requests in the receiving application. Insert
the secret value here as a string without quotes.

For more information on how this secret key is used to generate a signature, see Verify Webhook Signatures below.

Validate
SSL
certificate

When set to true, HTTPS (SSL) communications are verified to be using a valid certificate before transmission.

NOTE: If you must send a request to an endpoint that has an expired/invalid certificate, you must disable
SSL verification.

Retry on If the returned status code is outside of the 200-299 range, then the webhook is considered to have failed. When
failure this option is enabled, the request is retried.The number of retry attempts can be configured. See

Configure Webhooks.

4. To test the connection, click Test. A success message is displayed.
5. To add the webhook task to the flow, click Create.
6. When the job is executed:

a. Depending on the outcome, the webhook task is executed through the other application.
b. The webhook is listed in the Job Details page.

Flow metadata references in body

In the body of your webhook, you can use the following references:

Reference Description

$jobId Internal identifier to the job in the platform.

$jobStatus The current status of the webhook job. For more information on job status messages, see Jobs Page.

Examples

Run another job

You can create a webhook task to run another job on the successful execution of this one.

Tip: Use this method to create conditional sequences of job executions.

As needed, you can specify webhook overrides as part of a launching a job via API. For more information, see
API Workflow - Run Job.

Prerequisites

NOTE: For this example, the platform must be whitelisted to receive webhooks from itself. Additional
configuration is required. For more information, see Configure Webhooks.

You must acquire the recipe identifier for the next job to execute.

1. Open the flow containing the next recipe.
2. In Flow View, click the recipe whose outputs you wish to generate.
3. Review the URL for the recipe object. In the example below, the recipe Id value is 4:

http://www.example.com:3005/flows/1?recipe=4&tab=recipe

4. Retain this value for below.

Copyright © 2022 Trifacta Inc. Page #454

http://www.example.com:3005/flows/1?recipe=4&tab=recipe

Define the flow webhook task

Parameter Description

Name This name appears in the Trifacta application only.

Url Specify the URL as follows, replacing the example values with your own:

http://www.example.com:3005/v4/jobGroups/

Trigger event Select Job success.

Trigger object Select the any option to execute all jobs in the target flow, or you can specify individual jobs to execute.

Headers Insert the following two headers:

key: Content-Type
value: application/json

key: Authorization
value: Bearer <paste your access token here>

NOTE: The token value must be preceded by the string: Bearer.

Body In the body, insert the recipe Id for the value for wrangledDataset, which is the internal platform term for recipe:

{
 "wrangledDataset": {

 "id": 4
 }

}

Method Select the POST method.

Verify

1. Run the job for which the webhook was created.
2. When the job successfully completes, open the flow containing the other job to execute.
3. When you select the target recipe, a new job should be queued, in-progress, or completed.

Slack channel message

You can create a webhook task to deliver a text message to a Slack channel of your choice.

Prerequisites

Set up your Slack installation to receive webhook messages:

1. If needed, create a Slack channel to receive your messages.
2. Create an app.
3. Activate incoming webhook messages for your app.
4. Specify the channel to receive your incoming webhook messages.
5. Copy the URL for the incoming webhook from the cURL statement.

Copyright © 2022 Trifacta Inc. Page #455

http://www.example.com:3005/v4/jobGroups/

Define the flow webhook task

Parameter Description

Name This name appears in the Trifacta application only.

Url Paste the URL that you copied from Slack.

Headers Copy the content headers from the Slack cURL command:

key: Content-Type
value: application/json

Body
{"text":"Job $jobId has completed. Status: $jobStatus."}

Method Select the POST method.

Verify

1. Click Test to validate that this webhook task will work.
2. Run a job:

a. Check the Slack channel for a message.
b. Check the Webhook tab in the Job Details page.

Verify Webhook Signatures

Depending on the target application, implementing Webhook signature verification may require
developer skills.

Optionally, you can configure the platform to sign the Webhook requests sent for a flow. Signed requests
guarantee that the requests are sent from the platform, instead of a third party.

Below, you can review how the signature is created, so that you can configure the receiving application to
properly process the signature and its related request.

Webhook Signature Header

Webhook requests are signed by inserting the X-Webhook-Signature header in the request. These signatures
are in the following form:

X-Webhook-Signature: t=<timestamp>,sha256=<signature>

where:

<timestamp> - Timestamp when the signature was sent. Value is in UNIX time.
<signature> - SHA256 signature. The platform generates this signature using a hash-based message
authentication code (HMAC) with SHA-256.

More information on these values is available below.

Example:

Copyright © 2022 Trifacta Inc. Page #456

X-Webhook-Signature: t=1568818215724,sha256=55fa71b2e391cd3ccba8413fb51ad16984a38edb3cccfe81f381c4b8197ee07a

Check Application Tools

Depending on the application, you may need to complete one of the following sets of tasks to verify the Webhook
signatures:

NOTE: You may need to whitelist the platform in your application. See the application's documentation
for details.

You may be required to create some custom coding for your application. Below, you can review details on how to
do so, including a JavaScript example.

Process Signed Requests

Timestamp

The timestamp value (t=<timestamp>) appears at the beginning of the header value to prevent replay
attacks, where an attacker could intercept a valid payload and its signature and re-transmit them.

To avoid such attacks, a timestamp is included in the signature header and is also embedded as part of
the signed payload.
Since the timestamp is part of the signed payload, an attacker cannot change the timestamp value without
invalidating the signature.

If the signature is valid but the timestamp is too old, you can then choose to reject the request.
For example, if you receive a request with a timestamp that corresponds to a date from one hour
ago, you should probably reject the request.

For more information on replay attacks, see https://en.wikipedia.org/wiki/Replay_attack.

Signature

The Webhook signature includes as part of its hashed value:

The secret key (entered above)
The timestamp value
Request data:

(POST/PUT/PATCH) - the body of the request
(GET/DELETE) - URL of the request

Step 1 - Extract the timestamp and signatures

Split the X-Webhook-Signature header:

1. Split values using the , character as a separator.
2. Split each of the parts using the = character.
3. Extract the values for the timestamp and signature. From the above example:

a. timestamp: 1568818215724
b. signature: 55fa71b2e391cd3ccba8413fb51ad16984a38edb3cccfe81f381c4b8197ee07a

Step 2 - Create the expected signature

In the receiving application, you can recompute the signature to verify that the request was sent from the platform.

1. Concatenate the timestamp, the dot character . and the request body (POST/PUT/PATCH methods) or the
url (GET/DELETE methods).

2. Suppose the above example is the signature for a POST request, and the request body is test. The
concatenated value is the following:

Copyright © 2022 Trifacta Inc. Page #457

https://en.wikipedia.org/wiki/Replay_attack

1568818215724.test

3. You can now compute the HMAC authentication code in your receiving application. In the following
JavaScript example, the secret key value is mySecret:

const crypto = require('crypto');

const message = '1568818215724.test'; // as defined above

const hmac = crypto.createHmac('sha256', 'mySecret');
hmac.update(message)
const expectedSignature = hmac.digest('hex');

Step 3 - Compare the signatures

The value returned by your code and the value included as the signature in the X-Webhook-Signature header
should be compared:

If the values do not match, reject the request.
If the values do match, compute the difference between the current timestamp and the timestamp in the
header. If the difference is outside of your permitted limit, reject the request.
Otherwise, process the request normally in your application.

Copyright © 2022 Trifacta Inc. Page #458

Create a Plan
Contents:

Before You Begin
Workflow
Create Plan
Add Plan Schedule
Add Task
Apply Parameter Overrides
Create Branching Plan

Add Task Execution Rule
Add Parallel Task
Example - Success or Failure Tasks in a Plan

Test Plan
Monitor Plan Runs

A plan is a sequence of tasks that are executed manually or based on a schedule. Plans can be used to
automate the execution of multiple related tasks, such as all of the outputs generated from a set of multiple
related flows.

When a plan is triggered:
A snapshot of the objects in the plan is capture. This snapshot defines the set of tasks that are
executed as part of a plan run.

NOTE: A snapshot does not capture the objects underlying the tasks. After a snapshot is
taken, subsequent changes to the underlying flows could impact the outcome of the flow
tasks when they are later executed during the plan run.

The set of tasks in the plan are triggered in the order listed in the plan.
All of the dependencies for any task are also executed. For example, if a flow output requires the
outputs from another upstream flow, then that flow's output is also generated.
If one task fails to execute, the other tasks are not executed.

For more information on plans, see Overview of Operationalization.

Before You Begin

Before you begin, please verify the following:

You have access to all of the flows that you wish to use in your plan.
For each flow in your plan:

All of the recipes whose results you wish to generate have output objects associated with them.
Each output object has at least one of the following that has been created for it:

file-based output
table-based output

NOTE: In a flow, all recipes that you wish to have executed by the corresponding
task must have a defined output object. For each output object, you must create at
least one write file or table settings definition. During plan runs, these objects are not
validated, and missing outputs are ignored.

Copyright © 2022 Trifacta Inc. Page #459

Workflow

NOTE: Parameter values are applied to a plan, but you cannot apply parameter overrides to the plan.
You can apply flow parameter overrides on individual flows in Flow View. These overrides are applied at
the time of plan execution.

Workflow steps:

1. Identify the tasks that you wish to execute.

NOTE: You must have access to any flows that you wish to execute.

2. Add a task.
a. In Plan View, click the Plus icon at the bottom of your plan.
b. Specify the task to execute.

3. Repeat the previous step to add additional tasks as needed.

Tip: You can insert tasks between other tasks. Use the Plus icon between two plan objects.

4. To test your plan, click Run now. The plan is immediately executed.
5. Edit the plan and repeat the above steps until the plan is ready for production runs.

Tip: While a plan is in development, you may wish to disable its schedule, which prevents
execution according to the schedule. You can still run test executions using the Run Now button.

6. Create the schedule for the plan.
a. In the context menu for the plan, select Schedule.
b. Specify one or more triggers for the schedule. When a trigger occurs, the plan is queued for

execution.
7. When ready, the plan runs at the time scheduled in the trigger.

Create Plan

To begin, you must create a plan object.

Steps:

1. From the left nav bar, click the Plans icon.
2. The Plans page is displayed.
3. In the Plans page, click Create. A new plan with the name Untitled - X is created, where X is a

number.
4. Click the Untitled - X to enter a plan name and description.
5. Your plan is saved and displayed in Plan View.

In Plan View, you create the objects that are part of your plan. These include:

Plan Schedule: A schedule is composed of one or more triggers that determine when the plan is executed.
Trigger: Scheduling object that determines the conditions under which the plan is executed.
A schedule can contain one or more triggers.

Task: An action that is executed when triggered.
You can build a sequence of one or more tasks in your plan.

Copyright © 2022 Trifacta Inc. Page #460

Add Plan Schedule

You can add a schedule object to specify the triggers when the plan is to be executed.

NOTE: A plan's schedule cannot be executed until its schedule has been enabled. If a plan has a
disabled schedule, you can still execute it via the Run Now button.

Steps:

1. When you first open Plan View, you should see an empty plan:

Figure: Plan View - empty plan
2. To begin, do one of the following:

a. From the Plan View context menu, click Schedule.
b. Click the big circle.

3. In the right context panel, click Create schedule.

Copyright © 2022 Trifacta Inc. Page #461

4. In the Add Trigger panel, you can specify the triggers when the plan is executed. You can specify one or
more triggers:

Figure: Add trigger(s)
5. For each trigger:

a. Timezone: Specify the timezone that applies to the scheduled time. For more information on
timezones, see Supported Time Zone Values.

b. Frequency: You can specify the frequency of when the schedule is triggered.

i. In each trigger, you can specify multiple On values (e.g. Same time on Sunday and Monday).
ii. As needed, you can specify the On value using a modified form of cron job syntax. For more

information, see cron Schedule Syntax Reference.
6. To add more triggers, click Add another trigger and specify it.

a. To delete a trigger, click the X next to it.
7. Parameter overrides:

a. If the flows in your plan contain parameters, you can apply overrides to the parameter values.
b. Overrides provided in this panel are applied only when the trigger is executed.

NOTE: Multiple values are ok for plan parameters, as long as the parameter values do not
conflict. If you see a warning icon next to a set of multiple parameter values, then you must
fix this conflict in Flow View, or the plan fails to execution.

Copyright © 2022 Trifacta Inc. Page #462

c. You can apply overrides through Plan View, too.
8. To save your schedule, click Save.
9. In the context panel, you can make changes to your schedule:

a. After saving, the schedule is automatically enabled. To disable the schedule, use the slider bar.

NOTE: A plan cannot be executed if the schedule for it has been disabled.

b. To make changes to the schedule and its triggers, click Edit.

Add Task

Based on the schedule's triggers, you can define a sequence of one or more tasks that are executed.

To add a new task, click the + icon below the trigger. Select the type of task in the right panel.
To insert a task between two other objects, click the + icon between them.

Add run flow task

A flow task executes the recipes that produce the output objects of the flow.

Steps:

1. After you select the flow task type, use the Search bar or browse to select the flow that you wish to add as
the task.

2. Select the output or outputs that you wish to generate from the selected flow.
3. Click Create task.
4. The task is created and added to the plan.

For more information, see Plan View for Flow Tasks.

Add HTTP task

An HTTP task is a request sent using HTTP protocol to a target URL, which could be a REST API endpoint.

NOTE: Specifying an HTTP request requires knowledge of the target endpoint and the parameters
required for the request. HTTP tasks are considered developer-level objects.

Steps:

1. After you select the HTTP task type, you can specify the task in the context panel.
2. Specify the fields of the request.

Tip: If possible, you should test the HTTP task before you create it. To test for basic connection,
you should use the GET method, which just returns relevant information. Some other methods are
potentially destructive.

3. Click Save.
4. The task is created and added to the plan.

For more information, see Create HTTP Task.

Add Slack task

A Slack task is a message submitted from the Trifacta application to a specified Slack channel.

Steps:

Copyright © 2022 Trifacta Inc. Page #463

1. After you select the Slack task type, you can specify the task in the context panel.
2. Specify the fields of the request.
3. Click Save.
4. The task is created and added to the plan.

For more information, see Create Slack Task.

Add Delete task

A Delete task deletes a specified set of files or folders from backend storage.

Steps:

1. After you select the Delete task type, you can specify the task in the context panel.
2. Specify the path to the file or folder to delete. This path must already exist.

a. Location: If this drop-down is available, select the file-based connection. To explore this
connection, click Browse.

b. Navigate to your preferred destination. Click Choose.
3. Click Save.
4. The task is created and added to the plan.

For more information, see Create Delete Task.

Apply Parameter Overrides

If your plan tasks include flows in which parameters have been defined, you can review and override these
parameter values. Overrides are applied when the task is triggered as part of a plan run.

Steps:

1. From the Plan View context menu, select Parameters.
2. Review the names, sources, and current values for all of the parameters in your plan.
3. To apply an override, click the Pencil icon and enter a new value. Click Save.

Subsequent runs of the plan use this new value as the override for the parameter. For more information, see
Plan View for Flow Tasks.

Create Branching Plan

In some scenarios, you may need to branch plan execution steps based on the results of a task in the plan. For
example, you may need to send separate messages using an HTTP task depending on whether a flow task
succeeds or fails in execution. You can create branches in the plan graph by adding task execution rules and
parallel nodes, which run based on the success and failure states of your plan runs.

To begin this simple example:

1. Create your first task, which is a flow task in the above example. For more information, see Add Tasks
above.

2. Complete the following sections.

Add Task Execution Rule

Next, you create the first HTTP task that results from the above task and the execution rule that determines when
it runs.

This task should run based on the successful execution of the flow task.
A task execution rule is a condition that is tested after a flow task has run to determine if the task that is
downstream of it is executed as a result. In this case, you create an On success rule.

Copyright © 2022 Trifacta Inc. Page #464

Steps :

1. Click the plus icon below the existing flow task node.
2. Select the HTTP task type and enter information in the required fields. See Add HTTP Tasks above.
3. Click the link connecting the created HTTP task node and its previous task node and select On success.

The HTTP task is executed only when the flow task has run successfully.

Add Parallel Task

Next, you can create the HTTP task that runs when the flow task fails.

Steps:

1. Click the plus icon below the existing flow task node and select Add a parallel node. A parallel node is
added to the plan graph. See Example below.

2. Select the HTTP task type and enter information in the required fields. See Add HTTP Tasks.
3. Click the link connecting the new HTTP task and its previous task node and select On failure.

The second HTTP task is executed only when the flow task has failed to execute.

Tip: You can use parallel tasks to create separate paths through a plan when there are no dependencies
between the paths.

Example - Success or Failure Tasks in a Plan

Copyright © 2022 Trifacta Inc. Page #465

Figure: Success and Failure tasks

When the flow tasks complete successfully, the On success HTTP task sends a message.

When the task fails, the On failure HTTP task delivers a different message.

Test Plan

After you have created the triggers and tasks of your plan, you can perform a test run of the plan.

Steps:

1. To test, click Run now.
2. The plan run is queued for execution.

Monitor Plan Runs

1. in the upper-right corner of Plan View, click the Runs link.
2. In the Plan Runs page, you can track the progress of your plan run.

a. The most recently triggered plan run is displayed.
b. If you have executed multiple runs, you can use the angle brackets next to the timestamp for the

run.
3. For tasks in progress, you can click the task to display information in the context panel.
4. To see the details for the plan run, click the Outputs tab. Then, click Job details.

You can monitor the progress of your plan runs and review all previous ones in the Plan Runs page.

Copyright © 2022 Trifacta Inc. Page #466

Create Delete Task
Contents:

Limitations
Prerequisites
Steps
Plan metadata references

You can create plan tasks to delete existing files or folders through connections to which you have access. These
tasks are helpful for removing files that were generated as part of intermediate steps in your plan's execution.

A Delete task is defined as one of the tasks in a plan. For more information, see Plan View Page.

This capability may need to be enabled in your environment. For more information, see
Overview of Operationalization.

Limitations

As a safeguard, you are prevented from deleting more than 100 files at a time.The maximum file limit for
delete tasks can be modified, if needed. See Overview of Operationalization.
Delete tasks are supported for the following file systems:

S3

ADLS

Prerequisites

You must have write access to the connection, bucket, and folder where you wish to delete files.

Steps

1. Open your plan in Plan View. Click a node to create a new task.
2. In the right panel, select Delete task.
3. Set the following parameters:

Parameter Description

Connection If the drop-down is present, select the connection where the files or folders are located. If the drop-down is present,
you can delete files from the backend storage environment only.

Path Specify the location where you wish to remove files. To navigate the storage environment, click Browse.

Tip: You can paste in the Path textbox values that you have copied.

Tip: You can insert plan metadata references in the path for tasks that have previously been executed in
the plan. Enter $ to begin exploring available references.

You can select entire folders. These folders and files must exist at the time of creating the Delete task.

Copyright © 2022 Trifacta Inc. Page #467

NOTE: As a safety measure, you are not permitted to delete more than 100 files in a single task.

4. To add the task to the flow, click Save.

Plan metadata references

Within the message of your other tasks, you can reference metadata about the plan, including the Delete task.
For more information, see Plan Metadata References.

Copyright © 2022 Trifacta Inc. Page #468

Create HTTP Task
Contents:

Limitations
Prerequisites

Requirements for receiving application
Steps
Examples

Run another job
Slack channel message
Plan metadata examples
Feed metadata inputs to cloud function

Verify Signatures
Signature Header
Check Application Tools
Process Signed Requests

During the execution of your plan, you can create a task to send HTTP requests to a third-party application
endpoint. For example, when a flow task successfully executes, you can send an HTTP message to a designated
endpoint.

An HTTP task is a request between Trifacta® and another application. These requests are delivered using
over HTTP and can be interpreted by the receiving application to take action.

NOTE: Your receiving application may require that you whitelist the host and port number or IP
address of the platform. Please refer to the documentation for your application.

A HTTP task is defined as one of the tasks in a plan. For more information, see Plan View Page.

This capability may need to be enabled in your environment. For more information,
Overview of Operationalization.

Limitations

Custom security certificates cannot be used.
HTTP-based requests have a 30-second timeout limit.

Prerequisites

NOTE: It's possible that webhook requests can be submitted back to the platform to execute API tasks
within the platform. However, there are security concerns. Additional configuration is required. For more
information, see Configure Webhooks.

Requirements for receiving application

To send an HTTP request to a target application, the application must be configured to receive the request:

Requests from outside of the application domain must be enabled.

Copyright © 2022 Trifacta Inc. Page #469

NOTE: Your receiving application may require that you whitelist the host and port number or IP
address of the platform. Please refer to the documentation for your application.

You must acquire the URL of the endpoint to which to send the HTTP request.
You must acquire any HTTP headers that must be inserted with each HTTP request.
If the request must be signed, additional configuration is required. Details are below.

Steps

1. Open your plan in Plan View. Click a node to create a new task.
2. In the right panel, select HTTP task.
3. Set the following parameters:

Parameter Description

Name User-visible name of the task.

Url URL where the webhook message is received by the other application.

Headers Insert HTTP content headers as key-value pairs. For example, if your body is in JSON format, you should include
the following header:

key: Content-Type
value: application/json

NOTE: You may be required to submit an authentication token as the value for the Authorization
key.

Please refer to the documentation for your receiving application about the required headers.

Body (POST, PUT, or PATCH methods only) The body of the request submitted to the receiving application.

NOTE: If your request does not require a body, please insert {} here. This is a known issue.

Method Select the HTTP method to use to deliver the message. The appropriate method depends on the receiving
application. Most use cases require the POST method.

Secret key (Optional) A secret key can be used to verify the webhook payload. This secret value must be inserted in this
location, and it must be included as part of the code used to process the requests in the receiving application. Insert
the secret value here as a string without quotes.

For more information on how this secret key is used to generate a signature, see Verify Webhook Signatures below.

Validate When set to true, HTTPS (SSL) communications are verified to be using a valid certificate before transmission.
SSL
certificate

NOTE: If you must send a request to an endpoint that has an expired/invalid certificate, you must disable
SSL verification.

Retry on If the returned status code is outside of the 200-299 range, then the webhook is considered to have failed. When
failure this option is enabled, the request is retried.

When a message is retried, the following header is submitted:

X-Http-Task-Guid

4. To test the connection, click Test. A success message is displayed.
5. To add the task to the flow, click Save.

Copyright © 2022 Trifacta Inc. Page #470

Examples

Run another job

You can create a task to run another job on the successful execution of this one.

Tip: Use this method to create conditional sequences of job executions.

As needed, you can specify task overrides as part of a launching a job via API. For more information, see
API Workflow - Run Job.

Prerequisites

NOTE: For this example, the platform must be whitelisted to receive requests from itself. Additional
configuration is required. For more information, see Configure Webhooks.

You must acquire the recipe identifier for the next job to execute.

1. Open the flow containing the next recipe.
2. In Flow View, click the recipe whose outputs you wish to generate.
3. Review the URL for the recipe object. In the example below, the recipe Id value is 4:

http://www.example.com:3005/flows/1?recipe=4&tab=recipe

4. Retain this value for below.

Define the HTTP task

Parameter Description

Name This name appears in the Trifacta application only.

Url Specify the URL as follows, replacing the example values with your own:

http://www.example.com:3005/v4/jobGroups/

Headers Insert the following two headers:

key: Content-Type
value: application/json

key: Authorization
value: Bearer <paste your access token here>

NOTE: The token value must be preceded by the string: Bearer.

Body In the body, insert the recipe Id for the value for wrangledDataset, which is the internal platform term for recipe:

{
 "wrangledDataset": {

Copyright © 2022 Trifacta Inc. Page #471

http://www.example.com:3005/flows/1?recipe=4&tab=recipe
http://www.example.com:3005/v4/jobGroups/

 "id": 4
 }

}

Method Select the POST method.

Verify

1. Run the plan for which the HTTP task was created.
2. When the plan successfully completes, open the flow containing the other job to execute.
3. When you select the target recipe, a new job should be queued, in-progress, or completed.

Slack channel message

Tip: Slack tasks are now a supported product feature. For more information, see Create Slack Task.

You can create an HTTP task to deliver a text message to a Slack channel of your choice.

Prerequisites

Set up your Slack installation to receive HTTP messages:

1. If needed, create a Slack channel to receive your messages.
2. Create an app.
3. Activate incoming HTTP messages for your app.
4. Specify the channel to receive your incoming messages.
5. Copy the URL for the incoming HTTP request from the cURL statement.

Define the HTTP task

Parameter Description

Name This name appears in the Trifacta application only.

Method Select the POST method.

Url Paste the URL that you copied from Slack.

Headers Copy the content headers from the Slack cURL command:

key: Content-Type
value: application/json

Body
{"text":"Your job has completed."}

Verify

1. Click Test to validate that this task will work.
2. Run a job:

a. Check the Slack channel for a message.

Copyright © 2022 Trifacta Inc. Page #472

Plan metadata examples

You can reference metadata information from the plan definition and the current plan run as part of the request of
your HTTP task.

Notes:

You can only insert metadata references for tasks that have already occurred in the plan run before the
HTTP task begins.
Each task in the current run is referenced using a two-letter code. Examples:

{{$http_xx.name}}
{{$flow_xy.name}}

Syntax

A plan metadata reference is constructed using the following syntax. In the appropriate textbox, enter one of the
following values:

Tip: Start by typing $, which provides access to a menu tree of metadata references for each of the
metadata reference types. The final syntax is noted above.

Entered value Plan metadata reference type

Metadata information from the plan definition or the current plan run.
{{$plan

Metadata information for the flow tasks executed in the current plan run.
{{$flow_

Metadata information for the outputs generated by the specific flow task. In this example:
{{$flow_7p.['My Output Name'].

flow_7p is a reference to the specific flow task.
'My Output Name' is the display name for the underlying output.

Plan information

The following request body contains references to the Plan name, plan run identifier, and the flow that was just
executed:

{"text":"Plan: {{$plan.name}}
RunId: {{$plan.runId}}
Flow: {{$flow_7p.name}}
Success."}

Plan run information

The following request body contains plan execution information using timestamps:

{"text":"Plan: {{$plan.name}}
RunId: {{$plan.runId}}
- plan start: {{$plan.startTime}}
Running time: {{$plan.duration}}

Copyright © 2022 Trifacta Inc. Page #473

Times:
- last task start: {{$flow_7p.startTime}}
- last task end: {{$flow_7p.endTime}}
"}

HTTP task information

You can reference information from an HTTP task that has already occurred:

{"text":"{{$http_qg.name}} returned {{$http_qg.statusCode}}."}

Flow task information

The following request body references information from a flow task in the plan:

{"text":"{{$flow_7p.name}} execution:
Duration: {{$flow_7p.duration}}
Status: {{$flow_7p.status}}

For more information, see jobIds: {{$flow_7p.jobIds}}
"}

Flow information

The following request body references information from the underlying output for the above flow task:

{"text":"Flow reference information:
Name: {{$flow_7p['2013 POS'].name}}
Favorite column: {{$flow_7p['2013 POS'].columns.Store_Nbr.name}}
Least favorite data source: {{$flow_7p['2013 POS'].sources['POS-r01.txt'].name}}
For more information, see jobIds: {{$flow_7p.jobIds}}
"}

Notes:

You can reference columns from the generated results using the .columns. reference.
You can reference information from datasources using the .sources reference.

For more information, see Plan Metadata References.

Feed metadata inputs to cloud function

This example demonstrates how you can use an HTTP task to deliver plan metadata to AWS lambda functions. A
similar approach could be used for Google Cloud functions.

In this case, the rowCount value from the flow task execution is delivered via HTTP task to an AWS lambda
function.

General steps:

1. Define your plan.
2. Flow task: Run the flow to generate the outputs needed for your Lamda function.
3. HTTP task: generates an HTTP request whose body includes a reference to the rowCount metadata

variable. Request body:

Copyright © 2022 Trifacta Inc. Page #474

{
 "rowCount": "{{$flow_7p['My Flow Name'].output['My output name'].rowCount}}"
}

4. AWS Lambda functions: The following is pseudo-code for Lambda:

import json
def lambda_handler(event, context):
 httpTaskBody = json.loads(event["body"])
 rowCount = httpTaskBody["rowCount"]

 return {
 'statusCode': 200,
 'body': json.dumps(rowCount)

 }

5. Google Cloud functions: The following is pseudo-code for Google Cloud functions:

def get_row_count(request):
 request_json = request.get_json()
 if request_json and 'rowCount' in request_json:

 rowCount = request_json['rowCount']
 return rowCount

 return 'No rowCount attribute provided'

Verify Signatures

Depending on the target application, implementing signature verification may require developer
skills.

Optionally, you can configure the platform to sign the HTTP requests sent for a flow. Signed requests guarantee
that the requests are sent from the platform, instead of a third party.

Below, you can review how the signature is created, so that you can configure the receiving application to
properly process the signature and its related request.

Signature Header

HTTP requests are signed by inserting the X-Webhook-Signature header in the request. These signatures are
in the following form:

X-Webhook-Signature: t=<timestamp>,sha256=<signature>

where:

<timestamp> - Timestamp when the signature was sent. Value is in UNIX time.
<signature> - SHA256 signature. The platform generates this signature using a hash-based message
authentication code (HMAC) with SHA-256.

More information on these values is available below.

Example:

X-Webhook-Signature: t=1568818215724,sha256=55fa71b2e391cd3ccba8413fb51ad16984a38edb3cccfe81f381c4b8197ee07a

Copyright © 2022 Trifacta Inc. Page #475

Check Application Tools

Depending on the application, you may need to complete one of the following sets of tasks to verify the task
signatures:

NOTE: You may need to whitelist the platform in your application. See the application's documentation
for details.

You may be required to create some custom coding for your application. Below, you can review details on how to
do so, including a JavaScript example.

Process Signed Requests

Timestamp

The timestamp value (t=<timestamp>) appears at the beginning of the header value to prevent replay
attacks, where an attacker could intercept a valid payload and its signature and re-transmit them.

To avoid such attacks, a timestamp is included in the signature header and is also embedded as part of
the signed payload.
Since the timestamp is part of the signed payload, an attacker cannot change the timestamp value without
invalidating the signature.

If the signature is valid but the timestamp is too old, you can then choose to reject the request.
For example, if you receive a request with a timestamp that corresponds to a date from one hour
ago, you should probably reject the request.

For more information on replay attacks, see https://en.wikipedia.org/wiki/Replay_attack.

Signature

The task signature includes as part of its hashed value:

The secret key (entered above)
The timestamp value
Request data:

(POST/PUT/PATCH) - the body of the request
(GET/DELETE) - URL of the request

Step 1 - Extract the timestamp and signatures

Split the X-Webhook-Signature header:

1. Split values using the , character as a separator.
2. Split each of the parts using the = character.
3. Extract the values for the timestamp and signature. From the above example:

a. timestamp: 1568818215724
b. signature: 55fa71b2e391cd3ccba8413fb51ad16984a38edb3cccfe81f381c4b8197ee07a

Step 2 - Create the expected signature

In the receiving application, you can recompute the signature to verify that the request was sent from the platform.

1. Concatenate the timestamp, the dot character . and the request body (POST/PUT/PATCH methods) or the
url (GET/DELETE methods).

2. Suppose the above example is the signature for a POST request, and the request body is test. The
concatenated value is the following:

1568818215724.test

Copyright © 2022 Trifacta Inc. Page #476

https://en.wikipedia.org/wiki/Replay_attack

3. You can now compute the HMAC authentication code in your receiving application. In the following
JavaScript example, the secret key value is mySecret:

const crypto = require('crypto');

const message = '1568818215724.test'; // as defined above

const hmac = crypto.createHmac('sha256', 'mySecret');
hmac.update(message)
const expectedSignature = hmac.digest('hex');

Step 3 - Compare the signatures

The value returned by your code and the value included as the signature in the X-Webhook-Signature header
should be compared:

If the values do not match, reject the request.
If the values do match, compute the difference between the current timestamp and the timestamp in the
header. If the difference is outside of your permitted limit, reject the request.
Otherwise, process the request normally in your application.

Copyright © 2022 Trifacta Inc. Page #477

Create Slack Task
Contents:

Limitations
Prerequisites

Requirements for Slack
Steps
Plan metadata references

You can create plan tasks to deliver messages to specific Slack channels to which you have access. These tasks
are helpful for informing a set of stakeholders across your organization about the execution of your plans.

A Slack task is a message from Trifacta® to a specified Slack workspace channel.
A Slack task is defined as one of the tasks in a plan. For more information, see Plan View Page.

This capability may need to be enabled in your environment. For more information, see
Overview of Operationalization.

Limitations

You can only post messages to Slack channels.
HTTP-based requests have a 30-second timeout limit.
Authentication must be made through OAuth.

Tip: You can also create HTTP tasks to deliver messages to a Slack channel. See
Create HTTP Task.

Prerequisites

Requirements for Slack

To send a message to Slack, you must create an app in the target workspace for the Slack channel to
receive the message.

This Slack app must support OAuth authentication.
For more information, see https://api.slack.com/apps.

Steps

1. Open your plan in Plan View. Click a node to create a new task.
2. In the right panel, select Slack task.
3. In the Request tab, set the following parameters:

Parameter Description

OAuth token The OAuth token to use for posting the message.

Channel Paste one of the following values from the Slack workspace for where to post the message:
Channel Name: Name of the channel as it appears in Slack.
Channel ID: This value is available in the Settings page for the channel.
Member ID: You can post the message to a specific user instead of posting to a channel. A user's member ID
can be found in the user's Profile page in Slack.

Message The message to post.

Copyright © 2022 Trifacta Inc. Page #478

https://api.slack.com/apps

Tip: Messages can include metadata information about the tasks in the current plan run. For more
information, see Plan Metadata References.

4. To test the message, click Test. A success message is displayed.
5. You can rename the task. click More menu > Edit in the right panel.
6. To add the task to the flow, click Save.

Plan metadata references

Within the message of your Slack task, you can reference metadata about the plan that is being executed. For
more information, see Plan Metadata References.

Copyright © 2022 Trifacta Inc. Page #479

Share a Plan
Contents:

Limitations
Permissions
Steps

This section provides an overview of sharing plans with other users for collaboration on the same plan.

You can share plans with one or more users to work together on the same plan. You can share the plan through
the Plans page.

Limitations

When a plan is shared, the underlying flow tasks are not shared directly.
The plan can be executed only if the user has access to all the underlying flow tasks.
Plan schedules cannot be shared with users.

Permissions

When a user is provided access to a plan, the user becomes a collaborator on the plan and is assigned a
subset of the permissions assigned to the owner of the plan. If the user has minimal permissions for overall
plans then sharing the plan as collaborator would be downgraded.

NOTE: A collaborator on a plan cannot delete the plan.

NOTE: In addition to the shared plan, you must have collaborator access to all underlying flows to
execute a plan.

For more information, see Overview of Sharing.

Steps

1. From the context menu of the Plans page, select Share.
2. In the Share dialog box, add users as collaborators for the plan; start typing the name of a user or enter

the email address of the user with whom you would want to share the plan.
3. Specify the privilege level of the user to whom you are sharing. For more information on sharing privileges,

see Overview of Sharing.
4. Repeat the process to add multiple users.
5. Click Save.

Copyright © 2022 Trifacta Inc. Page #480

Export Plan
This section provides an overview on how to export plans from one environment to another environment as a ZIP
file.

You can export a plan from Trifacta® from one system to another system as a zip file. The exported zip
file contains a JSON file for the plan and JSON files for each of its associated flows. The plan and its assets,
such as nodes, edges, and tasks other than flow tasks are exported into the plan definition file .

For each flow included in the plan:

Each flow is exported only once in a flow definition file, even if it is used in many plan flow tasks.
If the flow contains any artifact files, they are included as .data files next to the plan definition file. These
files should be imported with the flow, too.

When you export the plan ZIP file, a snapshot of the plan is taken at the time of export.

NOTE: When you export a plan that has flow tasks, then all the corresponding flows are also exported.

NOTE:

You can unzip the exported plan ZIP, remove any of the flow files, and re-zip if you want to import
the plan into the same workspace without replicating the flows.
You can upload the plan as a single JSON file without re-zipping, if there are no flow files for the
plan.

Plan exports are useful for:

Backing up the work in progress on your plans
Archiving of completed development work

Limitations

The plan file does not include the plan schedules and their associated overrides.

Import and export of plans is not supported in Deployment Manager.

Export from Plans page

Steps :

1. From the home page of Trifacta, navigate to Plans.
2. In the Plans page, select the required plan. From the context menu, select Export.
3. In the Export Plan window, select Download package(.zip).
4. Enter any optional notes, if required.
5. The ZIP file is downloaded to the default download location of your desktop.

Tip: You can also export a plan from Plan View page.

Copyright © 2022 Trifacta Inc. Page #481

Import Plan
An exported plan can be imported into Trifacta® into a different workspace.

Limitations

You cannot import a plan that was exported in the earlier release.
You cannot import schedules while importing a plan.
You cannot modify plan definitions outside of the Trifacta application.

NOTE: After importing a plan, the objects referenced in the included flows must be connected to the
corresponding resources available in the target system. For more information, see Import Flow.

NOTE: When you import a plan, the corresponding flow tasks and HTTP tasks in the plan are also
imported.

NOTE:

When you import a plan, you must import a ZIP file containing the JSON definition and any
included flows.
You can import the plan as a single JSON file without copying the flow files, as it reuses the
existing flow files in the workspace.

Import

Steps:

1. From the home page of Trifacta, navigate to Plans.
2. From the context menu of the Plans page, select Import.

Tip: You can import multiple plans (ZIP files) through the file browser or through drag-and-drop.
Press / + click or SHIFT + click to select multiple files for import.CTRL COMMAND

3. From the Import Plans window, select the exported zip file from your system and click Open.

The plan is imported and available for use in the Plans page.

Copyright © 2022 Trifacta Inc. Page #482

Account Management Tasks
The topics below provide information on how to manage aspects of your account in Trifacta®.

Copyright © 2022 Trifacta Inc. Page #483

Change Password
To recover your password, click Forgot password? in the login screen.

To change your password after you have logged in, select your name from the User menu. Enter a new
password, confirm it, and save your changes. The new password is applied when you next try to log in. See
User Profile Page.

The password for the administrator account should be changed immediately after installation is
complete. See Change Admin Password.

Copyright © 2022 Trifacta Inc. Page #484

Configure Your Access to S3
Contents:

Getting Started
Credential Provider

IAM Role
AWS Key and Secret

If per-user access to S3 has been enabled in your Trifacta® deployment, you can apply your personal S3 access
credentials through the AWS Credentials page. You can use the following properties to define the S3 buckets to
use for uploads, job results, and temporary files.

Getting Started

You can access these settings through the Trifacta application.

Steps:

1. In the menu bar, click the User menu.
2. Select Storage. click Edit for AWS Credentials and Storage Settings, where you can review and modify

your S3 access credentials.

Credential Provider

IAM Role

NOTE: This role must be created through AWS for you. For more information, please contact your AWS
administrator.

Tip: This method is recommended for access AWS resources.

Copyright © 2022 Trifacta Inc. Page #485

Figure: Apply your IAM role and credentials

Setting Description

Available IAM
Role ARNs

You can specify the set of IAM Role ARN to use to authenticate to AWS resources.

Select Default
IAM Role ARN

From the available IAM Role ARNs, you can specify the default one.

Default S3 Bucket This bucket is used for storage, unless another bucket is explicitly selected.

NOTE: Specify the top-level bucket name only. There should not be any backslashes in your entry.

Extra S3 Buckets You can specify a comma-separated string of additional S3 buckets that are available for storage. Do not put any
quotes around the string. Whitespace between string values is ignored.

AWS Key and Secret

Per-user access must be enabled by your Trifacta administrator. See S3 Access.

Copyright © 2022 Trifacta Inc. Page #486

Figure: AWS Storage page

The following settings apply to S3 access.

NOTE: The values that you should use for these settings should be provided by your S3 administrator. If
they have already been specified, do not modify unless you have been provided instructions to do so.

Setting Description

AWS
Access
Key

This key defines the account to use to connect to AWS.

AWS
Secret Key

The secret (or password) associated with the key.

Default S3
Bucket

This bucket is used for storage, unless another bucket is explicitly selected.

NOTE: Specify the top-level bucket name only. There should not be any backslashes in your entry.

Extra S3 You can specify a comma-separated string of additional S3 buckets that are available for storage. Do not put any quotes
Buckets around the string. Whitespace between string values is ignored.

Copyright © 2022 Trifacta Inc. Page #487

Concepts
This section contains topics on concepts related to Trifacta® and the underlying principles driving its development.

Copyright © 2022 Trifacta Inc. Page #488

Feature Overviews
These sections provide overviews of key features and capabilities of Trifacta®.

Tip: Use the links in these sections to access locations in the platform where these features appear.

Copyright © 2022 Trifacta Inc. Page #489

Overview of Data Export
Contents:

How to Export
Export Job Results

Writing to Files
Writing to Tables
Parameterized Outputs

Ad-hoc Publishing
Exporting Metadata

Export flows
Export recipes
Export sample data
Export logs

Export via API
Job results

This section provides an overview of exporting data from the Trifacta® application to your preferred destinations,
such as file-based storage, connected datastores, or your desktop. In addition to exporting of job results, other
types of exports are covered in this section.

Tip: In most cases, the source of your data does not limit the type of output that you can generate. You
can create a file-based imported dataset and generate results to a database table. Some exceptions may
apply.

How to Export

Job results are generated based on the specifications of an output object. An output object is a reference object
for one or more types of outputs. This reference information includes full path to the output location, file or table
name, and other settings. For more information, see Create Outputs.

In the Run Job page, you can specify additional settings and overrides. See Run Job Page.

Export Job Results

After you have executed a job, the application writes a set of results to the designated output locations. These
results are the application of the recipe's transformation steps to the imported dataset, written to the location or
locations specified in the output object in the specified output format.

You can export the results directly from the designated output destination. For more information, see
Job Details Page.

Tip: Job results for your latest job may be exportable from Flow View. For more information, see
View for Outputs.

Writing to Files

As a result of job execution, you can publish your outputs to a file-based system.

Copyright © 2022 Trifacta Inc. Page #490

NOTE: You must have write permissions to the location where you are writing your output files. These
permissions should be set up during initial configuration of the product. For more information, please
contact your administrator.

Defaults for file-based outputs:

Files are written to your designated output directory on the backend datastore. As needed, you can modify
your default output directory. For more information, see Storage Config Page.
Files are written in CSV format to the designated location.

You can modify the publishing action and generate results in your preferred formats.

For more information on changing file output settings, see File Settings.
For more information on supported file formats, see Supported File Formats.

Writing to Tables

You can export generated results directly to a connected relational database.

Tip: Some relational connection types support read-only or write-only connections.

The Trifacta application writes results to a database through an object called a connection. A connection is a
configuration object that defines the interface between the application and the database. Among its properties are
a set of credentials that provide access.

NOTE: You must have write permissions to the database where you are writing your output tables. These
permissions must be enabled by a database administrator outside of the product.

NOTE: Connections can be shared among users. When a user chooses to share a connection, the user
can also choose to share credentials. If credentials are not shared, other users must provide their own
credentials if they wish to use the connection. For more information, see Share a Connection.

For relational databases, the Trifacta application passes the information in the connection definition to a third-
party driver that performs the actual connection. Thereafter, the Trifacta application maintains the open
connection as long as it is needed to write results. After the results are written, the connection is closed.

When you choose to write results to a table:

Through the connection, you browse and select the database to which to write the results.
You can choose to write to an existing table or to a new one.
You can specify one of the following publishing actions on the table you selected:

New: Each run generates a new table with a timestamp appended to the name. For example, myexa
mple_test_1.csv.
Update: Each run adds any new results to the end of the table.
Truncate: With each run, all rows columns of data in a table is removed and retain the empty table
as an object.
Load: With each run, the table is dropped (deleted), and all data is deleted. A new table with the
same name is created, and any new results are added to it.
Merge: Some databases may support merge (upsert) operations.

Additional options may be available, depending on the connection. For more information, see
Relational Table Settings.

Copyright © 2022 Trifacta Inc. Page #491

Parameterized Outputs

For file-or table-based publishing actions, you can parameterize elements of the output path. You can create
parameters for your outputs of the following types:

Timestamp: You can insert the timestamp of when the output was written as part of the path to the output
location.
Variable: Variable parameters allow you to insert values that you define as part of the output object.

Tip: You can optionally override the values of your variable parameters as part of your job
definition.

For more information on parameters, see Overview of Parameterization.

Ad-hoc Publishing

After a job has successfully completed, you can review and download the set of generated outputs and export
results. Optionally, you may be able to publish the generated results to a secondary datastore through the Job
Details page.

NOTE: Additional configuration may be required.

For more information on ad-hoc publishing, see Publishing Dialog.

Exporting Metadata

In addition to the job results, you can export aspects of the flow definition and other objects that you have created
in the Trifacta application. These exports can be useful for:

Migrating flows to other workspaces
Archiving data
Taking snapshots of work in progress

Export flows

You can export a flow from application. An exported flow is stored in a ZIP file that contains references to all
objects needed to use the flow in another workspace or project. Exported flows can be imported into the same
workspace/project or a different one.

NOTE: Users of the imported flow must have access to the datasources and specified output locations. If
not, these objects must be remapped in the new environment.

For more information, see Export Flow.

Export recipes

You can download a recipe in text form and reuse it in another flows.

Reuse recipes in a different environment

If you need to reuse a recipe in a different instance of Trifacta , you can do the following:

Export the entire flow and import it into the new environment. Open the flow in the new environment.
Convert all steps of a recipe into a macro. Export the macro and then import it into the new environment.
For more information, see Export Macro.

Copyright © 2022 Trifacta Inc. Page #492

Download recipes

You can download recipe in a text form of Wrangle (a domain-specific language for data transformation). For
more information, see Recipe Panel .

Export sample data

From the recipe panel, you can download the current state of the data grid, which includes the current sample
plus any recipe steps that have been applied to it.

Tip: When a sample is taken, it is tied to the current recipe step. All steps later in the recipe than the
current recipe step are computed in memory using the sample as the baseline. For more information, see
Overview of Sampling.

F or example, if the sample was generated when the recipe cursor was displaying step 7 and you download the
data from the recipe when the recipe cursor is on step 10, then you are downloading the state of the recipe at
step 10.

NOTE: When a flow is shared, its samples are shared with other users. However, if shared users do not
have access to the underlying sources that back a sample, they do not have access to the sample.
These samples are invalid for the other users, who must create their own.

For more information, see Samples Panel.

Export logs

You can export logs of the following:

Download session logs: You can download logs for your current from the Trifacta platform through the
Help menu. For more information, see Download Logs Dialog.

Tip: Administrators can download a broader set of platform logs. For more information, see
Admin Download Logs Dialog.

Job logs : When a job fails, you can download job logs for analysis. For more information, see Jobs Page.
Sample logs: If a sample fails to generate, you can retry or download logs for review. For more
information, see Samples Panel.

Export via API

Job results

After a job has run, you can acquire the path to the results when you query for the job. For more information, see
https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Copyright © 2022 Trifacta Inc. Page #493

https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Overview of Data Import
Contents:

How to Import
Types of Import

Upload
Import of files
Import of tables

Imported Datasets
Persisted Data

Samples
Conversion
Caching

Sharing Imported Data

This section provides an overview of data import and how different types of import are handled in Trifacta®.

How to Import

You import data for use in the Trifacta application through a reference object called an imported dataset. An
imported dataset is a reference to the source of the data.

NOTE: The source data is never modified. In some cases, the source data may be copied to the base
storage layer. For example, data that is uploaded from your local desktop must be copied to the base
storage layer so that it is accessible to you and potentially other users of the Trifacta application.

Steps:

1. In the Trifacta application, click the Library icon in the left navigation bar.
2. In the Library, click Import Data.
3. The Import Data page is displayed.

a. Select the connection in the left nav bar through which you can access the data.
b. For more information, see Import Data Page.

After the data has been imported, you can reference it within the application as an imported dataset. For more
information, see Import Basics.

Types of Import

You can import datasets or select datasets from sources that are stored on file-based storage, connected
datastores, or your desktop. Following are the different types of import that you can perform in the Import Data
page.

Upload

You can upload a variety of flat file formats from your local desktop. You can upload a file up to 1 GB in size.

You can drag and drop files from your desktop to to upload them.
You can select multiple files in the same directory for uploading at the same time.

Copyright © 2022 Trifacta Inc. Page #494

Import of files

Trifacta supports multiple storage environments. You can import one or more files from any backend data
storage systems. Each workspace has a default backend storage environment. Each user should be able to
import files that are stored in accessible locations in this backend storage area.

NOTE: You must have read permissions for these storage environments to import the file. These
permissions should be set up during initial configuration of the product. For more information, please
contact your administrator.

NOTE: During import, the Trifacta identifies file formats based on the extension of the filename.

Import of tables

You can import one or more tables from relational datastores. Through the Import Data page, you can select or
create the appropriate connection to the datastore, navigate to the required database and select the files to be
imported.

NOTE: You must have read permissions for any database from which you want to import. These
permissions must be enabled by a database administrator outside of the product. For more information,
see Using Databases.

Imported Datasets

When you import a file or a table, the data that is imported to the platform is referenced as an imported
dataset. An imported dataset is simply a reference to the original data. An imported dataset can be a reference
to a file, multiple files, database table, or other type of data.

NOTE: Trifacta® does not modify the source data. It is only referenced as an imported dataset.

NOTE: The imported dataset may be broken if the path or the permissions change for the underlying
dataset.

Persisted Data

In general, the Trifacta application does not retain data for a longer time than the data is explicitly needed. For
example, when jobs are executed on Trifacta Photon, the source data is streamed to the Trifacta node and
transformed, after which results are written. The transformed data is not maintained in the Trifacta node.

NOTE: Data is not persisted on the Trifacta node.

More information on persisted data is available below.

Copyright © 2022 Trifacta Inc. Page #495

Samples

Samples can be generated within the product through the Samples panel. When a sample is created, it is stored
within your storage directory on the backend datastore. You can create a new sample at any time.

If the source data is larger than 10 MB in size, an initial sample is automatically generated when the recipe
is first loaded in the Transformer page. This sample contains the first set of rows in the dataset up to 10
MB in size.
If the source data contains multiple files, the initial sample for the dataset is generated from the first set of
rows in the first filename listed in the directory.
If that source data is a multi-sheet Excel file, the sample is taken from the first sheet in the file.

For more information on creating samples, see Overview of Sampling.

Conversion

For some file types, the Trifacta application must convert the source data into a format that is natively supported
by the product. This process happens as part of the importing of data for use in the Trifacta application and is
managed by the conversion service in the platform. In such scenarios, the data is read from the source and
passed through the conversion service, which understands how to read the source format and can write it to a
supported text format. This text version of the source data is written to the base storage layer.

For example, when a transformation job is executed, the original source data is passed through the conversion
service, and the converted data is used for job execution. When the job results are written, conversion service
removes the converted data.

During import, the Trifacta application identifies file formats based on the extension of the filename. The
conversion process applies for the following type of files:

XLS and PDF: These file types are stored in a proprietary binary format. Conversion service uses a set of
libraries to convert files of these types to tabular CSV data and store the files in the base storage layer.
JSON: JSON file through the conversion service provides considerable improvements in terms of quality
and performance during ingestion of JSON data.

For more information, see Supported File Formats.

Caching

Caching refers to the process of ingesting and storing data sources in a temporary backend location for a specific
period of time in order to perform any additional operations in a faster way.

Instead of reloading the source each time that an object is referenced, the Trifacta application checks the cache
for a cached version and if the cache is still valid. Based on the results, the Trifacta application pulls data from the
local cache instead.

Tip: Cached objects can be referenced later for faster performance on tasks such as sampling and job
execution.

For more information, see Configure Data Source Caching.

Sharing Imported Data

You cannot shared an imported dataset as an object; however, you can share connections. If the user has
permissions over the dataset that has been shared as a part of the connection then the imported dataset is
accessible to the shared user.

NOTE: The shared user should have the connection credentials to access the imported dataset.

Copyright © 2022 Trifacta Inc. Page #496

For more information, see Overview of Sharing.

For more information, see Share a Connection.

Copyright © 2022 Trifacta Inc. Page #497

Overview of Storage
Contents:

Base Storage Layer
Uses of base storage layer
Base storage layer directories
Available base storage layers
Management of base storage layer

External Storage
File-based systems
Cloud data warehouses
Relational systems
Management of external storage

Trifacta supports different options for reading and writing data from your storage systems.

Base Storage Layer

The base storage layer is the datastore where Trifacta uploads data, generates profiles, results, and samples. By
default, job results are written on the base storage layer. You can configure the base storage layer and other
required settings.

Tip: The base storage layer must be a file-based system.

NOTE: The base storage layer must be enabled and configured during initial installation. After the base
storage layer has been configured, it cannot be switched to another environment. For more information,
see Set Base Storage Layer.

Uses of base storage layer

In general, all base storage layers provide similar capabilities for storing, creating, reading, and writing datasets.

The base storage layer enables you to perform the following functions:

1. Storing datasets: You can upload or store datasets in directories on the base storage layer. See below.
2. Creating datasets: You can read in from datasources stored in the storage layer. A source may be a

single file or a folder of files.
3. Storage of samples: Any samples that you generate are stored in the base storage layer.
4. Ingested data: Some data like Excel and PDF are stored as binary (non-text) files. These files must be

read and converted to CSVs, which are stored on the base storage layer.
5. Cached data: You can enable a cache on the base storage layer, which allows data that has been

ingested to remain on the base storage layer for a period of time. This cache allows for faster performance
if you need to use the data at a later time.

6. Writing Results: After you run the job, you can write the results to the storage layer.

Base storage layer directories

Trifacta creates and maintains the following directories and their sub-directories on the base storage layer:

Copyright © 2022 Trifacta Inc. Page #498

Directory Description

/trifa Storage of datasets uploaded through the Trifacta application. Directories beneath this one are listed by the internal identifier
for each user of the product who has uploaded at least one file.cta

/uploa
ds Avoid using /trifacta/uploads for reading and writing data. This directory is used by the Trifacta

application.

/trifa Default storage of results generated job executions. Directories beneath this one are listed by the internal identifier for each
user of the product who has run at least one job.cta

/query For each user, these sub-directories are the default storage location for job results. These locations can be modified. See
Results Preferences Page. Within the queryResults directory, you may find sub-directories labeled datasourceCache.

When data source caching is enabled, data read into the product may be temporarily stored in this directory. For more
information, see Configure Data Source Caching.

/trifa Storage of custom dictionary files uploaded by users.

cta
/dicti NOTE: This feature applies to Trifacta Self-Managed Enterprise Edition only. It is not often used.
onaries

/trifa Temporary storage location for files required for use of the product.

cta
/tempf NOTE: The tempfiles directory is reserved for use by the platform. It is the only directory of these that is
iles actively cleaned by the platform.

Minimum Permissions

Trifacta requires the following operating system level permissions on the listed directories and sub-directories:

Directory Owner Min Permissions Group Min Permissions World Min Permissions

/trifacta/uploads read+write+execute none none

/trifacta/queryResults read+write+execute none none

/trifacta/dictionaries read+write+execute none none

/trifacta/tempfiles read+write+execute none none

Available base storage layers

Trifacta supports the following base storage layers.

NOTE: In some deployments, the base storage layer is pre-configured for you and cannot be modified.
After the base storage layer has been defined, you cannot change it.

NOTE: For all storage layers, the source data is untouched. Results are written to a location whenever a
job is executed on a source dataset.

For more information, see Storage Deployment Options.

Copyright © 2022 Trifacta Inc. Page #499

S3

Simple Storage Service (S3) is an online data storage service provided by Amazon, which provides low-latency
access through web services. For more information, see https://aws.amazon.com/s3/ .

For more information, see External S3 Connections.

HDFS

HDFS is a scalable file storage system for use across all of the nodes (servers) of a Hadoop cluster. Many
interactions with HDFS are similar with desktop interactions with files and folders. However, what looks like a
"file" or "folder" in HDFS may be spread across multiple nodes in the cluster. For more information, see
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS .

NOTE: If you are using impersonated access on the base storage layer, then, the group minimum
permissions must be read+write+access on all of the above directories and sub-directories.

For more information, see Using HDFS.

ADLS Gen 1

ADLS is a scalable file storage system for use across all of the nodes (servers) of a cluster. Many interactions
with ADLS are similar with desktop interactions with files and folders. However, what looks like a "file" or "folder"
in ADLS may be spread across multiple nodes in the cluster. For more information, see
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-overview.

ADLS Gen 2

Microsoft Azure deployments can integrate with the next generation of Azure Data Lake Store (ADLS Gen2).
Microsoft Azure Data Lake Store Gen2 (ADLS Gen2) combines the power of a high-performance file system with
massive scale and economy. Azure Data Lake Storage Gen2 extends Azure Blob Storage capabilities and is
optimized for analytics workloads. For more information, see
https://azure.microsoft.com/en-us/services/storage/data-lake-storage/.

WASB

WASB is a scalable file storage system for use across all of the nodes (servers) of a cluster. As with HDFS, many
interactions with WASB are similar with desktop interactions with files and folders. However, what looks like a
"file" or "folder" in WASB may be spread across multiple nodes in the cluster.

Management of base storage layer

Maintenance of the base storage layer must be in accordance with your enterprise policies.

Unless the base storage layer is managed by Alteryx, it is the responsibility of the customer to
maintain access and perform any required backups of data stored in the base storage layer.

Copyright © 2022 Trifacta Inc. Page #500

https://aws.amazon.com/s3/
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-overview
https://azure.microsoft.com/en-us/services/storage/data-lake-storage/

NOTE: Except for temporary files, Trifactadoes not perform any cleanup of the base storage layer.

External Storage

You can create connections to external storage systems. You can integrate Trifacta with an external datastore.
Depending on the type of connection and your permissions, the connection can be:

read-only
write-only
read-write

You can create and edit connections between Trifacta® and external data stores. You can create either file-
based or table-based connections to individual storage units, such as databases or buckets.

NOTE: In your environment, creation of connections may be limited to administrators only. For more
information, contact your workspace administrator.

Tip: Administrators can edit any public connection.

NOTE: After you create a connection, you cannot change its connection type. You must delete the
connection and start again.

File-based systems

In addition to the base storage layer, you may be able to connect to other file-based systems. For example, if
your base storage layer is HDFS, you can also connect to S3.

NOTE: If HDFS is specified as your base storage layer, you cannot publish to Redshift.

For more information, see Connection Types.

Cloud data warehouses

The Trifacta application can be leveraged for loading and transforming data in data warehouses in the cloud.
These integrations offer high performance access to reading in datasets from these and other sources,
performing transformations, and writing results back to the data warehouse as needed.

Relational systems

When you are working with relational data, you can configure the database connections after you have completed
the platform configuration and have validated that it is working for locally uploaded files.

NOTE: Database connections cannot be deleted if their databases host imported datasets that are in use
by Trifacta. Remove these imported datasets before deleting the connection.

Copyright © 2022 Trifacta Inc. Page #501

For more information, see Using Databases.

Management of external storage

To integrate with an external system, the Trifacta application requires:

Basic ability to connect to the hosting node of the external system through your network or cloud-based
infrastructure
Requisite permissions to support the browsing, reading and/or writing of data to the storage system
A defined connection between the application and the storage system.

Except for cleanup of temporary files, the Trifacta application does not maintain external storage systems.

Copyright © 2022 Trifacta Inc. Page #502

Overview of Predictive Transformation
Contents:

Overview
Phases

Visualizations
Selections
Predictive Model
Suggestions and Their Variants
Previews
Additional Steps - Modification

Wrangle

Based in academic research, Predictive Transformation refers to a set of design and interface principles that
serve as the foundation for how Trifacta® users interact with their data. Predictive transformation is the linchpin of
the platform. This section provides an overview of the concepts and links to locations where these concepts are
surfaced in the interface.

Predictive Transformation is a registered trademark of Alteryx.

Overview

In essence, Predictive Transformation seeks to bring closer together:

1. the domain knowledge about the data, and
2. the technical knowledge of the sometimes complex operations required to render data into its final usable

format.

In data wrangling, the former knowledge set resides with domain experts who understand the meaning of the
data, while the latter often requires involvement of IT, which may have no contextual understanding of the data to
inform their solution designs.

This process of rendering data from one format into another is generally called data transformation, which
breaks down into a set of programming-type tasks, with an emphasis on structure, meaning, and the statistical
properties of the data. These tasks include:

statistical manipulation (profiling, outliers, imputation)
restructuring (data extraction, nesting, pivot/unpivot)
cleaning (standardization, deduplication, data removal)
enrichment (join with other data, lookups of reference data)
distillation (sampling, filtering, aggregation, windowing)

Across large, distributed datasets, these tasks can be technically challenging to properly execute. To move them
out of the IT domain, Predictive Transformation seeks to deliver the following capabilities:

1. Features & Visualizations - innovative methods to display and select data of interest
2. Suggestions - based on user selection, suggested transforms are presented to you for selection and

configuration
3. Previews - for the selected suggestion, previews of the anticipated change are available for review prior to

inclusion in the transformations on the dataset

The above cycle is repeated over and over until the set of transformations is defined and executed to satisfaction.

Copyright © 2022 Trifacta Inc. Page #503

Phases

Based on user selection, Predictive Transformation guides you toward possible next steps yet allows you to deci
de the step to take and (if necessary) refine the step definition. The core of the guide/decide loop of Predictive
Transformation fits into the following iterative phases. When steps are selected, visualizations are updated, and
the cycle repeats again.

Phase UI Description
Element

Visualize visualizati A critical component of Predictive Transformation is the visual representation of the data, including items of interest
ons for selection. In larger data sets, the visual cues around items of interest and the tools for interacting with them

provide information on the meaning of each type of interaction and are critical for a productive and pleasant user
experience.

Interact selections You interact directly with the visualizations to select values, columns, or other items of interest.

Predict predictive Automatically, user selections trigger queries into the predictive model. Data, metadata, and the selection of it
model & effectively define queries of the predictive model. The model returns a set of suggested transforms. The
suggestio suggestions guide you toward recommended actions on items that you has decided, through selection, are
ns interesting. You can then decide which suggestion to undertake, including modification of the specific parameters

around the suggestion. Or, you can define a completely different step to take.

Present previews Whenever the step to take is selected or subsequently modified, the anticipated results of that step are displayed
as a preview overlay on top of the data. This method allows for easy development, rapid undoing, and a clearer
understanding of the impacts of each step.

Visualizations

In Predictive Transformation, visualizations must be carefully designed to surface selectable data or metadata of
interest. In Trifacta, the Transformer page has been designed to represent the underlying dataset while guiding
you with selectable items.

Figure: Transformer Page contains a rich overlay of information and selection cues

Specific visualization cues:

1. Data rendered into familiar grid format, regardless of underlying structure
a. selectable values and columns

2. Color-coded data quality bars:
a. green: valid

Copyright © 2022 Trifacta Inc. Page #504

b. gray: missing
c. red: invalid (checked against data type)
d. Select a color to select all corresponding values

3. Histograms for individual columns:
a. Select one or more values in the histogram highlights corresponding values in other column

histograms for easy visual comparisons
4. Metadata on entire dataset and type and statistical information for individual columns. See

Column Details Panel.

In this manner, this visualization lifts user interaction from the domains of data and code into a more visual
representation.

You must still specify via selection; the syntax of the specification is lifted into the visual domain, and the
details of crafting the technical query are managed by the application.

Exploration: By design, this interaction model supports both detailed specificity and ambiguity. You selects
preview the results, and then determine if the preview meets expectations. Additionally, all steps can be undone
and removed from the recipe, so that you can explore different steps and entire approaches for transforming
data. Solutions that demand more technical interactions often suffer from an intolerance of ambiguity, which limits
your ability to express intent without significant experience and/or training. See Transformer Page.

Selections

As you review the visualization, a change in the cursor indicates the items that are available for selection.

Figure: Selection cursor changes on hover of selectable items

The following types of selections trigger the subsequent phases:

Copyright © 2022 Trifacta Inc. Page #505

cell values and values within a cell
columns

Selecting a single column in the data grid triggers a visual profile of the column data, as well as a
set of suggestions. Selecting multiple columns triggers a different set of suggestions to apply
across your selected columns.

values in a data histogram
categories of values (valid, invalid, missing) within a data quality bar

Columns and values can be multi-selected.

You are still obligated to make selections in the data, thereby bringing domain-specific expertise to the
problem of transforming it. This selection in turn triggers a more complex query through the application to
the prediction service.

Predictive Model

Based on the set of selections, an inference algorithm attempts to interpret the data transformation intent of the
selection and generates a ranked set of suggestions and patterns for the selections to match. For example, if you
select the first three characters in a cell, the algorithm may produce two transform suggestions for data removal:
one to remove the rows containing the specific text and one to keep all rows containing that pattern of text in the
column.

As part of the returned results of the predictive model, matching values for the selection(s) are highlighted in the
table.

The predictive model interprets selection to identify intent. Possible intentions are surfaced as one or
more suggested transforms in a visual manner that minimizes exposure to the transformation language.

Suggestions and Their Variants

The set of probable next steps is computed by the predictive model from user interaction, selected data, historical
information, and other sources and rendered as a set of suggestions. Since these steps are essentially
predictions of user intent, they are surfaced as browsable cards, through which you can explore to disambiguate
the uncertainty of intention around their data selections.

Copyright © 2022 Trifacta Inc. Page #506

Figure: Suggestion cards - selection guides suggestion

Notes:

Typically, pattern-based variants to the suggestion are listed first in the suggestion card.
Pattern-based suggestions are always based on Patterns , which are easier to use than regular
expressions.
Variants using literal expressions are typically listed last. If a column has a high number of literal values,
however, literal value variants may be listed first in the card.

Suggestion cards are specific enough for immediate execution. You can choose to modify the transform
and its parameters, if additional specification and guidance is needed.

In a suggestion card, you may see multiple variants of the selected transformation.

Copyright © 2022 Trifacta Inc. Page #507

The first variant is the most specific one applicable to the current selection in the data grid. Mouse over the
variants to see different versions of the transform. As you mouse over secondary variants, the variants typically
become more specific in their changes to the dataset or rarer in their usage.

When you mouse over a different transform variant in the suggestion card, the preview popup is
automatically updated to reflect the variation. When you select the variant, the Preview pane is updated.
You can always modify the transform to review the detailed differences.

Collaborative suggestions

Optionally, you can enable the surfacing of collaborative suggestions, which aggregate the transformation steps
from users in your workspace to provide an additional category of Recently used suggestion cards. As workspace
members continue to transform data that is often related, the set of Recently used suggestions become more
relevant to the data on which workspace users are working. This form of data-dependent Predictive
Transformation allows Trifacta to improve its understanding of the types of tasks that workspace users are trying
to accomplish.

NOTE: This feature requires the machine learning service, which is enabled by default. For more
information, see Miscellaneous Configuration.

Workspace administrators can choose to enable this feature and can configure whether data is aggregated from
individual workspace users' transformations or from all workspace users' transformations. See
Workspace Settings Page.

When this feature is enabled, collaborative suggestions appear as cards under a new Recently used category in
the suggestions panel.

When the feature is enabled, Individual users can choose to opt-out of sharing their data with the feature. See
User Profile Page.

Previews

When a suggestion card is selected, the results of the selected transform are previewed in the data grid, so that
you can see in advance the changes to the dataset.

Copyright © 2022 Trifacta Inc. Page #508

Figure: Previewed effects of transform

When the transform is added to the recipe, the transform is rendered into the data transformation language and
applied in real-time to the dataset, so that you can immediately begin working on the next step of the process.

When a transform is selected, the selected transform and any additional guidance that you provide is
translated into a specific, programmatic step in the transformation language. This step, in turn, is
rendered into a complex and potentially distributed query that is applied across the dataset. In this
manner, additional technical details and the knowledge required to master them are removed from user
requirements.

Additional Steps - Modification

Modification via Transform Builder

As needed, any selection can be modified, such that you may tweak parameters to further refine intention to
reach a specific outcome. In Trifacta, you can click Edit to tweak individual transformations in the Transform
Builder.

Figure: Modifying a transform in the Transform Builder

Wrangle

The actual steps of transformation are authored in Wrangle (a domain-specific language for data transformation).
Wrangle includes the following characteristics:

Single-source transformations, with results rendered without modification to the original source data
General cleaning and transformation operations on numerical and textual data of varying data types
Structural transformations for managing nested data like JSON
Multi-dataset transformations such as lookups, joins, and unions
Transformation of data to metadata, such as pivot and unpivot operations
Text selection patterns, including regular expressions, as a macro-type set of references. See
Text Matching.

For a list of available transforms and functions, see Language Index.

For more information, see Wrangle Language.

Copyright © 2022 Trifacta Inc. Page #509

Copyright © 2022 Trifacta Inc. Page #510

Overview of the Type System
Contents:

How Data Types Are Used
Data Types

Logical data types
Complex data types
Logical and complex data types

Types in Source Data
Schematized files
Schematized tables
Inferred data types

Type Inference
Type inference in the application

Working with Data Types
Data types in the grid
Changing the data type
Changing the data format
Type functions

Type Conversions on Export
Type Conversions

This section provides an overview of how data types are managed during import, transformation, and export of
data in Trifacta®.

Terms:

A data type is a definition of a set of values, including:

Possible set of values (e.g. Dates from 1/1/1400 to 12/31/2599)
Meaning of those values (e.g. two-letter codes can represent states of the United States)
Set of operations that can be applied to those values (e.g. functions applicable to integers)

A data format is a representation of the underlying type, which has the same meaning and available operations
associated with the data type. For example, the following values are all valid for Datetime data type, but each is
represented in a different format:

12/31/2021
31-12-2021
December 31, 2021

NOTE: Some data types can be explicitly formatted through functions. Other data types support different
formats implicitly through the application.

How Data Types Are Used

In the Trifacta application, data types are used for the following:

Anomaly detection (Is the value valid or invalid?)
Suggestions (What are the available transformation suggestions for this column based on its data type?)

Copyright © 2022 Trifacta Inc. Page #511

Standardization (How can all of these valid values be standardized for the column's data type?)
Pattern recognition (How to identify different formats in the same column?)

Data Types

Trifacta supports the following categories of data types:

Logical data types

A logical data type is a class of values that is understood by native system representations.

Tip: These types are recognized internally by Trifacta. Each running environment to which Trifacta
connections natively supports these logical data types.

These data types have no additional specification requirements:

Data
Type

Description

String Data
Type

Any non-null value can be typed as String. A String can be anything.

Integer
Data Type

The Integer data type applies to positive and negative numeric values that have no decimal point.

Decimal
Data Type

Decimal data type applies to floating points up to 15 digits in l

In the , this data type is referenced asTrifacta application
In storage, this data type is written as Double.

ength.

.Decimal

Boolean The Boolean data type expresses true or false values.
Data Type

Datetime Trifacta® supports a variety of Datetime formats, each of which has additional variations to it.
Data Type

Object An Object data type is a method for encoding key-value pairs. A single field value may contain one or more sets of key-value
Data Type pairs.

Array Data An array is a list of values grouped into a single value. An array may be of variable length; in one record the array field may
Type contain two elements, while in the next record, it contains six elements.

Formatting differences may apply. For example, Trifacta may recognize Y and N as Boolean data type, while
other systems may not.

Complex data types

A complex data type typically is defined by applying additional restrictions on String data type values to define
the class of possible values. For example, Trifacta supports a Gender data type, which validates values such as M
& F and male and female as Gender data type.

The following are the complex data types supported by Trifacta.

Data Type Description

Social Security Number This data type is applied to numeric data following the pattern for United States Social Security numbers.
Data Type

Phone Number Data This data type is applied to numeric data following common patterns that express telephone numbers and known
Type valid phone numbers in the United States.

Email Address Data This data type matches text values that are properly formatted email addresses.
Type

Copyright © 2022 Trifacta Inc. Page #512

Credit card numbers are numeric data that follow the 14-digit or 16-digit patterns for credit cards.Credit Card Data Type

Gender Data Type This data type matches a variety of text patterns for expressing male/female distinctions.

Zip Code Data Type This data type matches five- and nine-digit U.S. zipcode patterns.

State Data Type State data type is applied to data that uses the full names or the two-letter abbreviations for states in the United
States.

IP Address Data Type The IP Address data type supports IPv4 address.

URL Data Type URL data type is applied to data that follows generalized patterns of URLs.

HTTP Code Data Type Values of these data types are three-digit numeric values, which correspond to recognized HTTP Status Codes.

Complex data types are typically defined based on a regular expression applied to String values. For example,
the following regex is used to define the accepted values for the Email Address data type:

 "regexes": [
 "^[a-z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-z0-9.-]+(?:\\.[a-z0-9-]+)*\\.[a-z]{2,}$"

],

NOTE: Regex-based data types can be modified, although in most cases, it is unnecessary. Regular
expressions are considered a developer-level configuration. For more information, please contact
Alteryx Customer Success Services.

Logical and complex data types

Data type Category Internal data Notes
type

String Data Type logical String The default data type. Any non-empty/non-value is valid for String data
type.

Integer Data Type logical Int Use NUMFORMAT Function to format these values. Underlying values
are not modified.

Decimal Data Type logical Float Use NUMFORMAT Function to format these values. Underlying values
are not modified.

Boolean Data Type logical Bool

Datetime Data Type logical Datetime Use DATEFORMAT Function to format these values. Underlying values
are not modified.

Object Data Type logical Map/Object

Array Data Type logical Array

Social Security Number complex String String data type constrained by a regular expression.
Data Type

Phone Number Data Type complex String String data type constrained by a regular expression.

Email Address Data Type complex String String data type constrained by a regular expression.

Credit Card Data Type complex String String data type constrained by a regular expression.

Gender Data Type complex String String data type constrained by a regular expression.

Zip Code Data Type complex String String data type constrained by a regular expression.

State Data Type complex String String data type constrained by a regular expression.

IP Address Data Type complex String String data type constrained by a regular expression.

URL Data Type complex String String data type constrained by a regular expression.

Copyright © 2022 Trifacta Inc. Page #513

mailto:a-z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-z0-9.-]+(?:\\.[a-z0-9-]+)*\\.[a-z]{2

complex String String data type constrained by a regular expression.
HTTP Code Data Type

Types in Source Data

Depending on the source system, imported data may be typed to Trifacta data types according to one of the
following methods.

Tip: For each method, Trifacta attempts to map the source data to one of the above data types. For
schematized sources, however, you may wish to use the original data types in the source. Optionally, you
can choose to disable the mapping of source to internal data type. See "Type Inference" below.

Schematized files

Some file formats, such as Avro or Parquet, are stored in a non-readable format. Part of the metadata associated
with the file is information identifying the schema of the file. A schema represents the data types and other
constraints of individual columns. It can be read independently of the data in the source table.

Schematized tables

For relational sources, schema information is typically stored with the table. This schema information defines data
type validation within the datastore and can be read independently from the source table.

Tip: Database schemas can be used to define a class of tables to ensure consistency within a database.

Inferred data types

In most cases, an imported data source is assigned a data type for each column based on a review of a subset of
the data. For example, a CSV file contains no information about the data types of individual columns. The data
types for each column must be assigned by Trifacta. This process is called type inference. For more information,
see "Type Inference" below.

Type Inference

By default, the Trifacta application applies type inference for imported data. The application attempts to infer a
column's appropriate data type in the application based on a review of the first lines in the sample.

Tip: In many programming languages, a column must be explicitly "type cast" to a data type as part of a
functional operation. Wrangle handles this typecasting for you through the process of type inference.

NOTE: Mapping source data types to Trifacta data types depends on a sufficient number of values that
match the criteria of the internal data type. The mapping of import types to internal data types depends
on the data.

Type inference needs a minimum of 25 rows of data in a column to work consistently.
If your dataset has fewer than 20 rows, type inference may not have sufficient data to properly infer the
column type.

In some datasets, the first 25 rows may be of a data type that is a subset of the best matching type. For example,
if the first 25 rows in the initial same match the Integer data type, the column may be typed as Integer, even if the
other 2,000 rows match for the Decimal data type. If the column data type is unmodified:

Copyright © 2022 Trifacta Inc. Page #514

The data is written out from Trifacta as Integer data type. This works for the first 25 rows.
The other 2,000 rows are written out as null values, since they do not match the Integer data type. If the
source data used decimal notation (e.g. 3.0 in the source), then those values are written out as null
values, too.

In this case, it may be easier to disable type inference for this dataset.

Tip: If you are having trouble getting your imported dataset to map to expected data types, you can
disable type inference for the individual dataset. For more information, see Import Data Page.

After data is imported, the Trifacta application provides some mechanisms for applying stronger typecasting to
the data. Example:

If all input values are double-quoted, then Trifacta evaluates all columns as String type. As a result, type
inference cannot be applied.
Since non-String data types cannot be inferred, then the first row cannot be detected as anomalous
against the inferred type (String). Column headers cannot be automatically detected from double-quoted
source files.

Tip: The default data type is String. If the Trifacta application is unable to evaluate a column's data type,
the type is mapped to String data type. Within the application, you can use functions to remap the data
type or to parse values according to a specified type.

For more information, see "Working with Data Types" below.

Disable type inference

For schematized files or tables, the Trifacta application inference of data type from the source may result in
incorrect initial typing of a dataset's columns in the application. As needed, you can disable type inference for the
following:

NOTE: When type inference is disabled for imported datasets, it is not disabled within the Trifacta
application. For more information, see "Type inference in the application" below.

Disable for individual files: In the Import Data page, select the file. In the right-hand column, click Edit
Settings. For more information, see File Import Settings.

Disable for individual tables: In the Import Data page, select the table. In the right-hand column, click Edi
t Settings. For more information, see Relational Table Settings.

Disable for individual connections: In the Connections page, edit the connection. In the Edit Connection
window, select Disabled under Default Column Data Type Inference. By default, all datasets through this
connection have type inference disabled. For more information, see Create Connection Window.

Disable globally: If desired, you can disable type inference for all users of the workspace. For more
information, see Disable Type Inference.

Copyright © 2022 Trifacta Inc. Page #515

Type inference in the application

Within the Trifacta application, column data types may be re-inferred based on your activities in the Transformer
page:

NOTE: Disabling type inference does not disable the re-inference of types in the Transformer page.

The following general actions may result in column data types being re-inferred:

After a sample is taken, column data types are inferred based on the first set of rows in the sample.
If a transform or function is provided with a data type that does not match the expected input data type, the
values are typecast to the expected output, so you may see changes to the data type of the output to
better align with the function.
Multi-dataset operations generally do not cause re-inferring of data types. However, if there is a mismatch
of data types between two columns in a union operation, for example, the data type of the first dataset is
preferred.

Working with Data Types

After data has been imported, you can remap individual column types through recipe steps. For more information,
see Change Column Data Type.

Data types in the grid

When a sample is loaded, the data types and their formats for each column are inferred by default. Data types
and formatting information is displayed for each column in the Transformer page.

Figure: Column header example

At the top of each column, you can review graphical representations of type information:

Data type indicator: To the left of the column name, you can see a graphic of the data type. In the above,
the data type is set to Zip code.

Tip: Select the data type indicator to change the column to a different data type. This change is
added as a step in your recipe. See "Changing the data type."

Data quality bar: Below the column name, you can see a bar indicating the relative percentage of valid,
invalid and empty values in the column, compared to the listed data type.

Green: Valid for the data type

Copyright © 2022 Trifacta Inc. Page #516

Red: Invalid for the data type
Gray: empty or null

Tip: Select one of the colored bars to be prompted by a set of transformation suggestions
that can be applied to the selected set of values.

Column histogram: Below the data quality bar, you can see the distribution of values within the column.
The column histogram may represent the data in different ways, depending on the column's data type.

Tip: Click or SHIFT-click values in the histogram to be prompted for transformation suggestions
that can be applied to the selected values.

For more information, see Data Grid Panel.

For more information, see Column Menus.

Changing the data type

Change the data type through the data type menu at the top of a column.

Tip: For some types, such as Datetime type, you must select a data format when you are selecting the
type. See below.

NOTE: Changing the data type may not change the underlying logical type. For example, if you change a
String column to a Gender column, the underlying data is still stored as String values.

Changing type across multiple columns

To change the data type for multiple columns, you can a transformation similar to the following, which changes
the data type from the reqProdId column to the prodC column and all columns in between:

Transformation Name Change column data type

Parameter: Columns Range

Parameter: Column reqProdId~prodC
list

Parameter: New type String

Changing the data format

You can use the following functions to apply formatting on top of a column of a specified data type. For example,
depending on your locale, numbers may require different formatting for use of the decimal point and the digit
separator.

NOTE: When you apply a formatting function to a column, the data appears in the specified format in the
Trifacta application, but the underlying data is unmodified. Formatting changes appear as a step in your
recipe and are applied to the generated results.

Copyright © 2022 Trifacta Inc. Page #517

Formatting Applicable Description
Function Data Type

NUMFORMA Integer, Formats a numeric set of values according to the specified number formatting. Source values can be a
T Function Decimal literal numeric value, a function returning a numeric value, or reference to a column containing an Integer

or Decimal values.

DATEFORMA Datetime Formats a specified Datetime set of values according to the specified date format. Source values can be a
T Function reference to a column containing Datetime values.

UNIXTIMEFO Datetime Formats a set of Unix timestamps according to a specified date formatting string.
RMAT
Function

Type functions

The Trifacta application provides a set of functions for managing types.

Validation functions

These functions can be used to test for valid or invalid values against a specific data type.

Function Description

VALID Tests whether a set of values is valid for a specified data type and is not a null value.
Function

ISMISMATC Tests whether a set of values is not valid for a specified data type.
HED
Function

IFVALID The IFVALID function writes out a specified value if the input expression matches the specified data type. Otherwise, it
Function writes the source value. Input can be a literal, a column reference, or a function.

IFMISMATC The IFMISMATCHED function writes out a specified value if the input expression does not match the specified data type
HED or typing array. Otherwise, it writes the source value. Input can be a literal, a column reference, or a function.
Function

Parsing functions

These functions can be used to parse String values against a specific data type.

Function Description

PARSEINT Evaluates a String input against the Integer datatype. If the input matches, the function outputs an Integer value. Input can
Function be a literal, a column of values, or a function returning String values.

PARSEFLOA Evaluates a String input against the Decimal datatype. If the input matches, the function outputs a Decimal value. Input can
T Function be a literal, a column of values, or a function returning String values.

PARSEBOOL Evaluates a String input against the Boolean datatype. If the input matches, the function outputs a Boolean value. Input
Function can be a literal, a column of values, or a function returning String values.

PARSEDATE Evaluates an input against the default input formats or (if specified) an array of Datetime format strings in their listed order.
Function If the input matches one of the formats, the function outputs a Datetime value.

PARSEARRA Evaluates a String input against the Array datatype. If the input matches, the function outputs an Array value. Input can be
Y Function a literal, a column of values, or a function returning String values.

PARSEOBJE Evaluates a String input against the Object datatype. If the input matches, the function outputs an Object value. Input can
CT Function be a literal, a column of values, or a function returning String values.

PARSESTRIN Evaluates an input against the String datatype. If the input matches, the function outputs a String value. Input can be a
G Function literal, a column of values, or a function returning values. Values can be of any data type.

Copyright © 2022 Trifacta Inc. Page #518

Managing null and empty values

These functions allow you to generate or test for missing or null values.

Function Description

ISNULL The ISNULL function tests whether a column of values contains null values. For input column references, this function
Function returns true or false.

NULL The NULL function generates null values.
Function

IFNULL The IFNULL function writes out a specified value if the source value is a null. Otherwise, it writes the source value. Input
Function can be a literal, a column reference, or a function.

ISMISSING The ISMISSING function tests whether a column of values is missing or null. For input column references, this function
Function returns true or false.

IFMISSING The IFMISSING function writes out a specified value if the source value is a null or missing value. Otherwise, it writes the
Function source value. Input can be a literal, a column reference, or a function.

Type Conversions on Export

The Trifacta application attempts to map the data types that you have specified to match data types in the target
platform.

NOTE: Values that do not match the data type of the target system for a column are subject to the
method by which the target system handles mismatches. Rows could be dropped. Values can be
rendered as null values. You should attempt to verify that all columns have valid values before generating
results.

NOTE: Missing or null values may be treated differently between target systems. Additionally, if these
systems feed downstream systems, those systems may have independent rules for managing missing or
null values.

Type Conversions

Item Description

Avro Data Type Conversions This section covers data type conversions between the Trifacta® application and the Avro file
format.

DB2 Data Type Conversions This section covers data type conversions between the Trifacta® application and DB2 databases.

Hive Data Type Conversions This section covers data type conversions between the Trifacta® application and Hive.

Oracle Data Type Conversions This section covers data type conversions between the Trifacta® application and Oracle
databases.

MySQL Data Type Conversions This section covers data type conversions between the Trifacta® application and MySQL
databases.

Parquet Data Type Conversions This section covers data type conversions between the Trifacta® application and the Parquet file
format.

Postgres Data Type Conversions This section covers data type conversions between the Trifacta® application and PostgreSQL
databases.

Redshift Data Type Conversions This section covers data type conversions between the Trifacta® application and Redshift.

Snowflake Data Type Conversions This section covers data type conversions between the Trifacta® application and Snowflake
databases.

Copyright © 2022 Trifacta Inc. Page #519

AWS Glue Data Type Conversions This section covers data type conversions between the Trifacta® application and AWS Glue.

Salesforce Data Type Conversions This section covers data type conversions between the Trifacta® application and Salesforce.

SQL Server Data Type Conversions This section covers data type conversions between the Trifacta® application and SQL Server
databases.

SQL DW Data Type Conversions This section covers data type conversions between the Trifacta® application and SQL DW
datastores.

Databricks Tables Data Type This section covers data type conversions between the Trifacta® application and Databricks
Conversions Tables.

Tableau Hyper Data Type Conversions This section covers data type conversions between the Trifacta® application and Tableau Hyper
format.

Teradata Data Type Conversions This section covers data type conversions between the Trifacta® application and Teradata
databases.

SharePoint Data Type Conversions This section covers data type conversions between the Trifacta® application and SharePoint.

For more information, see Type Conversions.

Copyright © 2022 Trifacta Inc. Page #520

Overview of Schema Management
Contents:

Overview of Schemas
Input type conversions

Schema Validation
Limitations
Enable
Use

Schema Refresh
Limitations
Effects of refreshing schemas
Refresh your schemas

Output Schemas
Output type conversions
Target schemas

A schema refers to the sequence and data type of columns in a dataset. Schemas are applicable to relational
tables and some file formats. This section provides an overview of how Trifacta® enables the capture and
tracking of changes of input schemas as well as the methods available for transforming your data to match a
target schema.

Overview of Schemas

A schema is a skeleton structure that represents the logical view of the dataset. The dataset can be a file, table,
or a SQL query in a database. A schema defines how the data is structured and organized. Schema information
includes:

Column names
Column ordering
Column data types

Schemas may apply to relational tables and schematized file formats such as Avro and Parquet.

Input type conversions

Depending on the data source, Trifacta® can read in native data types into Trifacta data types. For more
information, see Type Conversions.

Schema Validation

Over time, schema sources may change in major and minor ways, often without warning. From within the Trifacta
application, schema changes may appear as broken recipe steps and can cause data corruption downstream. To
assist with these issues, the Trifacta application can be configured to monitor schema changes on your dataset.
Schema validation performs the following actions on your dataset:

On read, the schema information from the dataset is captured and stored separately in the Trifacta
database. This information identifies column names, data types, and ordering of the dataset.
When the dataset is read during job execution, the new schema information is read and compared to the
stored version, which enables identification of changes to the dataset.

Copyright © 2022 Trifacta Inc. Page #521

Tip: This check occurs as the first step of the job execution process and is labeled as Schema
validation.

You can configure the Trifacta application to halt job execution when schema validation issues have been
encountered.

Tip: Configuration settings can be overridden for individual jobs.

Limitations

Schema validation applies only to sources that have published schemas (relational datasources and
schematized file types).

NOTE: CSV files are not supported.

NOTE: If you attempt to refresh the schema of a parameterized dataset based on a set of files,
only the schema for the first file is checked for changes. If changes are detected, the other files
are contain those changes as well. This can lead to changes being assumed or undetected in later
files and potential data corruption in the flow.

Enable

Schema management service

If you are not enabling schema validation, the Schema Management service can be disabled.

Steps:

1. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json .
For more information, see Platform Configuration Methods.

2. Locate the following parameter and set it to false:

"schema-management-service.enabled": true,

3. Save your changes and restart the platform.

Settings

At the project or workspace level, an administrator can set the default settings for outputs to validate schemas or
not.

Tip: Workspace-level defaults can be overridden at the job level, even if the workspace-level settings are
disabled. For more information, see Run Job Page.

Use

When schema validation is enabled and a job is launched, the schema validation check is performed in parallel
with the data ingestion step. The results of the schema validation check are reported in the Job Details page in
the Schema validation stage.

Copyright © 2022 Trifacta Inc. Page #522

NOTE: Jobs may be configured to fail if schema validation checks fail. If jobs are not configured to fail,
jobs may complete with warnings and publish output data to the specified targets, when schema
validation fails.

For more information, see Job Details Page.

When schema validation detects differences in the Job Details page, those findings can be explored in detail.
See Schema Changes Dialog.

Job-level overrides

You can override the project or workspace level settings for schema validation for individual jobs. For more
information, see Run Job Page.

Schema Refresh

Schema refresh enables on-demand updating of your imported dataset schemas to capture changes to columns.
For example, when you are working with datasets in a flow view, you can refresh your imported datasets'
schemas by checking the source schema for changes. Schema refresh automatically generates a new initial
sample, which allows you to gather fresh data in the Transformer page.

Schema refresh applies to:

Relational schemas
Schematized files
Delimited files

NOTE: Delimiter files include CSVs and TSVs and can include other files whose delimiters can be
inferred by the Trifacta application during import. Delimited files do not contain data type
information; data types are inferred by the Trifacta application for these file types.

NOTE: File types that require conversion, such as Excel, PDF, and JSON, are not supported.

Key Benefits:

Reduces the number of duplicate or invalid datasets created from the same source.
Reduces challenges of replacing datasets and retaking samples.

Limitations

NOTE: If you attempt to refresh the schema of a parameterized dataset based on a set of files, only the
schema for the first file is checked for changes. If changes are detected, the other files are assumed to
contain those changes as well. This can lead to changes being assumed or undetected in later files and
potential data corruption in the flow.

You cannot refresh the schemas of reference datasets or uploaded sources.

Schema refresh does not apply to any file formats that require conversion to native formats. These file
formats include PDF, Excel, and JSON among others.

Copyright © 2022 Trifacta Inc. Page #523

If a column's data type is modified and other changes, such as column name changes, are not detected,
this change is not considered a schema drift error.

Effects of refreshing schemas

When you choose to refresh a schema, the schema is refreshed without checking for changes,
which forces the invalidation of all samples and recollection of a new initial sample. Other
samples must be recreated. In some environments, this sample collection incurs costs.

When you refresh the schema in the Trifacta application:

The source schema is applied to the imported dataset in all cases.
All the existing samples are invalidated.
A new initial sample is generated, which updates the previewed data. This may take some time.

Addition or removal of columns may cause recipe steps to break, which can cause any transformation jobs
to fail. You must fix these broken steps in the Recipe panel.

Refresh your schemas

For more information on how to refresh the schemas of your datasets, see:

Library Page
Dataset Details Page
View for Imported Datasets

Via API:

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/asyncRefreshSchema

Output Schemas

Output type conversions

Depending on the output system, Trifacta can deliver your results in columns and data types native to the target.
For more information, see Type Conversions.

Target schemas

As needed, you can import a dataset the columns of which can serve as the target of your transformation efforts.
When this target schema is imported, it is super-imposed on the columns of your dataset in the Transformer
page, allowing you to quickly change the naming, order, and data typing of your columns to match the target
schema. For more information, see Overview of RapidTarget.

Copyright © 2022 Trifacta Inc. Page #524

https://api.trifacta.com/ee/es.t/index.html#operation/asyncRefreshSchema

Overview of Standardization
Contents:

Standardization Methods
Invalid Values
Standardize Values by Clustering
Standardize Formatting by Patterns
Standardize Using Functions

Functions for strings
Functions for numbers
Functions for dates

Custom Data Types
Custom type using a regular expression

Trifacta® provides multiple mechanisms for reviewing your column values and identifying patterns in the data
format or similar values which mean the same thing. This section summarizes the available methods of
standardization, as well as their recommended uses.

Standardization Methods

Through simple visual tools, you can select the patterns or clustered value to standardize and, when prompted,
the patterns or values to use as their standard. As needed, you can apply formatting or structuring functions to
the data for finer grain controls.

You can use any of the following methods for standardizing values in your dataset's columns. Depending on the
situation, you may choose to mix-and-match these methods. Details on these methods are below.

Method Description Recommended Uses How to Use

By Trifacta can identify similar values using one of the Available
clustering available algorithms for comparing values. You can Standardize values to correct spelling through the

compare values based on spelling or language- differences, capitalization, whitespace, and Standardize
independent pronunciation. other errors. Page

Values must be consistent across rows of
the column.
Primarily used for string-based data types.

By Trifacta can identify common patterns in a set of values Available in the
pattern and suggest transformations to standardize the values to Standardize values to follow a consistent Patterns tab in

a common format. format, such as phone numbers or social Column Details
security numbers. Panel
Data type follows a somewhat consistent
format and needs reshaping.

By You can apply one or more specific functions to cleanse Edit column
function your data of minor errors in formatting or structure. Good method for improving the with formula in

performance of pattern- or algorithm-based the
matching. Transform
Some functions are specific to a data type, Builder .
while others have more general application.

Mix-and- You can use combinations of the above methods for
match more complex use cases. Combine function-based standardization for

global changes to all values with cluster- or
pattern-based standardization for individual
value changes.

Copyright © 2022 Trifacta Inc. Page #525

Invalid Values

These standardization techniques assume that your column contains only valid or empty values.

Tip: Standardization may help to cut down the number of invalid values. Before you begin standardizing,
however, you should select the red bar in the column histogram to review the values that are invalid for
the current type and to fix them via suggestion if possible. For more information, see Find Bad Data.

Standardize Values by Clustering

Using one of the supported matching algorithms, Trifacta can cluster together similar column values. You can
review the clusters of values to determine if they should be mapped to the same value. If so, you can apply the
mapping of these values within the application.

For more information, see Overview of Cluster Clean.

Standardize Formatting by Patterns

For individual columns, Trifacta can analyze column values for patterns and then provide suggestions for how to
normalize the patterned values into a consistent format. For example, the same US phone number can be
represented in any of the following methods:

555-1212
415-555-1212
4155551212
(415) 555-1212
+1 (415) 555-1212

Tip: Pattern-based standardization is useful for confirming values in a column to a specific format. This
method is applicable to data types like phone numbers, dates, social security numbers, and to a lesser
extend email addresses and URLs.

You can apply pattern-based standardization through the Patterns tab. See Column Details Panel.

Standardize Using Functions

The following functions can be useful for standardizing values.

Functions for strings

All values can be converted to string, so these string functions can be applied to any column if its data type is
converted to String data type.

Tip: The clustering algorithms may apply some of these functions to values in your column for purposes
of comparison.

Category Function Description

String CHAR Function Generates the Unicode character corresponding to an inputted Integer value.
Conversion

 UNICODE Function Generates the Unicode index value for the first character of the input string.

Case Conversion UPPER Function All alphabetical characters in the input value are converted to uppercase in the output value.

 LOWER Function All alphabetical characters in the input value are converted to lowercase in the output value.

Copyright © 2022 Trifacta Inc. Page #526

 PROPER Function Converts an input string to propercase. Input can be a column reference or a string literal.

Cleanse TRIM Function Removes leading and trailing whitespace from a string. Spacing between words is not
Functions removed.

TRIMQUOTES Removes leading and trailing quotes or double-quotes from a string. Quote marks in the middle
Function of the string are not removed.

 REMOVEWHITESP Removes all whitespace from a string, including leading and trailing whitespace and all
ACE Function whitespace within the string.

 REMOVESYMBOL Removes all characters from a string that are not letters, numbers, accented Latin characters,
S Function or whitespace.

String Sizing LEFT Function Matches the leftmost set of characters in a string, as specified by parameter. The string can be
Functions specified as a column reference or a string literal.

 RIGHT Function Matches the right set of characters in a string, as specified by parameter. The string can be
specified as a column reference or a string literal.

 PAD Function Pads string values to be a specified minimum length by adding a designated character to the
left or right end of the string. Returned value is of String type.

String See Compare Strings.
Comparison
Functions

Example:

Trifacta supports nesting functions within each other. The following transformation performs some basic cleanup
on all columns in your dataset that are of String cleanup.

Transformation Name Edit column with formula

Parameter: Columns *

Parameter: Formula IFVALID($col,'String',LEFT(UPPER(TRIM($col)),32))

The Columns value is a wildcard, which in this case applies the transformation across all columns in the
dataset (*).
In the Formula, you see a nested expression. If the value in the column is valid against String data type,
then, do the following to the column value:

NOTE: The IFVALID function tests each row value for validation against the specified data type. It
does not test the column against the data type. See IFVALID Function.

The TRIM function removes leading and trailing whitespace, which may register as a difference
between values. See TRIM Function.
The UPPER function then converts the output of the TRIM function to all uppercase. So, differences
in capitalization are eliminated. See UPPER Function.
The LEFT function truncates the output of the UPPER function to a maximum of 32 characters. See
LEFT Function.

The net result of this single step applied to all columns is to eliminate whitespace, convert to uppercase, and then
truncate the length of each string to only 32 characters.

For more information, see Cleanse Tasks.

Functions for numbers

You can use the following functions to standardize numeric values.

Copyright © 2022 Trifacta Inc. Page #527

Function Description

ABS Computes the absolute value of a given numeric value. The value can be a Decimal or Integer literal or a reference to a
Function column containing numeric values.

ROUND Rounds input value to the nearest integer. Input can be an Integer, a Decimal, a column reference, or an
Function expression. Optional second argument can be used to specify the number of digits to which to round.

TRUNC Removes all digits to the right of the decimal point for any value. Optionally, you can specify the number of digits to which to
Function round. Input can be an Integer, a Decimal, a column reference, or an expression.

NUMFORM Formats a numeric set of values according to the specified number formatting. Source values can be a literal numeric value,
AT Function a function returning a numeric value, or reference to a column containing an Integer or Decimal values.

Example:

For the NUMFORMAT function, you can specify the full format to which you want the numeric values in the
column to confirm. In the following example, all values that contain a decimal point and match with the Decimal
(Float) type are forced to add a value before the decimal. This step converts values like .00 to 0.00, which
standardizes the format of your numbers.

Transformation Edit column with formula
Name

Parameter: *
Columns

Parameter: IF(FIND($col, '.')>0, IFVALID($col, 'Float',NUMFORMAT(ROUND($col,
Formula 2), '0.00')),$col)

The Columns value is a wildcard, which in this case applies the transformation across all columns in the
dataset (*).
In the Formula, you see a nested expression, which is a bit more complicated than the preceding String
example.

The outer IF function tests if the FIND function returns a non-zero value when searching each
column value for the period (.). Values that match could possibly be decimals and require further
evaluation:
If the value in the column is valid against the Decimal (Float) data type then do the following:

ROUND the value to two decimal points. For more information, see ROUND Function.
Format the value in the following manner:

0.00

The above format includes the two decimal points to which you rounded, adding any extra
zeros if they are not present in the input rounded value.
Additionally, another zero is inserted in front of the decimal if it is missing in the output of the
ROUND function.
For more information on number formats, see NUMFORMAT Function.

For more information, see Normalize Numeric Values.

Functions for dates

Since dates are structured patterns of string-based data, the best approach is to begin by using the Patterns tab
in the Column Details panel. See below.

For more detailed modifications, you can specify formatting strings that are applied as part of the DATEFORMAT
function to the dates in your column.

Function Description

Copyright © 2022 Trifacta Inc. Page #528

DATEFORMAT Formats a specified Datetime set of values according to the specified date format. Source values can be a reference to
Function a column containing Datetime values.

For more information including examples on the DATEFORMAT function, see Format Dates.

Custom Data Types

You can create custom datatypes to use as a form of standardization. Values in a column that do not conform to
the custom type are flagged as invalid and can be triaged accordingly.

NOTE: A custom data type does not inherently provide a means of standardizing the values. The values
flagged as invalid must be converted to valid values or removed.

Custom type using a regular expression

A custom data type can be created based on a user-defined regular expression.

NOTE: Regular expressions are powerful tools for creating matching patterns. They are considered
developer tools.

For more information, see Create Custom Data Types Using RegEx.

Copyright © 2022 Trifacta Inc. Page #529

Overview of Cluster Clean
Contents:

Example - Multiple methods of clustering
Clustering Algorithms

Similar strings
Pronunciation

Job Execution
Disable

Cluster clean enables users of Trifacta® to standardize values in a column by clustering similar values together.
Using one of the supported matching algorithms, Trifacta can cluster together similar column values. You can
review the clusters of values to determine if they should be mapped to the same value. If so, you can apply the
mapping of these values within the application.

For more information on how to apply cluster clean, see Standardize Page.
For more information on other methods of standardization, see Overview of Standardization.

Artifacts:

When a cluster clean step is added to your recipe, the number of individual changes can be many megabytes of
data. Instead of storing these objects within the recipe definition, they are stored as a set of artifacts in the artifact
storage database and referenced from the recipe.

These artifacts exist outside the scope of the recipe file.
These artifacts must be stored in a Trifacta database for the step to be editable and exportable.

NOTE: If the artifact storage service is disabled, this feature is unusable.

When a flow is exported, an artifact.data file is included as part of the export. This file must be
imported with the flow definition, or the cluster clean step in the imported flow is broken. For more
information, see Export Flow.

Example - Multiple methods of clustering

Source:

The following dataset includes some values that could be standardized:

RowId Values

Row01 Apple

Row02 pear

Row03 apple

Row04 pair

Row05 Åpple

Row06 pare

When you standardize using a spelling-based algorithm, the following values are clustered:

Copyright © 2022 Trifacta Inc. Page #530

Source Value New Value

Apple

apple

Åpple

 Unclustered values

pear

pair

pare

After you select the cluster of values at top, you can enter apple, in the right context panel to replace that cluster
of values with a single string.

In the above, the unclustered values are dissimilar in spelling, but in English, they sound the same (homonyms).
When you select the Pronunciation-based algorithm, these values are clustered:

Source Value New Value

pear

pair

pare

 Unclustered values

Apple apple

apple apple

Åpple apple

When you select the top values clustered by pronunciation, you can enter pear in the right context panel.

Results:

The six source values have been reduced to two final values through two different methods of clustering. See
below for more information on the clustering algorithms.

Source Value New Value

pear pear

pair pear

pare pear

Apple apple

apple apple

Åpple apple

You can apply cluster-based standardization through the Standardize Page.

Copyright © 2022 Trifacta Inc. Page #531

Clustering Algorithms

The following algorithms for clustering values are supported.

Similar strings

For comparing similar strings, the following methods can be applied:

Fingerprint

The fingerprint method compares values in the column by applying the following steps to the data before
comparing and clustering:

NOTE: These steps are applied to an internal representation of the data. Your dataset and recipe are not
changed by this comparison. Changes are only applied if you choose to modify the values and add the
mapping.

1. Remove accents from characters, so that only ASCII characters remain.
2. Change all characters to lowercase.
3. Remove whitespace.
4. Split the string on punctuation, any remaining whitespace, and control characters. Remaining characters

are assembled into groups called tokens.
5. Sort the tokens and remove any duplicates.
6. Join the tokens back together.
7. Compare all tokenized values in the column for purposes of clustering.

Fingerprint Ngram

This method follows the same steps as those listed above, except that tokens are broken up based on a specific
(N) number of characters. By default, Trifacta uses 2-character tokens.

Tip: This method can provide higher fidelity matching, although there may be performance impacts on
columns with a high number of unique values.

Pronunciation

Values are clustered based on a language-independent pronunciation.

This method uses the double metaphone algorithm for string comparison. For more information, see
Compare Strings.

Job Execution

When a job is executed, clustering that has been applied through the data grid is applied to the full dataset.
Implications:

If you have auto-standardized values, the most common value that is applied during job execution is the
value that appeared most frequently in the sample that was displayed when the cluster clean step was
defined. The most common value is not redetermined based on the entire dataset.
Values that were not part of the displayed sample may not be factored in the standardization process
during job execution.

Copyright © 2022 Trifacta Inc. Page #532

Disable

This feature is enabled by default. To disable, please complete the following steps.

Steps:

1. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json .
For more information, see Platform Configuration Methods.

2. Locate the following setting and set it to false.

"feature.columnStandardization.enabled"

3. Save changes and restart the platform.

Copyright © 2022 Trifacta Inc. Page #533

Overview of Visual Profiling
Contents:

Uses
Example
Visual Profiling Interfaces

Data Grid
Column Details
Pattern Profiling
Job Details

Enable
Profiling Engine

Exact vs. Approximate Metrics in Visual Profiles

In Trifacta®, visual profiling provides real-time interactive visualizations of your dataset to assist in the
discovery, cleansing, and transformation of your data. Visual representations are required for interpreting large
volumes of data, and the platform's innovative profiling techniques visualize key statistical information in a
dynamic, easy-to-consume format for faster transformation.

At the individual column level, visual profiles provide interactive statistical information visualized in an
appropriate manner for the data type. For example, columns of Zip Code data type can be represented on
a geographical map of the United States.
All visual profiles are interactive, so you can dig into the details of the data. Select one or more elements in
a profile, and you can take immediate action on the data, either through steps you define or through
transform recommendations provided by the platform.
The Transformer page displays a set of recommended actions to take based on the values, rows, or
columns that you select in the data grid. These recommendations are motivated by platform logic and prior
usage information. For more information, see Overview of Predictive Transformation.

Visual profiles are available while you transform your data in the Transformer page, when you dig into the detail
of individual columns, and after you execute your job at scale. Each of these interfaces has different usage
patterns designed to accelerate and simplify data transformation for that specific area of the process.

Uses

Locate anomalies. Visual profiling surfaces missing or invalid data in individual columns. These values
can then be selected and transformed as needed.
Identify distributions. In the data grid, you can review value distribution for each column in your dataset.
When exploring the column details, you can also identify and select statistical outliers among your column
data.
Identify areas for further refinement. After a job has completed, you can review its visual profile through
the application and then take action on problematic data.

Example

In the following example, a dataset containing address information has been loaded in the Transformer page:

Copyright © 2022 Trifacta Inc. Page #534

Figure: Example dataset

In this example, we are interested in exploring geographic information. From the column drop-down for the Zip
column, you select Column Details.

Explore detail on demand. Generate visual profiles from the column drop-down.

When you explore the column details of the new column, you can see the following representation of the data:

Figure: Zip Code data type represented as a U.S. map

Copyright © 2022 Trifacta Inc. Page #535

In this case, the values in your Zip column are recognized as being of Zipcode data type. The application then
represents these values as a U.S. map, which quickly renders numeric data into a format that's much easier to
read and analyze.

Type-specific visualizations. The profile of the column values is represented in a type-specific
visualization to assist in rapid analyzing and taking action on some or all values in the column.

Visual Profiling Interfaces

Wherever you can interact with data, visual profiling simplifies the process.

Customized visualizations. Each interface has been optimized for the scope of the data it is visualizing,
whether the data is a single column, the entire sample of a dataset, or generated results.

Data Grid

In the Transformer page, the data grid is a tabular representation of a sample of your dataset. It is the primary
interface through which you build your transformation recipes. Profiling tools:

Data Quality Bar: At the top of each column, you can see graphs counting the missing, invalid, and valid
values for the column's current data type. Select one of the categories, and you can take immediate action
on all of the category's values in the column.
Column Histogram: Individual values in the column are represented in a histogram at the top of the
column. You can select one or more of these values, review relevant data, and take action.
See Data Grid Panel.

Whenever a transform is selected or specified, a preview of its effects is displayed in the data grid, including any
changes to the data quality bar and column histogram of affected columns. See Transform Preview.

For additional details on visual transformation, see Transform Basics.

Column Details

Through the Transformer page, you can explore statistical details about individual columns, visually represented
based on the column's data type. From the drop-down for any column, select Column Details.

In this interface, you can review the range of values in the column and can optionally select one or more values
from other columns to see which values in the current column apply. The visualizations for a column depend on
the data type.

See Column Details Panel.

Pattern Profiling

In the Column Details panel, you can review profiling of patterns detected in the values for the selected column.
These patterns can be selected, which identifies the relevant values in the column that match the pattern. You
can then use these selections as the basis for building transforms that apply to the matching values.

Job Details

After the application has successfully executed a job for which profiling is enabled, you can explore a
visualization of the generated dataset in the Job Details page. You can download your visual profile and results of
your data quality rules on the entire dataset in PDF and JSON format.

For more information on data quality rules, see Overview of Data Quality.

For more information on job details, see Job Details Page.

Copyright © 2022 Trifacta Inc. Page #536

Enable

Visual profiling is enabled on a per-job basis. See Run Job Page.

Profiling Engine

Decoupled from the user interface, the profiling engine performs the calculations required to power the
visualizations before job execution and after the job results have been generated.

In the Transformer page, the profile engine is called for incremental changes whenever a step is added to
your recipe, so that you can see immediate updates to the visual profile for each column. It utilizes
separate algorithms for generating the data quality bars, column histograms, value counts, frequency
distributions, and other relevant statistics. When you dig into the column details, the visual profile is up-to-
date and can be updated again based on your selections in that interface.
During job execution, it is queried as a separate job when profiling is executed across the entire dataset.

NOTE: When you choose to profile your results, you are creating two distinct tasks: 1) run your transform
recipe against your source and 2) profile the results. Due to the computational complexity of generating
the interactive results, a profiling task often takes longer to complete than a transformation task and is
therefore an optional element of a job run.

Exact vs. Approximate Metrics in Visual Profiles

Generally, visual profiles represented in the user interface, in places like column histograms and column details,
are exact measurements against the current sample.

On generated results, visual profiles tend to favor approximations.

NOTE: The computational cost of generating exact visual profiling measurements on large datasets in
interactive visual profiles severely impacts performance. Depending on the environment, you may choose
to run profiling jobs on generated results as separate jobs. For more information on enabling this feature,
see Profiling Options.

Below, you can review details on how metrics are calculated in visual profiling performed in different areas of the
platform.

NOTE: It is not possible to calculate the accuracy of approximate calculations due to variations in dataset
sizes and job execution environments.

User Interface

The UI utilizes the local running environment when displaying visual profiles on sampled data.

NOTE: Profiles are executed on the currently sampled data. Results may vary when the full
transformation job is executed.

Metric Type Measurement

Frequency (top-k) Exact

Copyright © 2022 Trifacta Inc. Page #537

Unique value counts Exact

Numerical histograms Exact

Simple statistics (mean, stdev, min, max) Exact

Quartiles Exact

Trifacta Photon Running Environment

Metric Type Measurement

Frequency (top-k) Approximate

Numerical histograms Approximate

Simple statistics (mean, stdev, min, max) Exact

Quartiles Exact

Spark Running Environment

For profiling jobs, the Spark running environment is used for Spark transformation jobs.

Optionally, profiling jobs may be run on Spark for all jobs, regardless of running environment. For more
information, see Profiling Options .

Metric Type Measurement

Frequency (top-k) Approximate

Numerical histograms Approximate

Simple statistics (mean, stdev, min, max) Exact

Quartiles Approximate

Snowflake

For jobs executed in Snowflake, profiling jobs may also be executed in Snowflake.

NOTE: The option to pushdown profiling to Snowflake is selected for individual flows and is only applied
if the job successfully executes on Snowflake. Additional limitations may apply. For more information, see
Flow Optimization Settings Dialog.

NOTE: In Snowflake, calculations of quartiles uses a different algorithm than the same calculations in
Spark. Some differences in values should be expected.

Metric Type Measurement

Frequency (top-k) Approximate

Numerical histograms Approximate

Simple statistics (mean, stdev, min, max) Exact

Quartiles Approximate

Copyright © 2022 Trifacta Inc. Page #538

Overview of Sampling
Contents:

How Sampling Works
Initial Data
Generating samples
Changing sample sizes
Important notes on sampling
Parameterization of samples
Samples management
Cancel Sample Jobs

Choosing Samples
Limitations
Sample Invalidation
Best Practices

Sampling checkpointing
Sample Types

To prevent overwhelming the client or significantly impacting performance, Trifacta® generates one or more
samples of the data for display and manipulation in the client application. Since Trifacta supports a variety of
clients and use cases, you can change the size of samples, the scope of the sample, and the method by which
the sample is created. This section provides background information on how the product manages dataset
sampling.

How Sampling Works

NOTE: Generated samples are created by executing jobs on the applicable running environment. Quick
Scan samples are executed in Trifacta Photon. Full Scan samples are generated in the applicable
running environment on the cluster. Each running environment has a proprietary method of calculating
the available volume of data in memory which is used for executing the sampling job that is launched in
the running environment. As a result, the number of rows returned for the same sample type across
different running environments can vary significantly.

Initial Data

When a dataset is first created, a background job begins to generate a sample using the first set of rows of the
dataset. This initial data sample is usually very quick to generate, so that you can get to work right away on your
transformations.

The default sample is the initial sample.
If your source of data is a directory containing multiple files, the initial sample for the combined dataset is
generated from the first set of rows in the first filename listed in the directory.

The maximum number of files in a directory that can be read in the initial sample is limited by
parameter for performance reasons.

For more information, see Workspace Settings Page.

If you are wrangling a dataset with parameters, the initial sample loaded in the Transformer page is
taken from the first matching dataset.

If the matching file is a multi-sheet Excel file, the sample is taken from the first sheet in the file.
By default, each initial sample is either:

Copyright © 2022 Trifacta Inc. Page #539

10 MB in size
Limited by the maximum number of files
The entire dataset

If the source data is larger than 10MB in size, a random sample is automatically generated for you when
the recipe is first loaded in the Transformer page.

The initial sample is selected by default. When the automatic random sample has finished
generation, it can be manually selected for display.

Generating samples

Additional samples can be generated from the context panel on the right side of the Transformer page. Sample
jobs are independent job executions. When a sample job succeeds or fails, a notification is displayed for you.

As you develop your recipe, you might need to take new samples of the data. For example, you might need to
focus on the mismatched or invalid values that appear in a single column. Through the Transformer page, you
can specify the type of sample that you wish to create and initiate the job to create the sample. This sampling job
occurs in the background.

You can create a new sample at any time. When a sample is created, it is stored within your storage directory on
the backend datastore.

NOTE: The Initial Data sample contains raw data from the source. Any generated sample is stored in
JSONLines format with additional metadata on the sample. These different storage formats can result is
differences between initial and generated sample sizes.

For more information on creating samples, see Samples Panel.

Sampling methods

Depending on the type of sample you select, it may be generated based on one of the following methods, in
increasing order of time to create:

1. on a specified set of rows (firstrows)
2. on a quick scan across the dataset

a. By default, Quick Scan samples are executed on the Trifacta Photon running environment.
b. If Trifacta Photon is not available or is disabled, the Trifacta application attempts to execute the

Quick Scan sample on an available clustered running environment.
c. If the clustered running environment is not available or doesn't support Quick Scan sampling, then

the Quick Scan sample job fails.
3. on a full scan of the entire dataset

a. Full Scan samples are executed in the cluster running environment.

Sampling mechanics

When a non-initial sample is executed for a single dataset-recipe combination, the following steps occur:

1. All of the steps of the recipe are executed on the dataset on the backend cluster, up to the currently
selected recipe step.

2. The generated sample is executed on the current state of the dataset.

NOTE: When a sample is executed from the Samples panel, it is launched based on the steps leading up
to current location in the recipe steps. For example, if your recipe includes joining in other datasets, those
steps are executed, and the sample is generated with dependencies on these other datasets. As a result,
if you change your recipe steps that occur before the step where the sample was generated, you can
invalidate your sample. More information is available below.

Copyright © 2022 Trifacta Inc. Page #540

When your flow contains multiple datasets and flows, all of the preceding steps leading up to the currently
selected step of the recipe are executed, which can mean:

The number of datasets that must be accessed increases.
The number of recipe steps that must be executed on the backend increases.
The time to process the sampling job increases.

Implications:

When the sample is displayed in the Transformer page, all steps after the one from which it was executed
are computed in the web browser. So, if you have a lengthy series of steps or complex operations after the
step where you generated a sample, you can cause performance issues of the Transformer page,
including the occasional browser crash. Try generating a new sample later in your flow for better
performance.
If you have added an expensive transformation step, such as a complex union or join, you can improve
performance of the Transformer page by generating and using a new sample after the transformation step.

NOTE: When a flow is shared, its samples are shared with other users. However, if those users do not
have access to the underlying files that back a sample, they do not have access to the sample and must
create their own.

Changing sample sizes

If needed, you can change the size of samples that are loaded into the browser your current recipe. You may
need to reduce these sizes if you are experiencing performance problems or memory issues in the browser. For
more information, see Change Recipe Sample Size.

Important notes on sampling

Depending on the running environment, sampling jobs may incur costs. These costs may vary between Trif
acta Photon and your clustered running environments, depending on type of sample and cost of job
execution.
When sampling from compressed data, the data is uncompressed and then expanded. As a result, the
sample size reflects the uncompressed data.
Changes to preceding steps that alter the number of rows or columns in your dataset can invalidate the
current sample, which means that the sample is no longer a valid representation of the state of the dataset
in the recipe. In this case, Trifacta automatically switches you back to the most recently collected sample
that is currently valid. Details are below.

Parameterization of samples

Any parameters that are associated with your dataset can be applied to sampling:

Parameters: Subsequent samples generated from the Transformer page are sampled across all datasets
matched by parameter values.
Variables: You can apply override values to the defaults for your dataset's variables at sample execution
time. In this manner, you can draw your samples from specific sources files within your dataset with
parameters.

Samples management

After you have created a sample, you cannot delete it through the application.

NOTE: Trifacta does not delete samples after they have been created. If you are concerned about data
accumulation, you should configure periodic purges of the appropriate directories on the base storage
layer. For more information, please contact your IT administrator.

Copyright © 2022 Trifacta Inc. Page #541

For more information, see Sample Jobs Page.

Cancel Sample Jobs

Generating a sample can consume significant time, system resources, and in some deployments cost. As
needed, you can cancel a sample job that is in progress in either of the following ways:

Locate the in-progress sampling job in the Samples panel. Click X.
Click the Jobs icon in the left nav bar. Select Sample jobs. For more information, see Sample Jobs Page.

Choosing Samples

After you have collected multiple samples of multiple types on your dataset, you can choose the proper sample to
use for your current task, based on:

1. How well each sample represents the underlying dataset. Does the current sample reflect the likely
statistics and outliers of the entire dataset at scale?

2. How well each sample supports your next recipe step. If you're developing steps for managing bad
data or outliers, for example, you may need to choose a different sample.

Tip: You can begin work on an outdated yet still valid sample while you generate a new one based on
the current recipe.

Limitations

Some advanced sampling options are available only with execution across a scan of the full dataset.
Undo/redo do not change the sample state, even if the sample becomes invalid.

When a new sample is generated, any Sort transformations that have been applied previously must be re-
applied. Depending on the type of output, sort order may not be preserved.

Samples taken from a dataset with parameters are limited to a maximum of 50 files when executed on the
Trifacta Photon running environment. You can modify parameters as they apply to sampling jobs. See
Samples Panel.

Sample Invalidation

With each step that is added or modified to your recipe, Trifacta checks to see if the current sample is valid.
Samples are valid based on the state of your flow and recipe at the step when the sample was collected. If you
add steps before the step where it was created, the currently active sample can be invalidated. For example, if
you change the source of data, then the sample in the Transformer page no longer applies, and a new sample
must be displayed.

Tip: After you have completed a step that significantly changes the number of rows, columns, or both in
your dataset, you may need to generate a new sample, factoring in any costs associated with running the
job. Performance costs may be displayed in the Transformer page.

NOTE: If you modify a SQL statement for an imported dataset, any samples based on the old SQL
statement are invalidated.

The Transformer page reverts to displaying the most recently collected sample that is currently valid.
You can generate a new sample of the same type through the Samples panel. If no sample is valid, you
must generate a new sample before you can open the dataset.

Copyright © 2022 Trifacta Inc. Page #542

A sample that is invalidated is listed under the Unavailable tab. It cannot be selected for use. If subsequent
steps make it valid again, it re-appears in the Available tab.

Best Practices

The data that is displayed in the data grid is based on all of the upstream samples after which all
subsequent steps in each upstream recipe are performed in the browser. If you have a large
number of steps or complex steps between the recipe locations for your samples in use and your
current recipe location, you may experience performance slow-downs or crashes in the data grid.
For more information on sampling best practices, see
https://community.trifacta.com/s/article/Best-Practices-Managing-Samples-in-Complex-Flows.

Sampling checkpointing

All steps between the step in your current sample and the currently displayed step must be computed in the
browser. As you build more complex recipes, it's a good idea to create samples at various steps in your recipe,
particularly after you have executed a complex step. This type of sample checkpointing can improve overall
performance.

For example, as soon as you load a new recipe, you should take a sample, which can speed up the process of
loading.

Tip: You can annotate your recipe with comments, such as: sample: random and then create a new
sample at that location.

Sample Types

For more information on sample types, see Sample Types.

Copyright © 2022 Trifacta Inc. Page #543

https://community.trifacta.com/s/article/Best-Practices-Managing-Samples-in-Complex-Flows

Overview of Job Execution
Contents:

Jobs Types
Transformation job types
Other job types

Basic Process for Transformation Jobs
Job preparation
Job execution
Job monitoring
Job cleanup
Scheduled jobs

Job Execution Performance
Job logs

Running Environments

This section provides an overview of how jobs of various types are initiated, managed, and executed in Trifacta®.
You can also review summaries of the available running environments for your product edition.

NOTE: During job execution of any kind, Trifacta never modifies source data. All transformation is
performed on requested elements of the data. If the data needs to be retained for any period of time
during use or transformation, it is stored in the browser or in the base storage layer. After the data has
been used for the intended purpose, it is removed from temporary storage.

When you build your recipe in the Trifacta application, you can see in real-time the effects of the transformations
that you are creating. When you wish to produce result sets of these transformations, you must run a job, which
performs a separate set of execution steps on the data. Job execution is a separate process for the following
reasons:

In the Transformer page, you are working with a sample of your data. For larger volumes of data, the
entire dataset cannot be represented in the browser effectively. So, to apply your recipe to the entire
dataset, a separate set of actions must be performed.
When working with large datasets, you need a running environment on a multi-node cluster that has been
designed for parallel processing. Modern running environments are designed to break up data
transformation jobs into separate pieces, each of which can be executed on a separate node and then
returned to be assembled with the other job parts into the finished result set.
Job execution can occur asynchronously. When you launch a job, a separate lightweight process
assembles the necessary pieces for the job to be executed and then distributes these pieces accordingly.
You can continue to work in the Transformer page while your results are being prepared with minimal
impact on Trifacta application performance or your user experience.

Other features of job execution:

Change the format of the source to a different format in the output.
Change the location where the results are generated.
Change file-based source data into table-based relational data on the output.
Write multiple versions of the output at the same time.
Jobs can also be scheduled.
Jobs can also be executed using REST APIs, which enables automation of job execution. For more
information on job execution via API, see API Workflow - Run Job.

Copyright © 2022 Trifacta Inc. Page #544

Jobs Types

The following types of jobs can be executed as part of normal operations of the product.

Job locations:

A local job is one that is executed on the Trifacta node using services that are hosted on it.
A remote job is executed through services that are not hosted on the Trifacta node.

Transformation job types

Informally, a "job" is considered any action that is performed on a set of data. Commonly, jobs refer to the
process of transforming source data into output results. However:

Transformation jobs are composed of a number of sub-jobs, which handle things like ingestion of data,
transformation, and writing of results.
In addition to jobs that transform data, there are other types of jobs. Discussed later.

Job groups:

For transformation job types, the following terms apply:

Internal to the product, a job that is executed on one or more recipes in a flow is called a jobGroup.
A jobGroup is composed of one or more of the job types listed below. Internal to the platform, these are
called jobs.

The following diagram illustrates how these job types are related.

+ myJob jobGroup
 + Connect job
 + Request job
 + Ingest job
 + Transform job
 + Transfer job
 + Process job

Tip: You can have one or more of each of these job types as part of a single jobGroup.

Connect

A Connect job performs the steps necessary to connection the Trifacta application to the datastore that contains
source data. These jobs use the connection objects that are native to the platform or that you have created to
make the connection to your imported datasets.

NOTE: Depending on the running environment, a Connect job may time out after a period of inactivity or
failure to connect, and it may be retried one or more times before the job is marked as failed.

Request

A Request job sends a query or other request to the source datastore for the assets specified in the imported
datasets.

Copyright © 2022 Trifacta Inc. Page #545

Ingest

Requested data is brought from the external source to the execution layer, which is the temporary storage
location as defined for the running environment.

Convert

Some formats supported for import are not natively understood by the product. These formats must be converted
to a format that the platform can quickly process. This process typically converts binary formats, such as XLS or
PDF, into CSV files that are stored temporarily in the base storage layer for purposes of job execution. After the
job has succeeded or failed, these converted files are removed.

Transform

After data has been requested and ingested (if needed), a Transform job converts the steps of a recipe into an
intermediate scripted format (called CDF). The CDF script is then passed to the appropriate running
environment for transformation of the source data. Additional details are provided later.

Prepare

If the specified job is publishing results to a connection other than the base storage layer, the results are initially
prepared on the base storage layer, after which they are written to the target datastore.

This job type does not apply when the base storage layer is the final destination for the results.

Transfer

A Transfer job writes the results to the appropriate output location, as specified by the output objects referenced
when the job was launched.

Process

When the transfer is complete, a Process job performs final cleanup, including removal of temp files such as
intermediate results written to the base storage layer.

Other job types

Profiling

When you execute a transformation job, you can optionally choose to create a visual profile of the results of that
job. Visual profiling is a separate job that sometimes takes longer to execute than the job itself, but a visual profile
can be useful in highlighting characteristics of your data, including metrics and errors on individual columns.

Visual profiles are available for review in the Job Details page. You can also download PDF or JSON versions of
your visual profile.

For more information on visual profiling, see Overview of Visual Profiling.

Sampling

When you are interacting with your source data to transform it through the browser, you are working on a sample
of the data. As needed, you can take new samples of the data to provide different perspectives on it. Also, for
longer and more complex flows, you should get in the habit of taking periodic samples, which can improve
performance in the browser.

Through the Samples panel, you can launch a job to collect a new sample of your data. There are multiple types
of sampling, which can be executed using one of the following methods:

Quick scan: These sample types are performed based on a scan a limited number of rows of your data.

Copyright © 2022 Trifacta Inc. Page #546

These samples are based on the first set of rows that are accessible and are quick to execute.
However, they cannot pick up in the sample any rows that are deeper in your datasets. For
example, if your source data contains multiple files, quick scan samples might not contain any data
from the second or later files.
These samples are executed in Trifacta Photon.

Full scan: A full scan sample is executed across the entire available dataset.
Depending on the size of your dataset, this scanning and sample process can take a while to
execute on a large dataset.
These samples are executed on the clustered running environment with which the Trifacta
application is connected.

For more information, see Overview of Sampling.

Basic Process for Transformation Jobs

A transformation job is run based on the outputs that you are trying to generate. For a selected output, the
executed job runs the transformations for all of the recipes between the output and all of its imported datasets.
For example, generation of a single output could require the transformation of five different recipes that use 13
different imported datasets.

Copyright © 2022 Trifacta Inc. Page #547

Figure: Flow chart on how a Spark-based job is executed on a Hadoop cluster

Steps:

1. Job preparation: A jobGroup entry is created in the database, and a job execution graph is created for
each job within the jobGroup and submitted to the batch job runner service. This service requests an
expanded version of the recipe in CDF format from the Trifacta application. This and other assets are
placed in a queue for processing by the batch job runner.

2. Job preparation: When resources are available, the job is pulled from the queue and submitted to the
resource coordinator of the batch job runner for execution on Trifacta Photon or the remote running
environment. The job is placed in another queue for execution on the appropriate running environment.

3. Job execution: When cluster resources are available, the job definition, CDF script and other resources
are submitted to the resource coordinating process for the selected running environment (In the above
diagram, this is the Spark Job Launcher, which coordinates with YARN). This process submits parts of the
job to separate nodes on the cluster for execution. Periodically, batch job runner polls this process for
status. When all nodes of the cluster have completed their execution, the job results are written to the
designated location, and batch job runner finishes the job execution by updating the Jobs database.

Job preparation

When you initiate a job through the Trifacta application, the following steps occur:

1. A jobGroup is created in the database. It consists of the specification of one or more jobs, as described
above.

2. The recipe whose output is being executed is requested from the Trifacta database. This recipe is
expanded from storage format and later is stored temporarily in the database for reference.

3. The Trifacta application verifies access to data sources and output locations.
4. A job execution graph (flow chart) is created for the various jobs required to complete execution of the

jobGroup.
a. This graph includes jobs for ingest, transformation, conversion, and other steps, as described above.

5. The graph is sent to the batch job runner service in the platform. This service manages the submission,
tracking, and completion of all jobs to supported running environments.

6. Batch job runner requests to the Trifacta application to return a Common Dataflow Format (CDF) version
of the expanded recipe.

a. CDF is a domain-specific language for data transformation that runs anywhere that supports Python
execution.

b. Wrangle is compiled into CDF format at execution time. This CDF script is delivered to the running
environment for execution.

c. CDF scripts are internal to the platform and are not accessible to users of the platform.
7. Depending on the running environment, additional modifications to the CDF script may be made before the

job is submitted.
8. The batch job runner places the job in a queue for submission to the running environment.

Job execution

When the job is ready to be pulled from the queue, the following tasks are completed:

1. The job definition, CDF script, and associated resources are submitted to the resource coordinating
process of the running environment.

a. This coordinator is the batch job runner for local jobs or a dedicated service on remote running
environments.

b. For example, for EMR execution, which is a remote running environment, the job is submitted to the
YARN service, which manages the delegation of work tasks to the various nodes in the cluster.

c. In the resource coordinator, jobs from the product are labeled as Trifacta Transformer or Tri
facta Profiler (for profiling jobs).

2. Periodically, batch job runner polls the running environment for status on job execution.
a. This status information is stored and updated in the Jobs database.

3. The Trifacta application queries the Jobs database for updated information.

Copyright © 2022 Trifacta Inc. Page #548

a. These updates are stored in the Trifacta databases for internal services to access to present
updates.

b. Updates can appear in Flow View page and also in the Jobs and Job Details page, so that you can
track progress.

4. During execution, the resource manager arranges for the delivery of data and CDF script objects to nodes
of the cluster.

a. On these individual nodes, portions of the data are processed through the CDF script.
b. The results of this processing is messaged back to the resource manager.
c. When all of the nodes have reported back that the job processing has been completed, results are

written to the location or locations as defined in the output object that was selected during job
execution.

5. Batch job runner updates any available job logs as needed based on the results of the job execution.
These logs may be available through the Trifacta application.

Job monitoring

Transformation jobs: After a transformation job has been launched, you can monitor the state of the job as it
passes through separate stages in the process.

In Flow View, click the output object. Then, click the Jobs tab. See Flow View Page.
In the Jobs page, you can hover over the status of the job to gather more information. See Jobs Page.
Additional information may be available in the Job Details page. See Job Details Page.

Sample jobs: In-progress sampling jobs can be tracked through the following locations:

After you have initiated a sample job through the Samples panel, you can track progress there. See
Samples Panel.
All of your sample jobs are available through the Trifacta application. See Sample Jobs Page.

Plan runs: When you have launched jobs as part of a plan run, you can track progress through the Trifacta
application. A plan run may consist of flow-based transformation jobs, as well as other tasks.

See Plan Runs Page.

Job cleanup

After the results have been written, the following tasks are completed:

1. Applicable job logs are updated and written to the appropriate location.
2. The expanded recipe stored in the database is removed.
3. Any temporary files written to the base storage layer are removed.

Scheduled jobs

You can also schedule the execution of jobs within your flows. This process works as follows:

1. In Flow View, you define the outputs that you wish to deliver when the flow is executed according to a
schedule. These outputs are different objects that the outputs you create from your recipes, but you can
define them to write to the same locations.

2. You specify the schedule for when the job is to be executed. Date and time information, as well as
frequency of execution, can be defined within the flow.

When the specified time is reached, the job is queued for execution, as described above. For more information,
see Overview of Automator.

Job Execution Performance

Job execution is a resource-intensive and multi-layered process that transforms data of potentially limitless size.
The following factors can affect performance in the Trifacta application and during job execution:

Copyright © 2022 Trifacta Inc. Page #549

Long or complex recipes
Consider breaking recipes into smaller steps. You can change recipes together.

Number of columns in your data
The entire width of a dataset must be represented in the sample.
Delete unnecessary columns early in your recipe.

Tip: If your data is sourced in relational systems, you can apply optimizations to your
imported datasets to pre-filter out columns in your dataset before they are ingested into the
system. See Flow Optimization Settings Dialog.

You can also use custom SQL statements to collect only the columns that are needed from
source tables. See Create Dataset with SQL.

Complexity of transformations
Transformations that blend datasets (join and union) or that perform complex transformations on
your dataset (aggregate, window, pivot, etc.) can be expensive to process.
If your recipe contains too many of them, it can negatively impact job processing. Consider breaking
these across multiple recipes instead.

Job logs

Separate log files are maintained for each jobGroup. As needed, you can acquire these logs from the Trifacta
application. In the Job Details page, select Download logs from the context menu for a job entry. For more
information, see Job Details Page.

If there are issues with job execution that cannot be resolved by reviewing the job log, workspace administrators
can download a support bundle, which contains additional log information from the platform. For more
information, see Support Bundle Contents.

Running Environments

Copyright © 2022 Trifacta Inc. Page #550

Trifacta Photon Running Environment
Trifacta Photon is an in-memory running environment that is hosted on the Trifacta node. This environment is
initialized only when a job is queued for execution on it. Designed for small- to medium-sized jobs, it offers
superior performance due to its location on the Trifacta node and its in-memory processing.

When you choose to run a job in the Trifacta application, Trifacta Photon is selected as the default running
environment if it is available and the job size is estimated to small or medium.

Tip: Trifacta Photon is also used for sampling jobs that are configured to use the Quick Scan method.
For more information, see Overview of Sampling.

Tip: In the Run Job page, select Photon to run the job on this running environment.

Trifacta Photon is enabled by default but can be disabled as needed.

NOTE: Trifacta Photon cannot process numeric values with more than 16 digits. Columns containing
such values are converted to String values, and the digits beyond 16 are converted to 0.

NOTE: When a recipe containing a user-defined function is applied to text data, any null characters
cause records to be truncated during Trifacta Photon job execution. In these cases, please execute the
job on Spark.

NOTE: For more information on configuring Trifacta Photon, see Configure Photon Running Environment.

Copyright © 2022 Trifacta Inc. Page #551

EMR Running Environment
Elastic Map Reduce is a service of Amazon Web Service (AWS) for processing large volumes of data using open
source technologies such as Spark. EMR integrates easily with other AWS-based services such as S3, IAM,
Glue, and more.

When Trifacta is installed in an EC2 instance on AWS, the Trifacta application can be integrated with either pre-
existing or new EMR clusters for supported versions of EMR. Additional configuration and limitations apply. For
more information, see Configure for EMR.

Tip: In the Run Job page, select Spark to run the job on this running environment when the Trifacta
application has been integrated with it.

For more information, see https://aws.amazon.com/emr.

Copyright © 2022 Trifacta Inc. Page #552

https://aws.amazon.com/emr

Snowflake Running Environment
Contents:

Requirements
General
For Trifacta Self-Managed Enterprise Edition
Requirements across multiple Snowflake connections

Limitations
Enable

Workspace Settings
Flow Optimizations

Run Job
To execute a job in Snowflake in the Trifacta application:

Unsupported Wrangle for Snowflake Execution
General limitations
Unsupported input data types
Unsupported Trifacta data types
Unsupported transformations
Unsupported functions

Verify Execution

Snowflake provides cloud-based data storage and analytics as a service. Among other infrastructures, Snowflake
runs on Amazon S3. If all of your source datasets and outputs are in Snowflake locations and other conditions
are met, then the entire execution of the transformations can occur in Snowflake.

Transferring the execution steps from the Trifacta node to Snowflake yields the following benefits:

A minimum of data (recipe steps and associated metadata) is transferred between systems. Everything
else remains in Snowflake.
Recipe steps are converted into SQL that is understandable and native to Snowflake. Execution times are
much faster.
Depending on your environment, total cost of executing the job may be lower in Snowflake.

In this scenario, the recipe steps are converted to SQL, which is sequentially executed your source data in
temporary tables, from which the results that you have defined for your output are written.

Tip: When running a job in Snowflake, your data never leaves Snowflake.

Tip: Execution on datasets created with custom SQL is supported.

If the requirements and limitations are met, the Trifacta application automatically executes the job in Snowflake.

Requirements

General

This feature must be enabled by the workspace admin. See below.
Trifacta application must be integrated with Snowflake. See Snowflake Connections.

The permission to execute jobs in Snowflake must be enabled.
All sources and outputs must reside in Snowflake.
Spark + Snowflake must be selected as running environment. See Run Job Page.

Copyright © 2022 Trifacta Inc. Page #553

Jobs are executed in the virtual warehouse that is specified as part of the Snowflake connection.

NOTE: Job execution requires significantly more resources than ingest or publish jobs on
Snowflake. Before you begin using Snowflake, you should verify that your Snowflake virtual
warehouse has sufficient resources to handle the expected load. For more information, see
Snowflake Connections.

In your flow, you must enable all general and Snowflake-specific flow optimizations. When all of these
optimizations are enabled, the job can be pushed down to Snowflake for execution. See "Flow
Optimizations" below.

For Trifacta Self-Managed Enterprise Edition

For customer-managed deployments, the following additional requirements apply:

S3: Base storage layer must be S3. See Set Base Storage Layer.
AWS running environment: The Trifacta node must be integrated with a running environment that is
compatible with AWS.

For more information, see Configure for EMR.
For more information, see Configure for AWS Databricks.

Requirements across multiple Snowflake connections

If you are executing a job on Snowflake that utilizes multiple connections, the following requirements must also
be met for execution of the job on Snowflake:

All Snowflake connections used in the job must utilize to the same Snowflake account.
All Snowflake connections used in the job must be backed by the same Snowflake primary role. For more
information, see
https://docs.snowflake.com/en/user-guide/security-access-control-overview.html#enforcement-model-the-
primary-role-and-secondary-roles .

Limitations

Snowflake as a running environment requires that pushdowns be enabled for the workspace and for the specific
flow for which the job is executed. If the flow and the workspace are properly configured, the job is automatically
executed in Snowflake.

NOTE: Snowflake is not a running environment that you explicitly select or specify as part of a job. If all
of the requirements are met, then the job is executed in Snowflake when you select EMR.

All datasources and all outputs specified in a job must be located within Snowflake.
All recipe steps, including all Wrangle functions in the recipe, must be translatable to SQL.

NOTE: When attempting to execute a job in Snowflake, Trifacta application executes each recipe
in Snowflake, until it reaches a step that cannot be executed there. At that point, data is
transferred to EMR, where the remainder of the job is executed.

If the schemas have changed for your datasets, pushdown execution on Snowflake is not supported. Trifac
ta falls back to submitting the job through another running environment.
Some transformations and functions are not currently supported for execution in Snowflake. See below.
Sampling jobs are not supported for execution in Snowflake.
If your recipe includes data quality rules, the job cannot be fully executed in Snowflake.
Visual profiling is supported with the following conditions or requirements.

Visual profiles are unloaded to a stage in an S3 bucket.

Copyright © 2022 Trifacta Inc. Page #554

https://docs.snowflake.com/en/user-guide/security-access-control-overview.html#enforcement-model-the-primary-role-and-secondary-roles
https://docs.snowflake.com/en/user-guide/security-access-control-overview.html#enforcement-model-the-primary-role-and-secondary-roles
https://docs.snowflake.com/en/user-guide/security-access-control-overview.html#enforcement-model-the-primary-role-and-secondary-roles

If a stage is named in the connection, it is used. This stage must point to the default S3 bucket in
use.
If no stage is named, a temporary stage is be created in the PUBLIC schema. The connecting user
must have write access to PUBLIC.

NOTE: Creating a temporary stage requires temporary credentials from AWS. These
credentials are valid for 1 hour only. If a job is expected to run longer than one hour, you
should define a named stage.

For more information, see Snowflake Connections.

Enable

Workspace Settings

The following setting must be enabled in the workspace. Select User menu > Admin console > Workspace
settings.

Optimization Description

Logical and physical When enabled, the Trifacta application attempts to optimize job execution through logical optimizations of your
optimization of jobs recipe and physical optimizations of your recipes interactions with data.

For more information, see Workspace Settings Page.

Flow Optimizations

You must enable the Snowflake optimizations in your flow. In Flow View, select More menu > Optimization
settings.

NOTE: All general optimizations must be enabled for your flow, as well as the following optimizations,
which are specific to Snowflake.

Optimization Description

Snowflake > Column When enabled, job execution performance is improved by removing any unused or redundant columns from
pruning from source the source database.

Snowflake > Filter When this setting is enabled, the Trifacta application optimizes job performance on this flow by pushing data
pushdown filters directly on the source database.

Snowflake > Full When this setting is enabled, all supported pushdown operations, including full transformation and profiling job
pushdown execution, is pushed down to Snowflake, where possible.

For more information, see Flow Optimization Settings Dialog.

Run Job

To execute a job in Snowflake in the Trifacta application:

Your job must meet the requirements listed above.
Your job must not include the functions, transformations, or other unsupported elements that are listed
below.
You must select Snowflake + Spark as your running environment in the Run Job page.

Copyright © 2022 Trifacta Inc. Page #555

NOTE: If this running environment option does not appear in the Run Job page, then all required
optimization settings have not been enabled for the workspace or the flow (see above) or the data
or recipes do not meet the criteria for execution.

See Run Job Page.

Tip: After launching the job, you can monitor job execution through the Job Details page, which includes
a link to the corresponding job in the Snowflake console.

Unsupported Wrangle for Snowflake Execution

The following transformations and functions are not currently supported for execution in Snowflake.

NOTE: If your recipe contains any of the following transformations or functions, full job execution in
Snowflake is not possible at this time. These transformations are expected to be supported and removed
from this list in future releases.

General limitations

For more information on limitations on specific push-downs, see Flow Optimization Settings Dialog.

Unsupported input data types

The following Snowflake data types are not supported for input into Trifacta:

BINARY
VARBINARY
GEOGRAPHY

Unsupported Trifacta data types

None.

Unsupported transformations

The following Wrangle functions are not currently supported for execution in Snowflake.

Standardize

Unsupported functions

The following Wrangle functions are not currently supported for execution in BigQuery.

Aggregate functions

KTHLARGEST
KTHLARGESTIF
KTHLARGESTUNIQUE
KTHLARGESTUNIQUEIF
APPROXIMATEMEDIAN
APPROXIMATEPERCENTILE
APPROXIMATEQUARTILE
QUARTILE

Copyright © 2022 Trifacta Inc. Page #556

For more information, see Aggregate Functions.

Math functions

LCM
NUMVALUE

Partially supported:

NUMFORMAT: Only supported when used for rounding.

For more information, see Math Functions.

Date functions

NETWORKDAYS
NETWORKDAYSINTL
WORKDAY
WORKDAYINTL
KTHLARGESTDATE
KTHLARGESTUNIQUEDATE
KTHLARGESTUNIQUEDATEIF
KTHLARGESTDATEIF
EOMONTH
SERIALNUMBER

String functions

DOUBLEMETAPHONEEQUALS
TRANSLITERATE

For more information, see String Functions.

Type functions

Partially supported:

IFMISSING

NOTE: When the IFMISSING function immediately follows the PREV function in your recipe steps,
Snowflake generates an incorrect value. This is a known issue and will be fixed in a future Snowflake
release.

Window functions

SESSION

For more information, see Window Functions.

Verify Execution

To verify execution in Snowflake, please do the following:

Steps:

1. In the left nav bar, click the Jobs link.
2. In the Jobs page, select the job that you executed.
3. In the Overview tab, the value for Environment under the Execution summary should be: Snowflake.

Copyright © 2022 Trifacta Inc. Page #557

For more information, see Job Details Page.

Copyright © 2022 Trifacta Inc. Page #558

AWS Databricks Running Environment
Databricks provides the combination of data lakehouse storage, analytics processing, and artificial intelligence
capabilities in a single unified platform. For job execution, the Databricks running environment can be hosted in
the Azure or AWS ecosystems.

NOTE: This running environment is available only if you install Trifacta on AWS.

Tip: In the Run Job page, select Spark (Databricks) to run the job on this running environment when the
Trifacta application has been integrated with it.

Additional configuration is required.

NOTE: Use of AWS Databricks is not supported on Marketplace installs.

NOTE: When executing a job on the AWS Databricks running environment using a relational source, the
job fails if one or more columns has been dropped from the underlying source table. As a workaround,
the recipe panel may show steps referencing the missing columns, which can be used to either fix the
recipe or the source data.

For more information, see Configure for AWS Databricks.

For more information on Databricks, see https://databricks.com/.

Copyright © 2022 Trifacta Inc. Page #559

https://databricks.com/

Azure Databricks Running Environment
Databricks provides the combination of data lakehouse storage, analytics processing, and artificial intelligence
capabilities in a single unified platform. For job execution, the Databricks running environment can be hosted in
the Azure or AWS ecosystems.

NOTE: This running environment is available only if you install Trifacta on Azure.

Tip: In the Run Job page, select Spark (Databricks) to run the job on this running environment when the
Trifacta application has been integrated with it.

Additional configuration is required.

NOTE: Use of Azure Databricks is not supported on Marketplace installs.

NOTE: When executing a job on the Azure Databricks running environment using a relational source, the
job fails if one or more columns has been dropped from the underlying source table. As a workaround,
the recipe panel may show steps referencing the missing columns, which can be used to either fix the
recipe or the source data.

For more information, see Configure for Azure Databricks.

For more information on Databricks, see https://databricks.com/.

Copyright © 2022 Trifacta Inc. Page #560

https://databricks.com/

Hadoop Spark Running Environment
When Trifacta is installed on a supported version of Cloudera, the Trifacta application can be configured to
execute larger jobs on the cluster instance of Spark. Spark leverages in-memory capabilities on individual nodes
for faster processing of distributed analytics tasks, with spillover to disk as needed.

Tip: In the Run Job page, select Spark to run the job on this running environment when the Trifacta
application has been integrated with it.

Spark requires a backend distributed storage layer:

On AWS-based deployments, this storage layer is S3.
On Hadoop-based deployments, this storage layer is HDFS.

Additional configuration is required.

NOTE: When executing a job on the Spark running environment using a relational source, the job fails if
one or more columns has been dropped from the underlying source table. As a workaround, the recipe
panel may show steps referencing the missing columns, which can be used to fix to either fix the recipe
or the source data.

NOTE: The Spark running environment does not support use of multi-character delimiters for CSV
outputs. You can switch your job to a different running environment or use single-character delimiters.
This issue is fixed in Spark 3.0 and later. For more information on this issue, see
https://issues.apache.org/jira/browse/SPARK-24540.

For more information, see Configure for Spark.

Copyright © 2022 Trifacta Inc. Page #561

https://issues.apache.org/jira/browse/SPARK-24540

Overview of TBE
Contents:

Limitations
Enable
Column by Example

CBE for Datetime
Alternatives

Transformation by Example (TBE) enables you to build recipe objects by mapping example output values for
source values. Trifacta® then interprets the differences between the inputs and outputs to determine the
transformation required to map them.

TBE leverages pattern-based matching and predictive transformation to derive transformations. When you
provide explicit mappings of input value to output, the mapping is passed through predictive transformation to
determine the best possible matching pattern.

For more information on patterns, see Overview of Pattern Matching.
Predictive Transformation is a core component of Trifacta. Based upon user input, the platform provides
one or more suggestions of ways in which to transform the data.

In TBE, these suggestions are rendered as elements of the transformation in progress.
For more information, see Overview of Predictive Transformation.

Use cases:

Tip: TBE simplifies the process of defining patterns to match all values in your source column. Since you
know and can specify the exact desired output, you can leave the details of defining the pattern or
patterns required to match input to output to the product.

Transformation by Example works well in the following use cases:

You are just getting started with the product and would like to get productive quickly to transform your data
into known outputs.
Your data has groups of values, each of which needs transformation in a different way. In a single recipe
step, you can perform these transformations across all groups.
Your data has special-case exceptions that must be transformed.

Tip: You can use this feature as a final cleanup for other transformations. If you have a
transformation that handles 90% of the cases in a column, you can use this transformation to
handle the remainder.

Artifacts:

When a TBE step is added to your recipe, the number of individual changes can be many megabytes of data.
Instead of storing these objects within the recipe definition, they are stored as a set of artifacts in the artifact
storage database and referenced from the recipe.

These artifacts exist outside the scope of the recipe file.
These artifacts must be stored in a Trifacta database for the step to be editable and exportable.

NOTE: If the artifact storage service is disabled, this feature is unusable.

Copyright © 2022 Trifacta Inc. Page #562

When a flow is exported, an artifact.data file is included as part of the export. This file must be
imported with the flow definition, or the TBE step in the imported flow is broken. For more information, see

Export Flow.

Limitations

TBE works best for inputs that are text-based data types (e.g. String, State, URL, etc.).
Non-text inputs are treated as String type and may result in unexpected outputs (Integer, Decimal,
etc.).
You cannot use multi-value inputs, such as Arrays or Objects, or use the feature to create them.

Tip: If you have Array or Object input columns, convert them to String type before using
TBE.

TBE bases its transformations on the currently displayed sample.
Even if you accurately map all values in your sample, some other values in the full dataset may not
be mapped by the transformation.
You may need to take additional samples of other parts of the entire dataset to generate a more
accurate transformation.

Arithmetic operations or other numeric functions are not supported.
You cannot create multiple columns from a single TBE step.

Enable

This feature can be enabled and disabled through the Settings page in the Admin console.

Locate the following setting:

Create examples

Set this value to Enabled.

Column by Example

In column-by-example transformations, you create a new column from an existing one by mapping input to output
values.

General workflow:

1. Select the column to use as input data.
2. Change the column to String data type, if needed.
3. From the column menu, select Create column from examples. See Transformation by Example Page.
4. Transform by example:

a. Locate a row containing an example value to transform.
b. In the corresponding row in the Preview column, you can enter in the new value to which the input

is mapped.
c. The transformation in development is updated to accurately capture the mapping you just

performed. Additional rows in the output column may be accurately mapped, as well.
5. Repeat the above steps until all values in the output column appear to be accurately mapped.
6. When satisfied, add the transformation to your recipe.
7. Change the data type of the target and the source columns, if needed.
8. Remove the source column, if needed.

For more information, see Create Column by Example.

Copyright © 2022 Trifacta Inc. Page #563

CBE for Datetime

Column-by-example also works on Datetime columns. When you use a Datetime column as your input, you
specify the output values in the date/time format that you wish to use. That input value and all similarly formatted
inputs should be converted to the output format. You can then specify additional example outputs for input values
in a different format to standardize all of the values in the output column.

NOTE: For Datetime formatting to work properly, the input column must be specified as Datetime data
type.

Alternatives

For string-based inputs, the following options in Wrangle may assist in performing the same functions that you
are trying to do in TBE:

Wrangle Description

Extract Transform You can use the extract transform to retrieve sub-strings from a column and insert into a new column.

String Functions Wrangle supports a variety of string manipulation functions, which can be used to gather data from a string.

Copyright © 2022 Trifacta Inc. Page #564

Overview of Data Quality
Contents:

Data Quality Characteristics
Schema Validation

Assign targets
Identify Anomalies

Data quality bar
Column histogram
Column details

Standardization
Data Quality Functions

Type functions
Count functions
Aggregation functions
Statistical functions - single column
Statistical functions - multi-column

Data Quality in Job Details
Visual profiling

Trifacta® provides multiple mechanisms to transform and standardize data to meet usage needs, including profile
visualizations and type-based quality bars to identify potential anomalies and quality problems. Data quality chec
ks can be applied during data import, transformation, or export in the form of visual profiling.

Broadly speaking, data quality identifies the degree to which data is usable and responsive to your use case.
When you assess data quality, you are designing tests to assess its suitability for generic usage and for your
specific uses.

Data Quality Characteristics

Data quality covers the following characteristics:

Completeness: values are present where they are needed and expected
Accuracy: data is substantively free of errors
Consistency: a dataset can be matched across different data sources of the enterprise
Timeliness: data values are up-to-date
Uniqueness: aggregate data are free from any duplication via filters or other transformations of source
data
Validity: data are structured based on an adequate and rigorous classification system
Availability / Accessibility: data are made available to the relevant stakeholders
Traceability: the history, processing and location of the data under consideration can be easily traced

Schema Validation

Type inference

When data is imported, the Trifacta attempts to infer the data types in the source and to type columns in the
dataset accordingly. Type inference uses the first 20-25 rows of the initial sample to assess the appropriate data
type to apply to the column. For more information, see Type Conversions.

Some imported data, such as relational tables, may include schema information to identify the data type of each
column. In some cases you can disable type inferencing on imported data:

Copyright © 2022 Trifacta Inc. Page #565

Global: Trifacta administrators can disable type inferencing for all imported schematized sources. In this
manner, the Trifacta platform uses the schema of the source to define the initial types assigned to the
columns of the dataset.

Connections: As part of the definition of a connection, you can optionally choose to disable type
inference. For more information, see Create Connection Window.
Per-dataset: When you import a dataset, you can modify the import settings for the selected source to
disable type inference. See Import Data Page.

Assign targets

To assist in your transformation efforts, you can assign a target schema for each recipe. This target schema is
super-imposed on the columns of your data. Using visual tools to review differences and select changes, you can
rapidly convert the structure of your dataset in development to meet the expected target schema. For more
information, see Overview of RapidTarget.

Identify Anomalies

In the Transformer page, you can use the available visual tools to review the data quality characteristics of the
columns in your data. These data visualizations and type-based quality bars can assist in identifying potential
anomalies and quality problems.

Data quality bar

At the top of each column, you can see a data quality bar, which uses the following color coding to validate the
column values against the selected column type.

Color bar Description

green Values that are valid for the current data type of the column

red Values that are mismatched for the column data type

gray Missing or null values

Tip: Click any of the color bars to receive suggestions for transformations to add to your recipe.

Tip: You can change a column's data type in the column header. See Column Menus.

For more information, see Data Quality Bars.

Column histogram

In the column header, you can review the count and distribution of values in the column. A column's histogram
can be useful for identifying anomalies or for selecting specific sets of values in the column for further
exploration.

Tip: Click and drag over any set of values to receive suggestions for transformations to add to your
recipe.

See Column Histograms.

Copyright © 2022 Trifacta Inc. Page #566

Column details

Through the Column Details panel, you can explore the quality and distribution of the values in the column. The
contents of the panel vary depending on the data type. For example, if the column is typed for Datetime values,
then the Column Details panel includes information on the distribution of values across the days of the week and
days of the month.

For all data types, you can review useful statistics on statistical quartiles, the uniqueness of values, mismatches,
and outliers.

Tip: The Column Details panel is very useful for acquiring statistical information on column values in a
visual format. Click any data quality bar to be prompted for suggestions of transformation steps. See
Overview of Predictive Transformation.

For more information, see Column Details Panel.

Standardization

You can use the Standardization tool to standardized clustered sets of column values to values that are common
and consistent throughout your enterprise's data. For more information, see Overview of Standardization.

Data Quality Functions

The following functions are available for assessing data quality.

Type functions

Item Description

NULL The NULL function generates null values.
Function

IFNULL The IFNULL function writes out a specified value if the source value is a null. Otherwise, it writes the source value. Input
Function can be a literal, a column reference, or a function.

IFMISSING The IFMISSING function writes out a specified value if the source value is a null or missing value. Otherwise, it writes
Function the source value. Input can be a literal, a column reference, or a function.

IFMISMATC The IFMISMATCHED function writes out a specified value if the input expression does not match the specified data type
HED or typing array. Otherwise, it writes the source value. Input can be a literal, a column reference, or a function.
Function

IFVALID The IFVALID function writes out a specified value if the input expression matches the specified data type. Otherwise, it
Function writes the source value. Input can be a literal, a column reference, or a function.

ISNULL The ISNULL function tests whether a column of values contains null values. For input column references, this function
Function returns true or false.

ISMISSING The ISMISSING function tests whether a column of values is missing or null. For input column references, this function
Function returns true or false.

ISMISMATC Tests whether a set of values is not valid for a specified data type.
HED
Function

VALID Tests whether a set of values is valid for a specified data type and is not a null value.
Function

PARSEINT Evaluates a String input against the Integer datatype. If the input matches, the function outputs an Integer value. Input can
Function be a literal, a column of values, or a function returning String values.

PARSEBOO Evaluates a String input against the Boolean datatype. If the input matches, the function outputs a Boolean value. Input can
L Function be a literal, a column of values, or a function returning String values.

Copyright © 2022 Trifacta Inc. Page #567

PARSEFLO Evaluates a String input against the Decimal datatype. If the input matches, the function outputs a Decimal value. Input can
AT Function be a literal, a column of values, or a function returning String values.

PARSEARR Evaluates a String input against the Array datatype. If the input matches, the function outputs an Array value. Input can be a
AY Function literal, a column of values, or a function returning String values.

PARSEOBJ Evaluates a String input against the Object datatype. If the input matches, the function outputs an Object value. Input can be
ECT a literal, a column of values, or a function returning String values.
Function

PARSESTRI Evaluates an input against the String datatype. If the input matches, the function outputs a String value. Input can be a
NG Function literal, a column of values, or a function returning values. Values can be of any data type.

Count functions

The following functions measure counts of values within a column, optionally counted by group.

Item Description

COUNT Function Generates the count of rows in the dataset. Generated value is of Integer type.

COUNTA Function Generates the count of non-null rows in a specified column, optionally counted by group. Generated value is of
Integer type.

COUNTDISTINCT Generates the count of distinct values in a specified column, optionally counted by group. Generated value is of
Function Integer type.

UNIQUE Function Extracts the set of unique values from a column into an array stored in a new column. This function is typically
part of an aggregation.

Aggregation functions

Item Description

AVERAGE Computes the average (mean) from all row values in a column or group. Input column can be of Integer or Decimal.
Function

See also:

AVERAGEIF Function

SUM Function Computes the sum of all values found in all row values in a column. Input column can be of Integer or Decimal.

MIN Function Computes the minimum value found in all row values in a column. Input column can be of Integer, Decimal or Datetime.

MAX Function Computes the maximum value found in all row values in a column. Inputs can be Integer, Decimal, or Datetime.

MODE Function Computes the mode (most frequent value) from all row values in a column, according to their grouping. Input column can
be of Integer, Decimal, or Datetime type.

MINDATE Computes the minimum value found in all row values in a Datetime column.
Function

MAXDATE Computes the maximum value found in all row values in a Datetime column.
Function

MODEDATE Computes the most frequent (mode) value found in all row values in a Datetime column.
Function

Statistical functions - single column

Variations in these functions:

Some of these functions have variations that use the sample population method of computation.
IF conditional functions can be used to compute statistical computations based on a condition.

General statistics

Item Description

Copyright © 2022 Trifacta Inc. Page #568

VAR Function Computes the variance among all values in a column. Input column can be of Integer or Decimal. If no numeric values are
detected in the input column, the function returns 0.

STDEV
Function

Computes the standard deviation across all column values of Integer or Decimal type.

MEDIAN
Function

Computes the median from all row values in a column or group. Input column can be of Integer or Decimal.

QUARTILE
Function

Computes a specified quartile across all row values in a column or group. Input column can be of Integer or Decimal.

PERCENTILE
Function

Computes a specified percentile across all row values in a column or group. Input column can be of Integer or Decimal.

Item Description

APPROXIMATEMEDIAN Computes the approximate median from all row values in a column or group. Input column can be of
Function Integer or Decimal.

APPROXIMATEQUARTILE Computes an approximation for a specified quartile across all row values in a column or group. Input
Function column can be of Integer or Decimal.

APPROXIMATEPERCENTIL Computes an approximation for a specified percentile across all row values in a column or group. Input
E Function column can be of Integer or Decimal.

Statistical functions - multi-column

Item Description

COVAR Function Computes the covariance between two columns using the population method. Source values can be of Integer or
Decimal type.

CORREL Computes the correlation coefficient between two columns. Source values can be of Integer or Decimal type.
Function

Data Quality in Job Details

When you run a job and generate results, you can review the the quality of the data of the generated output.

Visual profiling

In parallel with executing the job, you can generate a visual profile of the generated results. This visual profile
provides graphical representations of the valid and mismatched values against each column's data type, as well
as indications about missing values in the output.

Tip: Visual profiles can be downloaded in PDF or JSON format for offline analysis.

Visual profiling is selected as part of the job definition process. See Run Job Page.

For more information, see Overview of Visual Profiling.

For more information, see Job Details Page.

Copyright © 2022 Trifacta Inc. Page #569

Overview of Sharing
Contents:

Enable
Sharing Model

Owners and collaborators
Role by object type
Fine-grained sharing privileges for individual shared objects

Shareable Objects
Sharing Flows
Share Connections
Share Plans

In a collaborative environment, it can be helpful to be able to have multiple users work on the same assets or to
create copies of good quality work to serve as templates for others. Trifacta® enables users to collaborate on
the same flow objects or to create copies for others to use for independent work.

This section provides an overview of sharing principles, limitations, and approaches.

Enable

Sharing can be enabled and disabled through Workspace settings by a workspace administrator. To enable, set
the following to Enabled.

Sharing

For more information, see Workspace Settings Page.

Sharing Model

NOTE: You cannot share with users outside of your current project or workspace, including any account
that you may have in a different project or workspace.

NOTE: You may not be permitted to share objects with users who have not yet logged into the product.

Owners and collaborators

The following are the basic types of users of a shared object:

User Type Description

Owner Typically, the owner is the original creator of the shared object. This user has maximum permissions on the object.

NOTE: There can be only one owner on an object. Only the owner or a workspace admin can delete a shared
object.

Workspace All workspace admins have owner rights on all objects in the workspace.
admin

Collaborator

Copyright © 2022 Trifacta Inc. Page #570

Any user who has been shared an object is a collaborator. A collaborator can have the one of the following permissions
on the object:

Editor
Viewer

See below.

Role by object type

Individual users can be assigned one or more roles. A role is a set of privileges (permissions).

For each type of shareable object, an administrator can define within a role the privileges that users have on the
object type. Below, you can review the basic privilege levels and the implications on sharing:

Privilege Description If object shared, default privileges on the
object

Author Assigned user can create and delete new objects of this type. Editor

Editor Assigned user can modify objects of this type with limitations. See Editor
below.

Viewer Assigned user has read-only access to this type of object. Viewer

For more information, see Roles Page.

Fine-grained sharing privileges for individual shared objects

When an object is shared, the user who is sharing the object can specify the privilege level for the target user on
the shared object, which provides finer-grained access controls on individual objects:

The high-level privileges define the maximum set of privileges that you can share on an object with the
target user.
Project- or workspace-level privileges on object types can be overridden for individual objects.
For example, a user with Viewer privileges on flows at the project or workspace level cannot be given
Editor privileges on any individual flow.

Limitations:

Fine-grained sharing privileges apply to flows, plans, and connections only.
Users who have received changes in privileges on individual objects should log out and log in again to see
those changes.

Shareable Objects

The following types of objects can be shared with other users:

Flows
Connections
Plans

Sharing Flows

In the collaborative approach, two or more users can work on the same flow. When a flow is shared, all flow
objects are shared, including:

Imported datasets

NOTE: A dataset that is created with parameters cannot be modified by a collaborator. It can only
be modified by the owner.

Copyright © 2022 Trifacta Inc. Page #571

Recipes
Output objects

If available, any output SQL scripts are also shared.
Job results
Webhook tasks

NOTE: Sharing of data is managed at the flow level. You cannot share individual recipes or datasets
from within a flow.

NOTE: You cannot share a flow with yourself.

All collaborators have access to the above objects, as long as they have access to the underlying sources. See
below.

Use cases:

Distribute the work on a flow with multiple recipes among team members for faster throughput.
Pass recipes to others for commenting, editing, and general review.
When stuck, share the flow with the team expert to provide guidance.

Privileges

Underlying datasets: Sharing a flow does not change the permissions to the underlying data. If a user with
whom a flow has been shared does not have access to the data on the datastore, the user cannot work with the
flow's datasets.

Datasets that are accessed through private connections cannot be shared, unless the connection is also
shared.
Stricter permissions sets on the datastore can adversely affect users' ability to access shared flows.

Sharing samples: A flow's samples are not necessarily available to all users who have been shared the flow. In
some cases, if a user who has been shared a flow does not have access to a recipe's sample, the user may have
to collect a separate sample to view data or edit the recipe associated with the sample. To enable universal
access to shared samples, you can use either of the following permissions schemes:

1. The default output directories for any user can be accessed by any other user. This configuration must be
managed in the base storage layer.

2. When the sample is executed, an individual user must set his or her default output directory to a location
that shared users of the flow can access.

When flows are shared with you, you can access them through the Shared with Me tab in the Flows page. See
Flows Page.

Editor privileges:

Datasets
Use the imported datasets and references as sources in other flows accessible to the collaborator.
Add new imported datasets.
Remove existing imported datasets.
Change the source of datasets.
Edit dataset names and descriptions.

Recipes
Add new recipes.
Edit the existing recipes, including multi-dataset operations such as union or join.
Delete recipes.
Copy recipes within the shared flow.

Copyright © 2022 Trifacta Inc. Page #572

Move recipes to the shared flow.
Move recipes out of the shared flow.
Run jobs.

Schedules
Create new schedules.
Edit schedules.

Viewer privileges:

User can access the flow and run jobs.
User cannot modify the flow.
Schedules

Create new schedules.
Edit schedules.

Collaborator (Editor and Viewer) limitations:

Collaborators do not have the following privileges on a flow shared with them:

Flow
Delete the flow
Edit the name and description of the flow
Remove the flow owner's access to the flow

Datasets
Delete imported datasets
Modify imported datasets

NOTE: Collaborators cannot modify datasets created with custom SQL.

For more information on the privileges for Viewer and Editor roles, see Privileges and Roles Reference.

Editing recipes

Owners and Editors have the same privileges to edit recipes in the shared flow. In the Edit History, edits appear
under the usernames of the individual contributors.

NOTE : Multiple editors cannot make changes to the same recipe at the same time.

NOTE: When a column is hidden from a dataset, it is hidden for all users.

Tip: You can review the history of changes to a recipe through the Edit History for a recipe. See
Recipe Panel.

Removing access

You can remove sharing access to a flow. When a flow is no longer shared with a user, that user:

Cannot see the flow or its objects
Cannot access them, if the user knows the location of the objects

Copyright © 2022 Trifacta Inc. Page #573

NOTE: If a dataset from a shared flow is referenced in another flow, when sharing access is removed
from the flow, the referenced dataset is still available in the other flow.

NOTE: If a flow is unshared with you, you cannot see or access the datasources for any jobs that you
have already run on the flow, including any PDF profiles that you generated. You can still access the job
results. This is a known issue.

Share Connections

When initially created, a connection is private. It is accessible only to the user who created. it.

Through the Connections page, you can share your connections with other users:

Share connection with individual users: You can share your connection with specified users.
You can also share connections that have been shared with you.

Make connection public: Public connections are available for use by all users.

NOTE: Only an admin can make connections public. After a connection has been made public, it
cannot be made private again. You must delete and recreate the connection.

When connections are shared with you, you can access them through the Shared with Me tab in the Connections
page. See Connections Page.

Sharing credentials:

When shared, private connections can be shared with or without credentials. If credentials are not shared, new
users of the shared connection must supply their own credentials. Those credentials must be permitted access if
access to any datasets previously imported through the connection is required.

NOTE: A workspace admin has owner-level access to all connections. However, a workspace admin
cannot access or use a connection's credentials if those credentials were not shared by the owner of the
connection. For more information, see Workspace Admin Permissions.

NOTE: Password values for credentials are always masked in the user interface.

NOTE: For SSO connections, credentials are never shared.
Instead, the Kerberos principal of the user with whom the connection is shared is used to connect. That
principal must have the appropriate permissions to access the data.

For more information, see Connections Page.

Sharing connections through flows:

When a flow is shared, any connections associated with it are automatically shared to the specified users. If the
connection is configured to do so, credentials are included, so that the new users can immediately begin using
the flow.

Copyright © 2022 Trifacta Inc. Page #574

For more information, see Flow View Page.

For more information on the privileges for Viewer and Editor roles, see Privileges and Roles Reference.

Share Plans

Plans that you create can be shared with other users. In the Plans page, select Share from a plan's context menu.

Depending on whether you created the plan, you may have the following set of privileges:

You are Privileges

Owner The owner created the plan and can schedule the plan and has all editor privileges.

Collaborator A collaborator has been shared the plan as a Viewer or Editor. Privileges to the plan that are limited in the following ways:

Collaborators cannot delete plans that have been shared with them.
Collaborator access to the plan may be further filtered based on assignments at the project or workspace level. See
below.

When a plan is shared with you, you are a collaborator on the plan. A collaborator has the following capabilities
based on the plan privileges assigned to your role:

Plan Privilege Description

Author
Create plans.
Delete plans that you create.
All Editor privileges.

Editor
Edit parameters in entitled plans
Manage email notifications on entitled plans
Update entitled plans names and descriptions
Share entitled plans
All Viewer privileges.

Viewer
View and run entitled plans
View runs and jobs from entitled plans
Export entitled plans

For more information on the privileges for Viewer and Editor privileges, see Privileges and Roles Reference.

For more information, see Share a Plan.

Copyright © 2022 Trifacta Inc. Page #575

Overview of Job Monitoring
Contents:

Monitoring Phases
Connect
Request
Transfer
Prepare
Process

Enable
Configure

Enable phases in Data sources tab
Enable phases in Outputs tab

Monitoring Jobs in the Application
Flow View
Import
Job Details Page

Trifacta® supports detailed monitoring of a job throughout each phase of its execution.

Limitations:

Applies only to ingest and publishing jobs
Applies only to JDBC datasets

Monitoring Phases

These phases apply to ingest and publishing jobs. Information on them is surfaced in the application.

Connect

In the Connect phases, Trifacta uses the specified connection for the flow to connect to the source of the job.

NOTE: Errors in this phase typically involve issues in the connection definition or in the network
configuration or availability.

Request

After the platform has been able to connect to the datastore, the Request phase entails the submission of the
request to the datastore for the assets. For example, for JDBC-based datasets, this phase covers the SQL query
of the database through the response that the query was successfully executed.

NOTE: Errors in this phase typically reflect errors in the SQL query, which can include renaming or
moving of assets in the datastore.

NOTE: If assets are retrieved via custom SQL query, you may need to review the query and validate it
through the Trifacta application. For more information, see Create Dataset with SQL.

Copyright © 2022 Trifacta Inc. Page #576

Transfer

This phase covers the transfer of assets from the datastore to the platform.

NOTE: Errors in this phase typically indicate issued with permissions.

Prepare

NOTE: This phase applies to publishing jobs only.

Depending on the destination, the Prepare phase includes the creation of temporary tables, generation of
manifest files, and the fetching of extra connections for parallel data transfer.

Process

After the data has been transferred to the platform, this phase covers the processing of cleanup after data
transfer, including the dropping of temporary tables or copying data within the instance.

Enable

The base feature is enabled by default.

"feature.enableJobMonitoring": true,

Configure

Optionally, you can enable the following capabilities in the Trifacta application. You can apply this change through
the Admin Settings Page (recommended) or trifacta-conf.json . For more information, see
Platform Configuration Methods.

Enable phases in Data sources tab

To display separate columns in the Data sources tab of the Job Details page for each phase on an ingest job, set
the following parameter to true:

"jobMonitoring.enablePhasesInDatasourcesTable": true,

Enable phases in Outputs tab

To display separate columns in the Outputs tab of the Job Details page for each phase for a publish job, set the
following parameter to true:

"jobMonitoring.enablePhasesInOutputsTable": true,

Save your changes and restart the platform.

Monitoring Jobs in the Application

When the base feature is enabled, you can monitor jobs in the following locations.

Copyright © 2022 Trifacta Inc. Page #577

Flow View

Track phases in the Jobs panel in Flow View. Hover the mouse over the link to the job.
See Flow View Page.

Import

NOTE: This feature may require enablement in your deployment. See Configure JDBC Ingestion.

Import Data:

For long-loading datasets, you can track the progress of the import through the Import Data page as you specify
the import. See Import Data Page.

Library:

After specifying the import, if the data is continuing to be ingested, you can track progress through the Library
page. See Library Page.

Dataset Details Page:

In the Dataset Details page, you can monitor the ingest progress. Hover over the Status link.

Figure: Dataset Details Page - Job Monitoring

Job Details Page

Track phases of progress by hovering over the job in progress in the Job Details page.
Review new and better detail in the Job Details page. Click View Details for the job listing.
For more information, see Job Details Page.

Datasources tab - Phased ingest monitoring

If job monitoring phases have been enabled for the Datasources tab, the tab looks like the following:

Figure: Job monitoring in the Datasources tab

View details:

Copyright © 2022 Trifacta Inc. Page #578

If an ingest job succeeds or fails, you can click View details in the status column for additional information on
each phase of the ingest job:

Figure: View details on monitoring ingest jobs

Output destinations tab - Phased publishing monitoring

If job monitoring phases have been enabled for the Output Destinations tab, the tab looks like the following:

Copyright © 2022 Trifacta Inc. Page #579

Figure: Job monitoring in the Datasources tab

View details:

If a publishing job succeeds or fails, you can click View details in the status column for additional information on
each phase of the publishing job:

Copyright © 2022 Trifacta Inc. Page #580

Figure: View details on monitoring ingest jobs

Copyright © 2022 Trifacta Inc. Page #581

Overview of Automator
Contents:

Limitations
Data Management

Flows for scheduling
Schedule a Job
Job Execution

Tracking
Configure

As needed, you can use the Automator to schedule the execution of recipes in your flows on a recurring basis.
For example, if the source file of your flow is updated outside of the application on a weekly basis, you can define
a schedule to execute the recipe associated with the related imported dataset after the data has been refreshed.
When the scheduled job successfully executes, you can collect the wrangled output in the specified output
location, where it is available in the published form that you have specified.

This feature was formerly known as, "scheduling."

To schedule a job, you must create the following configuration objects:

1. Define a schedule - For each flow you can define a schedule. A schedule specifies one or more recurring
times (triggers) when scheduled jobs for the flow are executed. For example, in a single schedule, you
can specify daily trigger times for incremental updates and monthly execution times for rollups.

Tip: The scheduler supports a modified form of cron job syntax. For more information, see
cron Schedule Syntax Reference.

2. Define one or more scheduled destinations - When you specify a scheduled destination for a recipe,
the recipe is executed whenever one of the schedule's execution times occurs. Scheduled destinations are
specified like regular destinations in flow view.

NOTE: When a schedule for a flow is triggered, all of recipes to generate the scheduled
destinations are executed. Manual destinations are not generated. You cannot create schedules
for individual outputs.

For more information on the scheduling objects, see Object Overview.

Limitations

One schedule cannot be applied to multiple flows.
You cannot create separate schedules for individual recipes within a flow. A schedule defined at the flow
level applies to all recipes in the flow.
Only a flow owner can create or modify a flow's schedule.

Copyright © 2022 Trifacta Inc. Page #582

Data Management

NOTE: Since scheduled destinations are re-populated with each scheduled execution, you must
determine how you wish to manage the data that is published to each location. Data management should
be done outside of Trifacta®.

Import: Before each scheduled execution, you should refresh the source of the imported dataset with new
data outside of Trifacta.
Execution: Please verify that the publishing settings for your scheduled destination are consistent with
how you are using the results. For example, if the scheduled destination creates a new file with the same
name for each execution (replace), you must move the generated file out of the output location before the
next scheduled execution.
Output: You must collect the generated results. While you can export the job's results through the Jobs
page, you may find it easier to use an external scheduler to gather the results and forward to the
downstream consumer of them.

Flows for scheduling

Tip: When a schedule is executed, all outputs in a flow are generated, even if they are unused. For better
performance on larger flows, you can create a separate flow that contains only the references back to the
objects in the source flow that you wish to have scheduled. As an additional benefit, this separation
keeps development and scheduled execution in separate flows.

Schedule a Job

Schedules and scheduled destinations are defined through Flow View.

Tip: You can create schedules for datasets with parameters and apply overrides through Flow View at
runtime. See Flow View Page.

For more information, see Schedule a Job.

Job Execution

Tracking

You can monitor a scheduled job like any other job in the application. See Jobs Page.

Configure

See Configure Automator.

Copyright © 2022 Trifacta Inc. Page #583

Overview of Parameterization
Contents:

Environment Parameters
Limitations
Example - parameterized bucket names
Export and Import

Datasets with Parameters
Example
Parameter Types
Guidelines for Sources
Mismatched Schemas
Limitations
Creating Dataset with Parameters
Managing Datasets with Parameters

Flow Parameters
Limitations
Example
Upstream flow parameters
Creating flow parameters
Managing flow parameters
Flow parameters in plans

Output Parameters
Parameter Types
Example
Creating output parameters
Using output parameters

Bucket Name Parameters
Parameter Overrides
Order of Parameter Evaluation
Run Jobs with Parameters

Runtime Parameter Overrides
Scheduling jobs on datasets with parameters
Parameters in Job Details

Operationalization with Parameters
APIs

Configuration
Disable

In Trifacta®, parameterization enables you to apply dynamic values to the data that you import and that you
generate as part of job execution.Parameter types:

Environment Parameters: A workspace administrator or project owner can specify parameters that are
available across the environment, including default values for them.
Dataset Parameters: You can parameterize the paths to inputs for your imported datasets, creating
datasets with parameters. For file-based imported datasets, you can parameterize the bucket where the
source is stored.
Flow Parameters: You can create parameters at the flow level, which can be referenced in any recipe in
the flow.
Output Parameters: When you run a job, you can create parameters for the output paths for file- or table-
based outputs.

These parameters can be defined by timestamp, patterns, wildcards, or variable values that you specify at
runtime.

Copyright © 2022 Trifacta Inc. Page #584

Environment Parameters

Project owners or workspace administrators can define parameters that apply across the project or workspace
environment. These parameters can be referenced by any user in the environment, but only a user with admin
access can define, modify, or delete these parameters.

Tip: Environment parameters are a useful means of ensuring that all users of the project or workspace
share common reference values to buckets, output locations, and more. Environment parameter
definitions can be exported and then imported into other projects or workspaces to ensure commonality
across the enterprise. The values assigned to environment parameters can be modified after they have
been imported into a new project or workspace.

NOTE: You must have admin access to the project or workspace to define environment parameters.

Names of environment parameters must begin with env..

Limitations

You cannot use environment parameters in recipes.
You cannot use environment parameters in plans.
Environment parameter names are unique within the environment.

You cannot use environment parameters in Deployment Manager. For more information, see
Overview of Deployment Manager.

Example - parameterized bucket names

In this example, you have three Trifacta workspaces, each of which has a different set of resources, although the
only difference between them is the name of the S3 bucket in which they are stored:

Environment Name S3 Bucket Name

Dev myco-s3-dev

Test myco-s3-test

Prod myco-s3-prod

In your Dev workspace, you can create an environment parameter called the following:

env.bucket-source

The default value for this parameter is set to:

myco-s3-dev

When creating imported datasets in this workspace, you insert the environment parameter for the source bucket
for each one.

For your Test and Prod environments:

1. Export your environment parameters from Dev.

Copyright © 2022 Trifacta Inc. Page #585

2. Import them into Test and Prod. During import, the importing user can map the imported parameters to
existing parameters in the environment.

3. In the imported environments, an administrator can manage the imported parameters and values as
needed.

When you later export your flows from Dev and move them to Test and Prod, the imported flows automatically
connect to the correct bucket for the target environment, since the bucket name is referenced by an environment
parameter.

Export and Import

You can export environment parameters from one environment and import them to another. For example, you
may be building your flows in a Dev workspace before they are exported and imported into a Prod workspace. If
your flows make use of environment parameters from the Dev space, you may want to export the parameters and
their values from the Dev workspace for migration to the Prod workspace.

NOTE: As part of the import process, you must reconcile name conflicts between imported environment
parameters and the parameters that already exist in the workspace.

For more information, see Manage Environment Parameters.

Datasets with Parameters

In some cases, you may need to be able to execute a recipe across multiple instances of identical datasets. For
example, if your source dataset is refreshed each week under a parallel directory with a different timestamp, you
can create a variable to replace the parts of the file path that change with each refresh. This variable can be
modified as needed at job runtime.

Example

Suppose you have imported data from a file system source, which has the following source path to weekly
transactions:

<file_system>:///source/transactions/2018/01/29/transactions.csv

In the above, you can infer a date pattern in the form of 2018/01/29, which suggests that there may be a
pattern of paths to transaction files. Based on the pattern, it'd be useful to be able to do the following:

Import data from parallel paths for other weeks' data.
Sample across all of the available datasets.
Execute jobs based on runtime variables that you set for other transaction sets fitting the pattern.

Pass in parameterized values through API to operationalize the execution of jobs across weeks of
transaction data.

In this case, you would want to parameterize the date values in the path, such that the dynamic path would look
like the following:

<file_system>:///source/transactions/YYYY/MM/DD/transactions.csv

The above example implements a Datetime parameter on the path values, creating a dataset with parameters.

Parameter Types

You can use the following types of parameters to create datasets with parameters:

Copyright © 2022 Trifacta Inc. Page #586

Datetime parameters: Apply parameters to date and time values appearing in source paths.
When specifying a Datetime parameter, you must also specify a range, which limits the range of the
Datetime values.

Variables: Define variable names and default values for a dataset with parameters.
Variable parameters can be applied to elements of the source path or to the bucket name, if
applicable.
Modify these values at runtime to parameterize execution.

Pattern parameters:
Wildcards: Apply wildcards to replace path values.
Regular Expressions: You can apply regular expressions to specify your dataset matches. Please
see the limitations section below for more information.
Patterns : The platform supports a simplified means of expressing patterns.

For more information on Patterns , see Text Matching.

For more information, see Create Dataset with Parameters.

Guidelines for Sources

The source files or tables for a dataset with parameters should have consistent structures. Since the sources are
parsed with the same recipe or recipes, variations in schema could cause breakages in the recipe or initial
parsing steps, which are applied based on the schema of the first matching source.

NOTE: All datasets imported through a single parameter are expected to have exactly matching
schemas. For more information on variations, see Mismatched Schemas below.

Tip: If there have been changes to the schema of the sources of your dataset with parameters, you can
edit the dataset and update the parameters. See Library Page.

Parameters in paths for imported datasets are rendered as regular expressions. Depending on the number of
parameters and the comparative depth of them in a parameterized dataset, the process of performing all pattern
checks can grow large, impacting import performance.

Tip: When specifying an imported dataset with parameters, you should attempt to be as specific as
possible in your parameter definitions.

NOTE: When importing one or more Excel files as a parameterized dataset, you select worksheets to
include from the first file. If there are worksheets in other Excel files that match the names of the
worksheets that you selected, those worksheets are also imported. All worksheets are unioned together
into a single imported dataset with parameters. Pattern-based parameters are not supported for import of
Excel worksheets.

Mismatched Schemas

Trifacta expects that all datasets imported using a single parameter have schemas that match exactly. The
schema for the entire dataset is taken from the first dataset that matches for import.

If schemas do not match:

When the first dataset contains extra columns at the end, the subsequent datasets that match should
import without issues.
If the subsequent datasets contain extra columns at the end, the datasets may import. Depending on the
situation, there may be issues.
If the subsequent datasets have additional or missing columns in the middle of the dataset, results of the
import are unpredictable.

Copyright © 2022 Trifacta Inc. Page #587

If there are extra columns in the middle of the dataset, you may see extra data in the final column,
in which the spill-over data has not been split.

Ideally, you should fix these issues in the source of the data. But if you cannot, you can try the following:

Tips:

After import of a dataset with parameters, perform a full scan random sample. When the new sample is
selected:

Check the last column of your imported to see if you have multiple columns of data. See if you can
perform split the columns yourself.
Scan the column histograms to see if there are columns where the number of mismatches or
anomalous or outlier values has suddenly increased. This could be a sign of mismatches in the
schemas.

Edit the dataset with parameters. Review the parameter definition. Click Update to re-infer the data types
of the schemas. This step may address some issues.
You can use the union tool to import the oldest and most recent sources in your dataset with parameters. If
you see variations in the schema, you can look to modify the sources to match.

If your sources have variation in structure, you should remove the structure from the imported
dataset and create your own initial parsing steps to account for the variations. See
Initial Parsing Steps.

Limitations

You cannot create datasets with parameters from uploaded data.
You cannot create dataset with parameters from multiple file types.

File extensions can be parameterized. Mixing of file types (e.g. TXT and CSV) only works if they are
processed in an identical manner, which is rare.
You cannot create parameters across text and binary file types.

For datasources that require conversion, such as Excel, PDF, or JSON files, you can create a dataset with
parameters from a maximum of 500 converted files.
Parameter and variable names can be up to 255 characters in length.
For regular expressions, the following reference types are not supported due to the length of time to
evaluate:

Backreferences. The following example matches on axa, bxb, and cxc yet generates an error:

([a-c])x\1

Lookahead assertions: The following example matches on a, but only when it is part of an ab patter
n. It generates an error:

a(?=b)

For some source file types, such as Parquet, the schemas between source files must match exactly.

You cannot define import mapping rules for datasets with parameters. If the imported dataset with
parameters is still accessible, you should be able to run jobs from it.

Creating Dataset with Parameters

From file system

When browsing for data on your default storage layer, you can choose to parameterize elements of the path.
Through the Import Data page, you can select elements of the path, apply one of the supported parameter types
and then create the dataset with parameters.

NOTE: Matching file path patterns in a large directory can be slow. Where possible, avoid using multiple
patterns to match a file pattern or scanning directories with a large number of files. To increase matching

Copyright © 2022 Trifacta Inc. Page #588

speed, avoid wildcards in top-level directories and be as specific as possible with your wildcards and
patterns.

Tip: For best results when parameterizing directories in your file path, include the trailing slash (/) as
part of your parameterized value.

Options:

You can choose to search nested folders for files that match your specified pattern.

Tip: If your imported dataset is stored in a bucket, you can parameterize the bucket name, which can be
useful if you are migrating flows between environments or must change the bucket at some point in the
future.

For more information, see Create Dataset with Parameters.

From relational source

If you are creating a dataset from a relational source, you can apply parameters to the custom SQL that pulls the
data from the source.

NOTE: Avoid using parameters in places in the SQL statement that change the structure of the data. For
example, within a SELECT statement, you should not add parameters between the SELECT and FROM
keywords.

For more information, see Create Dataset with SQL.

Matching parameters

When a dataset with parameters is imported for use, all matching source files or tables are automatically unioned
together.

NOTE: Sources for a dataset with parameters should have matching schemas.

The initial sample that is loaded in the Transformer page is drawn from the first matching source file or table. If
the initial sample is larger than the first file, rows may be pulled from other source objects.

Managing Datasets with Parameters

Datasets with parameters in your flows

After you have imported a dataset with parameters into your flow:

You can review any parameters that have been applied to the dataset through the Parameterization in
Flow view.
When the dataset with parameters is selected, you can use the right panel to review and edit the
parameters that are applied to it.
You can override the default value applied to the parameter through Flow View. See
Manage Parameters Dialog.

For more information, see Flow View Page.

Tip: You can review details on the parameters applied to your dataset. See Dataset Details Page.

Copyright © 2022 Trifacta Inc. Page #589

Sampling from datasets with parameters

When a dataset with parameters is first loaded into the Transformer page, the initial sample is loaded from the
first found match in the range of matching datasets. If this match is a multi-sheet Excel file, the sample is taken
from the first sheet in the file.

With parameters:

To work with data that appears in files other than the first match in the dataset, you must create a new sample in
the Transformer page. Any sampling operations performed within the Transformer page sample across all
matching sources of the dataset.

With variables:

If you have created a variable with your dataset, you can apply a variable value to override the default at
sampling time. In this manner, you can specify sampling to occur from specific source files from your dataset with
parameters.

For more information, see Overview of Sampling.

Scheduling for datasets with parameters

Schedules can been applied to a dataset with parameters. When resolving date range rules for scheduling a
dataset with parameters, the schedule time is used.

For more information, see Add Schedule Dialog.

Sharing for datasets with parameters

By default, when a flow containing parameters is copied, any changes to parameter values in the copied flow also
affect parameters in the original flow. To separate these parameters, you have the following options:

1. Optionally, when the flow is copied, you can copy the underlying datasets.
2. As a workaround, you can export and import the flow into the same system and replace the datasets in the

imported flow.

NOTE: For copying flows using parameterized datasets, you should duplicate the datasets, which
creates separate copies of parameters and their values in the new flow. If datasets are not copied, then
parameter changes in the copied flow modify the values in the source flow.

For more information, see Overview of Sharing.

Housekeeping

Since Trifacta never touches the source data, after a source that is matched for a dataset with parameters has
been executed, you should consider removing it from the source system or adjusting any applicable ranges on
the matching parameters. Otherwise, outdated data may continue to factor into operations on the dataset with
parameters.

NOTE: Housekeeping of source data is outside the scope of Trifacta. Please contact your IT staff to
assist as needed.

Flow Parameters

You can specify flow parameters and their default values, which can be invoked in the recipe steps of your flow.
Wherever the flow parameter is invoked, it is replaced by the value you set for the parameter. Uses:

Copyright © 2022 Trifacta Inc. Page #590

Dynamically affect recipe steps
Improve flow usability; build fewer flows and recipes to maintain
Parameters are evaluated at design time in the Transformer page and at runtime during job execution
All parameter values can be overridden, as needed.

Flow parameter types:

Literal values: These values are always of String data type.

Tip: You can wrap flow parameter references in your transformations with one of the PARSE
functions.

NOTE: Wildcards are not supported.

Patterns . For more information, see Text Matching.
Regular expressions.

Limitations

Flow parameters are converted to constants in macros. Use of the macro in other recipes results in the
constant value being applied.
A flow parameter cannot be used in some transformation steps or fields.

Example

Suppose you need to process your flow across several regions of your country. These regions are identified
using a region ID value: pacific, mountain, central, or eastern.

From the Flow View context menu, you select Manage parameters. In the Parameters tab, you specify the
parameter name:

paramRegion

You must specify a default value. To verify that this critical parameter is properly specified before job execution,
you set the default value to:

##UNSPECIFIED##

The above setting implies two things:

If the above value appears in the output, then an override value for the parameter was not specified when
the job was executed, which prevents the default value being used erroneously.
Before the job is executed, you must specify an override value. You can specify an override:

At the flow level to assist in recipe development.
At run time to insert the proper region value for the job run.

After the flow parameter has been created, you can invoke it in a transformation step using the following syntax.

$paramRegion

Where the parameter is referenced, the default or applicable override value is applied. For more examples, see
Create Flow Parameter.

Copyright © 2022 Trifacta Inc. Page #591

Upstream flow parameters

If your flow references a recipe or dataset that is sourced from an upstream flow, the flow parameters from that
flow are available in your current flow. That value of the parameter at time of execution is passed to the current
flow.

NOTE: Downstream values and overrides of parameters that share the same name take precedence.
When you execute the downstream flow, the parameter value is applied to the current flow and to all
upstream objects. For more information, see "Order of Evaluation" below.

Creating flow parameters

Flow parameters are created at the flow level from the context menu in Flow View. See
Manage Parameters Dialog.

Managing flow parameters

Flow parameters can be edited, deleted, and overridden through the Flow View context menu. See
Manage Parameters Dialog.

Flow parameters in plans

You can also apply overrides to your flow parameters as part of your plan definition. For more information, see
Plan View Page.

Output Parameters

You can specify variable and timestamp parameters to apply to the file or table paths of your outputs.

NOTE: Output parameters are independent of dataset parameters.

Parameter Types

You can create the following types of output parameters:

Datetime parameters: Insert date and time values in output paths based on the job's start time.
Variables: Define variable names and default values for an output parameter. Modify these values at
runtime to parameterize execution.

Tip: These types of parameters can be applied to file or table paths. An output path can contain multiple
parameters.

Example

Suppose you are generating a JSON file as the results of job execution.

/outputs/myFlow/myOutput.json

Since this job is scheduled and will be executed on a regular interval, you want to insert a timestamp as part of
the output, so that your output filenames are unique and timestamped:

/outputs/myFlow/myOutput_<timestamp>.json

Copyright © 2022 Trifacta Inc. Page #592

In this case, you would create an output parameter of timestamp type as part of the write settings for the job you
are scheduling.

Creating output parameters

When you are creating or editing a publishing action in the Run Jobs page, you can click the Parameterize
destination link that appears in the right panel.

Tip: For outputs that are stored in buckets, you can parameterize the name of the bucket.

For more information, see Create Outputs.

Using output parameters

Whenever you execute a job using the specified publishing action, the output parameters are applied.

After specifying variable parameters, you can insert new values for them at the time of job execution in the Run
Job page.

For more information, see Run Job Page.

Bucket Name Parameters

In addition to parameterizing the paths to imported datasets or outputs, you can also apply parameters to the
buckets where these assets are stored. For example, if you are developing flows in one workspace and deploying
them into a production workspace, it may be useful to create a parameter for the name of the bucket where
outputs are written for the workspace.

Bucket names can be parameterized for the buckets in the following datastores:

S3

ADLS Gen2

Tip: You can parameterize the user info, host name, and path value fields as separate parameters.

Bucket names can be parameterized as variable parameters or as environment parameters. For more information
on examples of parameterized bucket names, see "Environment Parameters" above.

For more information:

Parameterize Files for Import
Create Outputs

Parameter Overrides

For each of the following types of parameter, you can apply override values as needed.

Override
Type

Description

dataset
parameters

When you run a job, you can apply override values to variables for your imported datasets. See Run Job Page.

flow At the flow level, you can apply override values to flow parameters. These values are passed into the recipe and the rest of
parameters the flow for evaluation during recipe development and job execution.

Copyright © 2022 Trifacta Inc. Page #593

NOTE: Overrides applied at the flow level are passed into all recipes and other objects in the flow. Wherever there
is case-sensitive match between the name of the overridden parameter and a parameter name in the flow, the
override value is applied. These values can be overridden by ad-hoc values. See "Order of Precedence" below.

output When you define your output objects in Flow View, you can apply override values to the parameterized output paths on an as-
parameters needed basis when you specify your job settings. See Run Job Page.

Order of Parameter Evaluation

Wherever a parameter value or override is specified in the following list, the value is applied to all matching
parameters within the execution tree. Suppose you have created a parameter called varRegion, which is
referenced in your imported dataset, recipe, and output object. If you specify an override value for varRegion in
the Run Job page, that value is applied to the data you import (dataset parameter), the recipe during execution
(flow parameter), and the path of the output that you generate (output parameter). Name matches are case-
sensitive.

NOTE: Override values are applied to upstream flows, as well. Any overrides specified in the current flow
are passed to downstream flows, where they can be overridden as needed.

Parameter values are evaluated based on the following order of precedence (highest to lowest):

NOTE: The following does not apply to environment parameters, which cannot be overridden.

1. Run-time overrides: Parameter values specified at run-time for jobs.

NOTE: The override value is applied to all subsequent operations in the platform. When a job is
submitted to the job queue, any overrides are applied at that time. Changes to override values do
not affect jobs that are already in flight.

NOTE: You can specify run-time override values when executing jobs through the APIs. See
API Workflow - Run Job.

See Run Job Page.
2. Flow level overrides: At the flow level, you can specify override values, which are passed into the flow's

objects. These values can be overridden by overrides set in the above locations. See
Manage Parameters Dialog.

3. Default values: If no overrides are specified, the default values are applied:
a. Imported datasets: See Create Dataset with Parameters.
b. Flow parameters: See Manage Parameters Dialog.
c. Output parameters: See Run Job Page.

4. Inherited (upstream) values: Any parameter values that are passed into a flow can be overridden by any
matching override specified within the downstream flow.

Run Jobs with Parameters

When running a job based on datasets with parameters, results are written into separate folders for each
parameterized path.

Copyright © 2022 Trifacta Inc. Page #594

NOTE: During job execution, a canary file is written for each set of results to validate the path. For
datasets with parameters, if the path includes folder-level parameterization, a separate folder is created
for each parameterized path. During cleanup, only the the canary files and the original folder path are
removed. The parameterized folders are not removed. This is a known issue.

Runtime Parameter Overrides

When you choose to run a job on a dataset with parameters from the user interface, any variables are specified
using their default values.

Through the Run Job page, you can specify different values to apply to variables for the job.

NOTE: Override values applied to a job are not validated. Invalid overrides may cause your job to fail.

NOTE: Values applied through the Run Job page to variables override the default values for the current
execution of the job. Default values for the next job are not modified.

NOTE: When you edit an imported dataset, if a variable is renamed, a new variable is created using the
new name. Any override values assigned under the old variable name for the dataset must be re-applied.
Instances of the variable and override values used in other imported datasets remain unchanged.

For more information, see Run Job Page.

Scheduling jobs on datasets with parameters

You can schedule jobs for datasets with parameters.

NOTE: When a job is executed, the expected time of execution is used during execution. For scheduled
jobs, this value is the scheduled time. For example, if a job scheduled for 08:00 begins execution at 08:
05, any parameters that reference "now" time use 08:00 during the job run.

For a scheduled job:

Parameter values are evaluated based on the scheduled time of execution. Relative times are evaluated
based on the scheduled time of execution.
If there are interruptions in service due to maintenance windows or other reasons, scheduled jobs are
queued for execution on restart. These queued jobs are attempted only once.

See Schedule a Job.

Parameters in Job Details

In the Job Details page:

Data sources tab: For file-based parameterized datasets, you can review the files that were matched at
runtime for the specified parameters.
Parameters tab: View the parameter names and values that were used as part of the job, including the list
of matching datasets.

See Job Details Page.

Copyright © 2022 Trifacta Inc. Page #595

Operationalization with Parameters

APIs

Through the API, you can apply runtime parameters to datasets with parameters during job execution. For more
information, see https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroupFor more information on
working with parameters and the APIs, see API Workflow - Run Job on Dataset with Parameters.

Use of parameters to create imported datasets through the API is not supported.

For other parameter types, you can apply overrides as key-value pairs in the API request to execute a new job.
See API Workflow - Run Job.

Configuration

Disable

By default, parameterization is enabled. This feature is covered by this setting: Parameterization.

For more information on disabling, see Workspace Settings Page.

Copyright © 2022 Trifacta Inc. Page #596

https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroupFor

Overview of Authorization
Contents:

Resource Roles and Privileges
Standard roles
Custom role(s)
Privileges

Example model

Authorization governs how Trifacta® users can access platform features and user-defined objects in the Trifacta
application.

NOTE: Authorization manages access to object types. It does not cover access to individual objects of a
specified type. For example, access to a specific flow is governed by ownership of the flow (owner) and
sharing of the flow by the owner (to a collaborator). If a flow is shared with a user who is not permitted to
access flows, then the user cannot access the flow.

Resource Roles and Privileges

Access to Trifacta objects is governed by roles in the user account.

A role is a set of zero or more privileges. A user may have one or more assigned roles.

NOTE: Roles are additive. If a user has multiple roles, the user has access at the highest level of
privileges from each role.

A privilege is an access level for a type of object. A role may have one or more privileges assigned to it.
All accounts are created with the default role, which provides a set of basic privileges.

Standard roles

default role

All new users are automatically assigned the default role. By default, the default role enables full access to
all types of Trifacta objects.

If you have upgraded from a version of the product that did not support authorization, the default role
represents no change in behavior. All existing users can access Trifacta objects as normal.

Since roles in a user account are additive, you may choose to reduce the privileges on the default role and
then add privileges selectively by creating other roles and assigning them to users. See the example below.

NOTE: You can modify the default role. You can also remove it from a user account. You cannot
delete the role.

NOTE: In future releases of the software, additional objects may be made available. A level of access
may be defined in the default role. No other roles will be modified.

Workspace admin role
This admin role is a super-user. The admin role enables all capabilities of the default role, plus:

Copyright © 2022 Trifacta Inc. Page #597

access to all Trifacta application objects, unless specifically limited. See Resource Roles and Privileges
below.
administration functions and settings within the Trifacta application.

NOTE: This role enables for the user owner-level access to all objects in the project or workspace and
access to all admin-level settings and configuration pages in the admin console. This role should not be
assigned to many users. At least one user should always have this role.

NOTE: A platform administrator is automatically granted the admin role.

Custom role(s)

As needed, administrators can create custom roles for users of the project or workspace. For more information,
see Create Role.

Privileges

For a complete list of privileges for each type of object, see Privileges and Roles Reference.

Example model

In the following model, three separate roles have been created. Each role enables the highest level of access to
a specific type of object.

The default object has been modified:

Since all users are automatically granted the default role, the scope of its permissions has been
reduced here to view-only.
There is no viewer privilege for Plans (none, author).

NOTE: Depending on your product edition, some of these privileges may not be applicable.

Privilege/Role default Role A Role B Role C Notes

Flows viewer author none none

Connections viewer none author none Paid product editions only

Plans none none none author Premium product editions only

User defined functions viewer none none author Dataprep by Trifacta product editions only

User 1:

Roles: default

User can see flows in Flows page. User cannot schedule, modify, or create new ones.
User can see connections in the Connections page. User cannot schedule, modify, or create new ones.
User cannot access the Plans page.
User can invoke UDFs but cannot create, modify or delete them.

User 2:

Roles: default, Role A

Copyright © 2022 Trifacta Inc. Page #598

User can create, schedule, modify, run jobs, and delete flows (full privileges).
User can see connections in the Connections page. User cannot schedule, modify, or create new ones.
User cannot access the Plans page.
User can invoke UDFs but cannot create, modify or delete them.

User 3:

Roles: Role A, Role B, Role C

User can create, schedule, modify, run jobs, and delete flows (full privileges).
User can create, modify, and delete connections (full privileges).
User can create, schedule, modify, run jobs, and delete plans (full privileges).
User can create, modify, and delete UDFs.

Copyright © 2022 Trifacta Inc. Page #599

Overview of Operationalization
Contents:

Single-Flow Operations
Parameterization
Scheduling
Job monitoring
Email notifications
Webhooks
Deployment Manager

Orchestration
Terms
Task types
Limitations
Basic workflow
Plan scheduling
Plan execution
Enable
Logging

Operationalization refers to a general class of platform features that enable repeated application of Trifacta® on
production data. Whether deployed in a single flow or across all flows in your environment, operationalization
features broaden the scope of wrangled data, simplify job execution, and enable these processes on a repeated
or scheduled basis.

In the following sections, you can review short summaries of specific features and explore more detailed
information on them.

Single-Flow Operations

These features can be applied to individual flows to simplify job execution.

Parameterization

Parameterization enables you to specify parameters that capture variability in your data source paths or names.
For example, you can parameterize the names of folders in your filepaths to capture files within multiple folders.
Or, you can parameterize your inputs to capture datasets named within a specific time range. Nested folders of
data can be parameterized, too.

Parameter types:

dataset parameters: Parameterize the input paths to your data, allowing you to process data in parallel
files and tables through the same flow.
output parameters: Parameterize the output paths for your results.
flow parameters: Define parameters that can be applied in your flows, including recipe steps.

Tip: You can apply overrides to any parameter at the flow level. These parameter override values
are applied to any parameter that is referenced within the flow for any supported parameter type.

Parameter formats:

NOTE: Some of the following may not be available in your product edition.

Copyright © 2022 Trifacta Inc. Page #600

Parameter Type Description

Pattern Use regular expressions or Patterns in your paths or queries to sources to capture a broader set of inputs.

Wildcard Replace parts of your paths or queries with wildcards.

Datetime You can specify parameterized Datetime values in one of the supported formats.

Variable Variable values can be specified as overrides during import, job execution, and output.

Parameterization is available for the following:

File systems

Input Output

Date/time Timestamp

Pattern Variable

Variable

Relational sources

Input Output

Timestamp Timestamp

Variable Variable

NOTE: For relational data, parameterization is applied to custom SQL queries used to import the data.
For more information, see Enable Custom SQL Query.

For more information, see Overview of Parameterization.

Scheduling

The scheduling feature, also known as Automator, enables you to schedule the execution of individual flows on
a specified frequency. Frequencies can be specified through the Trifacta application through a simple interface
or, if needed, in a modified form of cron syntax.

Tip: Automator is often used with parameterization to fully automate data preparation processes in Trifacta
.

For more information, see Overview of Automator.

Job monitoring

After a job has been launched, detailed monitoring permits you to track the progress of your job during all phases
of execution. Status, job stats, inputs, outputs and a flow snapshot are available through the Trifacta application.
For more information, see Overview of Job Monitoring.

Email notifications

After a job has completed, you can send email notifications to stakeholders based on the success or failure of the
job.

Copyright © 2022 Trifacta Inc. Page #601

NOTE: This feature must be enabled. See Workspace Settings Page.

These notifications are defined within Flow View. See Email Notifications Page.

Webhooks

Webhook notifications let you define outgoing HTTP messages to any REST API. The message form and body
can be customized to include job execution metadata. For more information, see Create Flow Webhook Task.

Deployment Manager

The Deployment Manager is a separate environment that can be enabled for the execution of production flows
under limited access. Flows in development are exported from your default (Dev) instance and then imported to
the Production instance, the Deployment Manager, where you can configure the periodic execution of the flow.
For more information, see Overview of Deployment Manager.

Orchestration

Orchestration is a set of functionality that supports the scheduled execution of jobs across multiple flows. These
jobs could be external processes, other flows, or even HTTP requests.

Terms

Term Description

plan A plan is a sequence of tasks that are executed on one or more flows to which you have access. To orchestrate tasks, you build
a plan. A plan can be scheduled for execution, triggered manually, or invoked via API.

trigger A task is executed based on a trigger. A trigger is a condition under which a task is executed. In many cases, the trigger for a
task is based on the schedule for the plan.

task A task is a unit of execution in the platform. For example, one type of task is the execution of a flow, which executes all recipes in
the flow, as well as the flow's upstream dependencies.

snapsh A snapshot of the plan is captured, and the plan is executed against this snapshot. For more information on snapshots, see "Plan
ot execution" below.

Task types

The following types of tasks are available.

Type Description

flow task An ad-hoc or scheduled execution of the transformations required to produce one or more selected outputs from a flow.

HTTP task A request submitted to a third-party server as part of a plan run.

Slack task Send a message with information about the plan run to a specified Slack channel.

Delete task Delete files and folders from backend data storage.

Limitations

You cannot specify parameter overrides to be applied to plans specifically.
Plans inherit parameter values from the objects referenced in the plan's tasks.
If overrides are applied to flow parameters, those overrides are passed to the plan at the time of
flow execution.

Copyright © 2022 Trifacta Inc. Page #602

Tip: Prior to plan execution, you can specify parameter overrides at the flow level. These
values are passed through to the plan for execution. For more information, see
Manage Parameters Dialog.

Basic workflow

You create a plan and schedule it using the following basic workflow.

1. Create the plan. A plan is the container for definition of the tasks, triggers, and other objects. See
Plans Page.

2. In Plan View, you specify the objects that are part of your plan. See Plan View Page.
a. Schedule: The schedule defines the set of triggers that queue the plan for execution.

i. Trigger: A trigger defines the schedule and frequency at which the plan is executed. A plan
can have multiple triggers (e.g. monthly versus weekly executions).

b. Task(s): Next, you specify the tasks that are executed in order.
i. Flow task: A flow task includes the specification of the flow to run and the outputs from the

flow to generate.

NOTE: You can select the outputs from the recipe that you wish to generate. You do
not need to generate all outputs.

NOTE: When a flow task is executed, the execution plan works back from the
selected outputs to execute all of the recipes required to generate the output,
including the upstream dependencies of those recipes.

See Plan View for Flow Tasks.
ii. HTTP task: An HTTP task is a request issued when it is triggered from the application to a

target endpoint. This request supports a variety of API methods. See
Plan View for HTTP Tasks.

iii. Slack task: A Slack task is a message between Trifacta and a specified Slack channel that
is triggered within the plan. See Plan View for Slack Tasks.

iv. Delete task: A Delete task deletes specific files or folders from backend storage. See
Plan View for Delete Tasks.

v. Continue building tasks in a sequence.
3. As needed, you can apply override values to any flow parameters that are included in the tasks of your

recipe. These overrides are applied during a plan run. For more information, see
Manage Parameters Dialog.

4. To test:
a. Click Run now.
b. To track progress, click the Runs link.
c. In the Run Details page, you can track the progress.
d. The first task is executed and completes, before the second task is started.
e. Individual tasks are executed as separate jobs, which you can track through the Jobs page. See

Jobs Page.
f. When the plan has completed, you can verify the results through the Job details page. See

Job Details Page.
5. If you are satisfied with the plan definition and your test run, the plan will execute according to the

scheduled trigger.

Plan scheduling

Through the Plan View page, you can configure the scheduled executions of the plan. Plan schedules are
defined using triggers.

These schedules are independent of schedules for individual flows.
You cannot create schedules for individual tasks.

Copyright © 2022 Trifacta Inc. Page #603

Plan execution

When a plan is triggered for execution, a snapshot of the plan is taken. This snapshot is used to execute the
plan. Tasks are executed in the sequence listed in Plan View.

Important notes:

NOTE: Any subsequent changes to the flows, datasets, recipes, and outputs referenced in the plan's
tasks can affect subsequent executions of the plan. For example, subsequent removal of a dataset in a
flow referenced in a task can cause the task to fail to execute properly.

At the flow level, you can define webhooks and email notifications that are triggered based on the successful
generation of outputs. When you execute a plan containing an output with one of these messages, the message
is triggered and delivered to stakeholders.

NOTE: Webhook messages and email notification cannot be directly triggered based on a plan's
execution. However, you can create HTTP-based tasks to send messages based on a plan task's
execution.

Tip: When a flow email notification is triggered through a plan, the internal identifier for the plan is
included in the email.

See "Webhooks" and "Email notifications" above.

Enable

Enable the following setting:

Plans feature

Plan sharing, import, and export must also be enabled.For more information, see Workspace Settings Page.

The following flags must be enabled for the orchestration service to correctly function.

Steps:

1. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json .
For more information, see Platform Configuration Methods.

2. Locate the following settings. Verify that they are set to true:

"webapp.orchestrationWorkers.enabled": true,
"orchestration-service.enabled": true,
"orchestration-service.autoRestart": true,

3. You can choose to enable the following task types:

Task
type

Setting Description

HTTP
task

feature.orchestration.
httpTasks.enabled

Copyright © 2022 Trifacta Inc. Page #604

Slack feature.orchestration.
task slackTask.enabled

Delete feature.orchestration.
task deleteFileTask.enabled

feature.orchestration.
deleteFileTask.maxFiles

Email feature.orchestration.
task emailTask.enabled

Flow This feature is automatically enabled
task when Plans feature is enabled.

See above.

4. Save your changes and restart the platform.

Logging

When true, you can configure plan tasks to deliver a REST request over
HTTP or HTTPS to a specified endpoint, including endpoints in the Trifacta
platform.

When true, you can configure plan tasks to deliver messages to a
specified Slack channel.

When true, you can configure plan tasks to delete files or folders from
backend data storage.

By default, the maximum number of files that can be matched for deletion is
100. You can modify this value if needed.

NOTE: This setting is intended as a safety measure to prevent
runaway deletion of a large number of files. Modify this value only
if necessary.

This feature is not yet available.

These tasks execute a specific output on a selected flow.

Logging information on plan execution is captured in the orchestration-service.log. This log file can be
downloaded as part of a Support Bundle. For more information, see Support Bundle Contents.

You can configure aspects of how this log captures service events. For more information, see
Configure Logging for Services.

Copyright © 2022 Trifacta Inc. Page #605

Overview of Macros
Contents:

Limitations
Enable
Examples

Example 1 - Reformat headers
Example 2 - Redact data for sensitive column data types

Create
Macro inputs

Apply
Sharing
Import/Export
Manage

In Trifacta®, a macro is a saved sequence of one or more recipe steps that can be reused in other recipes. As
needed, values in the recipe steps can be modified, so that instances of the macro can be configured for the
recipe requirements.

Limitations

You cannot create macros from steps that contain the following:
Multi-dataset operations like join, union, and lookup
Data-dependent transformations like header, valuestocols, and pivot.
Other macros

NOTE: In macros, Rename Columns transformations do not work. This is a known issue.

You cannot create macros in flows that you do not own.
Macro input limitations on the following types:

limits
enums
arrays

Sharing of macros is not supported.
When working with a flow that was shared with you, you can only use the macros that belong to the
flow's owner.

When a flow containing a macro is imported, the macro steps are expanded.

Enable

This feature is enabled by default. To disable this feature, please complete the following steps.

Steps:

1. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json .
For more information, see Platform Configuration Methods.

2. Locate the following setting:

"feature.macros.enabled": true,

Copyright © 2022 Trifacta Inc. Page #606

3. Export and import of macros is controlled by a separate setting. Locate the following setting and set it to tr
ue:

"feature.macros.exportable": true,

4. Save your changes and restart the platform.

Examples

Example 1 - Reformat headers

Suppose one of your downstream systems has the following requirements for column headers:

No spaces. Underscore is ok.

You can do the following:

1. For the recipe on which you are working, create a new recipe.
2. In this new empty recipe, add the steps to configure your headers according to the above requirements.

a. No spaces. Underscores are ok:

Transformation Name Rename columns based on a pattern

Parameter: Option Find and replace

Parameter: Columns All

Parameter: Find ' '

Parameter: Replace with '_'

Parameter: Match all true
occurrences

3. Select the above step. In the context menu for it, select Create or replace macro .
a. Enter a Name and optional Description value. Click Next.
b. In the Create Macro dialog, you can review the step and its specified field values.
c. To save the macro, click Save.

4. For any recipe that must generate results for this downstream system, you can insert this macro as the last
step before publication. For example, you can delete the recipe where you made the macro and insert the
macro reference in the preceding recipe.

Example 2 - Redact data for sensitive column data types

For security reasons, you may decide that sensitive information must be redacted before it is delivered as an
output for downstream consumption. For the following data types, you may wish to remove the sensitive
information at the end of your transformation process:

Credit card numbers
Social Security numbers

1. For the recipe on which you are working, create a new recipe.
2. In this new empty recipe, add the following steps.

a. Redact social security numbers:

Transformation Name Edit formula

Parameter: Columns All

Copyright © 2022 Trifacta Inc. Page #607

Parameter: Formula IF(ISVALID($col,'SSN'),'##REDACTED##',$col)

b. Redact credit card numbers: For this one, you can use the following transformation to mask the
numbers except for the last four digits using Patterns :

Transformation Replace text or patterns
Name

Parameter: All
Columns

Parameter: Find `{start}{digit}{4}{any}{digit}{4}{any}{digit}{4}{any}
({digit}{4}){end}`

Parameter: XXXX-XXXX-XXXX-$1
Replace with

NOTE: The above transformation matches values based on the structure of the data,
instead of the data type. If for some reason, you have values that are not credit card
numbers yet follow the credit card pattern, those values will be masked as well by this
transformation.

3. Select the above steps. In the context menu, select Create or replace macro.
a. Enter a Name and optional Description value. Click Next.
b. In the Create Macro dialog, you can review the step and its specified field values.

i. You may wish to parameterize the Find and Replace with values. For example, for some
uses of the macro, you may wish to replace with an empty string or a value like ##REDACTED
like the previous macro.

c. To save the macro, click Save.
4. For any recipe that must generate results for this downstream system, you can insert this macro as the last

step before publication. For example, you can delete the recipe where you made the macro and insert the
macro reference in the preceding recipe.

Create

A macro is created from a sequence of steps inside a recipe.

The steps do not have to occur consecutively in the recipe.
Recipe steps are added to the macro in the order that they are listed in the recipe.
Some recipe steps cannot be added to a macro, so the option to create a macro with these types of steps
is not available.

For more information, see Create or Replace Macro.

Macro inputs

When you create a macro, you can define macro inputs to contain values to be used in the macro's steps. Values
for these inputs can be specified with each instance of a macro. For example, if you use MacroA at Step 2 and
Step 37 of your recipe, you can specify different values for inputs to MacroA at the Step 2 and Step 37 instance
of it.

Create macro inputs: Macro inputs can be defined when you create a new macro.
Reuse or replace macro inputs: When you replace a macro, you can reuse or replace the existing macro
inputs in the new version of a macro.

If you are reusing the existing macro inputs, you must map them to the new steps in the new
version of the macro.
If you are replacing macro inputs, instances of the macro that were added to your recipes under the
old definition must be updated.

Copyright © 2022 Trifacta Inc. Page #608

Apply

After a macro is created, you can apply an instance of it anywhere in your recipes. See Apply a Macro.

Sharing

Macros cannot be independently shared.

Copy a flow:

All macros are included. Steps are not expanded.

Share a flow:

When a flow is shared, the flow owner's macros are available for use by any collaborator in the recipes of the
shared flow.

Import/Export

NOTE: Exported macros can be imported into a release that is later than the source release of the
product. Exported macros cannot be imported into earlier releases.

Export:

You can export individual macros from the Macros page. See Export Macro.
When a flow containing a recipe that references macros is exported, macros are exported as expanded
steps.

Import:

Exported macros can be imported into a new environment through the Macros page. See Import Macro.
When a flow containing macros is imported, the expanded steps are imported normally.

Manage

After macros have been created, you can manage them through the Library. For more information, see
Macros Page.

Copyright © 2022 Trifacta Inc. Page #609

Overview of Deployment Manager
Contents:

Dev/Test and Prod Deployments
Implementation in the platform

Terminology
Production environment terminology changes
Deployment Objects

Enable Deployment
User management

Import/Export
Exported Flows
Connections
Import
Value and Object Mapping Rules

Production Environment
Version Management
Flow View Page

Example Workflow
Recommended Practices
Job Execution

On-demand jobs
Scheduled jobs

Automation

You can deploy flows that you have created into a separate, production environment where jobs for those flows
can be executed on a periodic or scheduled basis. In this manner, you can create separation between your
development and production environments and their flows. The Deployment Manager includes the tools to
migrate your software between environments, manage releases of it, and separately control access to
development and production flows.

Deployment Manager enables the transfer of flows between development and production instances of the
platform. A customer may have one or more instances of the platform.
For managing user access to flows within the same development instance, you can use sharing. See
Overview of Sharing.
This feature was formerly known as, "deployment management."

Key Features:

Development environment:
Export of flows and all dependent objects
Import back into Development deployments for further development

Production environment:
Import of flows

Import global and object-level mapping rules
Manage releases of flows
Rollback to previous versions as needed

APIs to manage deployments

Copyright © 2022 Trifacta Inc. Page #610

Dev/Test and Prod Deployments

In a typical environment, deployments may be segmented between Development (Dev), Testing (Test), and
Production (Prod) environments. With respect to the Trifacta platform, these deployments break down into the
following:

NOTE: In some cases, Dev and Test may be the same instance.

NOTE: Multiple browser tabs or windows open to different versions of the product is not supported.

Platform Description
instance

Developme New flows and recipes are created in a Development instance of the platform. Experiments can be undertaken without
nt (Dev) concern that production use of the recipe or flow is affected.

Tip: You should do all of your recipe development and testing in Dev/Test. Avoid making changes in a Prod
environment.

Rules should be established on how flows, datasets, and recipes are organized and structured. Where are these assets
stored? Where are shared versions of them made available? What are the rules by which items in Dev can be moved to Test
/Prod?

Testing In the Testing deployment, the objects in development are subjected to various stress tests. In the Trifacta platform, this
(Test) testing can include load testing, malformed inputs, and changes to any parameters affecting the use of the object. For

example, scheduled executions of flows should be thoroughly tested in this deployment.

When errors are detected, they can be corrected in Dev or Test. Ideally, they are first applied in Test to address the issue at
hand. Changes should then be applied back into the Dev deployment, so that future versions can consume the fix.

Production In the Production deployment, flows and their objects are presumed to be ready for regular, read-only use. After imported
(Prod) flows are reconfigured for the environment, they are ready for immediate use and require no further modification.

Management of flows and jobs is typically handled via API.
The UI should be used for checking and modifying settings and perform on-demand job executions to verify operations.

When errors are detected, you can:

Revert to a previous version of the flow
Apply any fixes in the Dev/Test instance for refinement and eventual updating back to the Prod instance.

Implementation in the platform

In the Trifacta platform, deployment management can be addressed in either of the following ways.

Implementation type Description

Separate environments: Multiple Dev, Test, or both environments are separate instances of the Trifacta platform from the Production
instances of the platform environment.

Flows are migrated between environments using the export/import mechanisms.

NOTE: Each platform instance is configured to be either a Dev instance or a Prod instance.

All-in-one: Single instance of the Dev, Test, and Prod are contained in a single instance of the Trifacta platform. This scenario can apply
platform, separate roles to cloud-based environments as well.

Copyright © 2022 Trifacta Inc. Page #611

A user can access either Dev/Test or Prod, but not both at the same time. In this scenario, a user can
access Production deployments by having the Deployment account role.

Tip: Access to the Production environments should be tightly controlled to prevent inadvertant changes
to Production jobs.

Terminology

Production environment terminology changes

A Prod environment focuses on management of the following objects. Differences between how these objects are
used in a Dev environment are noted below.

NOTE: Some objects are available only in the Production environment. These objects are described later.

Object Differences

Flows In a Prod environment, you can review a flow through Flow View.

NOTE: Avoid making changes to your flows in a Prod environment. Any changes in the Prod version should be
exported and then imported to the Dev version. Otherwise, when the next release is imported as a package into the
Prod environment, those changes are lost.

Jobs In the Prod environment, you can execute jobs against Prod flows. For the version of the flow that is active, you trigger a job for
its overall deployment. Details are below.

These jobs are accessible through an interface that is very similar to a Dev environment.

The following flow objects from the Dev environment must be replaced in the Prod environment:

Dev Replacement
Object

Connecti Any connections used in the Dev system must be recreated or replaced with connections in the Production system.
ons

Output Output objects from the Dev flow must be recreated or replaced in Flow View in the Prod environment.
Objects

Imported If the Prod environment is not using the same sources as the Dev environment, you must create import rules to remap the point
Datasets the flow to use imported datasets that are stored in a different location for the Prod environment.

Deployment Objects

In a Prod environment, you can explore the following objects, which are organized in a hierarchy:

Level Item Description

1 deploy A deployment is a versioned set of releases that have been uploaded to the Prod instance for use. You can think of it
ment as a production instance of your primary flow and its dependencies.

2 release A release is a specific instance of a package that has been imported to the Prod instance. Each time you import, you
create a new release within the deployment where you imported.

A release is created whenever you import a package into a deployment. A package is a ZIP file containing a flow
definition that has been exported from an instance of the Trifacta platform.

3 flows Within a release, you can explore the primary flow and any upstream flows that were included in the package. Each flow
can be explored through a version of the Flow View page.

The primary flow is the flow that you chose to export in the Dev instance.

Copyright © 2022 Trifacta Inc. Page #612

A secondary flow is any flow that is included with the package for the primary flow because the primary one
depends on it.

Enable Deployment

This feature must be enabled through configuration. When enabled, the user experience of the product changes
significantly, and a number of features are no longer available, including the Transformer page and its ability to
modify recipes.

Tip: When you initially set up a platform instance, you should decide whether it is a Dev instance, a Prod
instance or both.

User management

For more information on how to configure user accounts for Deployment Manager, see
Configure Deployment Manager.

Import/Export

To transfer your flows between instances, you must export the flow from one instance of the platform and import
it into the other instance of the platform.

NOTE: If Dev and Prod are in the same instance, you must export the flow and import it into a
deployment. These are separate processes.

NOTE: As part of the import process, you must define rules for how objects and values contained in the
imported flow definition are remapped in the Prod environment. See below.

Exported Flows

Through Flow View or the Flows page, you can export the flow through the context menu. The export is a ZIP file
called a package.

NOTE: You must be the owner of a flow to export it.

A package ZIP contains all objects required to reconstruct and use the flow in a new environment.

It includes the exported flow and any flows on which it depends.
It does not include data, samples, or jobs.

Upstream dependencies

If the outputs of an exported flow require imported datasets or recipes from another flow, that entire flow is
included as part of the export package. This package includes objects that may not be required to run the primary
exported flow.

Copyright © 2022 Trifacta Inc. Page #613

Connections

In the target instance, connections must be created prior to import. You may need to create import mapping rules
to use this connections. See Connections Page.

Import

How a flow is imported depends on the environment into which you are importing it and how you intend to use it.

NOTE: If a flow is imported into an instance that is different from the instance where it was created, you
must first create remapping rules for values and objects contained in the flow definition. More information
is provided below.

For more information, see Import Flow.

Value and Object Mapping Rules

When objects are moved between environments, paths and other object-related references may require updating
to point to the new environment.

NOTE: Import mapping rules do not work for parameterized datasets. If the imported dataset with
parameters is still accessible, you should be able to run jobs from it.

For example, a dataset in the Dev environment may be pointing to the following location:

hdfs:///mydata-dev/1/00005a1a-81b0-4e4d-9c9b-f42ce55e1dde/Open_Order.csv

For the Prod version, the flow may need to be changed to the following:

hdfs:///mydata-prod/1/11115z4a-92f5-9f91-7v7f-g22fk99f2rru/Open_Order.csv

To support this kind of remapping, you can specify import rules at the level of individual deployments.

NOTE: For each deployment that you create, you must define new import remapping rules.

These rules can be specified using literal values, Trifacta patterns, or regular expressions. For more information,
see Define Import Mapping Rules.

Production Environment

When a user accesses a Production environment, the UI is changed to include only the following pages:

NOTE: You cannot modify recipes within a Prod instance because the Transformer page is not available.
The Prod flow must be exported and re-imported into a Dev instance.

Page Description

Deploymen On this page, you create deployments, for which you manage import of packages, activation of releases, and rollback to
t Manager previous release as needed.
Page

For more information on the deployment objects, see below.

Copyright © 2022 Trifacta Inc. Page #614

hdfs:///mydata-dev/1/00005a1a-81b0-4e4d-9c9b-f42ce55e1dde/Open_Order.csv
hdfs:///mydata-prod/1/11115z4a-92f5-9f91-7v7f-g22fk99f2rru/Open_Order.csv

Flow View

Page

Within a specific release, you can review and update the flow definition, including specification of outputs and schedules.
Flow View for a Prod instance has some restrictions.

NOTE: Use of scheduling through Flow View of a Prod instance is not supported. When a new release of a flow is
imported, the schedule still points to the older release and is orphaned until the old release is reactivated or the
schedule or release is removed.

Jobs Page Same as Dev instance. No changes.

Connection Connections that have been included as part of imported packages are available for review through the Production
s Page environment.

Admin Same as Dev instance. No changes to the interface.
Settings
Page

NOTE: In a multi-instance environment, some settings do not apply to the Prod environment.

Version Management

When you explore a deployment, you can see the list of releases pertaining to the deployment, with the active
release listed at the top of the list. The active release is the one that is triggered for execution when a job is run.

You can roll back to using previous releases. Select Activate from the context menu for the desired release.

NOTE: Do not use scheduling features available through the user interface in a Production instance. If
you have defined schedules through Flow View in the Prod instance and then add a new release, the
schedules in the previous release are still available. You must remove them to prevent scheduled
executions of outdated flows.

Flow View Page

In a Prod instance, you can drill into a release to review its flows through Flow View page.

NOTE: Avoid making modifications to the flow in a Prod instance.

Example Workflow

In this example, your environment contains separate Dev and Prod instances, each of which has a different set of
users.

Item Dev Prod

Environment http://wrangle-dev.example.com:3005 http://wrangle-prod.example.com:3005

User User1 Admin2

NOTE: User1 has no access to Prod.

Source DB devWrangleDB prodWrangleDB

Source Table Dev-Orders Prod-Orders

Connection Name Dev Redshift Conn Prod Redshift Conn

Copyright © 2022 Trifacta Inc. Page #615

http://wrangle-dev.example.com:3005
http://wrangle-prod.example.com:3005

Example Flow:

User1 is creating a flow, which is used to wrangle weekly batches of orders for the enterprise. The flow contains:

A single imported dataset that is created from a Redshift database table.
A single recipe that modifies the imported dataset.
A single output to a JSON file.
Production data is hosted in a different Redshift database. So, the Prod connection is different from the
Dev connection.

Steps:

1. Build in Dev instance: User1 creates the flow and its steps.

2. Export: When User1 is ready to push the flow to production, User1 exports the flow from the Flows page
and delivers the export package ZIP to Admin2. See Export Flow.

3. Deploy to Prod instance:
a. Admin2 creates a new deployment in the Prod instance. See Deployment Manager Page.
b. Admin2 creates a new connection (Prod Redshift Conn) to the Redshift database ProdWrangleDB.

See Create Connection Window.
c. Admin2 creates an import rule to map the old connection (Dev Redshift Conn) to the new one (Prod

Redshift Conn). See Define Import Mapping Rules.
d. Admin2 uploads the export ZIP package provided by User1. See Import Flow.
e. The deployment now contains a single release.

4. Test deployment:
a. Through Flow View in the Prod instance, Admin2 runs a job.
b. In reviewing the profile results of the job, Admin2 discovers a problem with the recipe. One column

contains a number of mismatched values.
c. Admin2 chooses to fix in Dev and re-import into Prod.

NOTE: Any changes made in Production that must appear in future releases must be
applied back in the Dev environment, too. You can either 1) export the flow from Prod and
import back into Dev, or 2) manually apply all Prod changes back to the Dev environment
and export/import into Prod when ready.

5. Fix in development: Back in the Dev environment, Admin2 opens the recipe for the flow.
a. Admin2 adds a step to the recipe to delete the rows containing mismatched values for the column.
b. Admin2 runs a job and verifies that the problem is fixed. In the visual profile for the dataset, the

mismatched rows are removed from the dataset.

6. Deploy again: Admin2 exports the flow and imports it again as a new release in the deployment.
a. Since import rules have already been created for this deployment, the connection is automatically

re-mapped for this second import.
b. Admin2 runs a job. The results look fine.
c. Admin2 removes profiling from the output object, since profiling takes time and is unnecessary in

this production environment.

7. Set schedule: Using cron, Admin2 sets a schedule to run the active release for this deployment once per
week.

a. Each week, the Prod-Orders table must be refreshed with data.
b. The dataset is now operational in the Prod environment.

Recommended Practices

If possible, you should maintain separate instances of the platform for Dev and Prod.

Copyright © 2022 Trifacta Inc. Page #616

If you must use the All-in-One method of managing Dev and Prod instances, you should maintain a
small number of non-admin accounts that are specifically used for Deployment Manager.

Avoid scheduling Prod executions through Flow View. While possible, these schedules continue to exist
even if the version of the flow has been replaced by another. Consequently, schedules that were specified
through the application continue to execute, even though the flow itself is outdated. Instead, scheduled
executions should be specified at the command line through cron jobs pointing at the latest release of
each at all times.
Do not modify Flow View settings through a Prod instance. These settings are not applied back to the Dev
version and are lost when the next release package is imported.

Job Execution

On-demand jobs

You can configure jobs on-demand through the Flow View page of a Production instance. See Flow View Page.

Scheduled jobs

In Dev:

When your flow is exported from a Dev instance, all scheduling-related data is removed from the export package.

In Prod:

In a Prod instance, an imported flow contains no schedules. You must configure schedules through the REST
APIs to execute on the currently active release for each deployment.

NOTE: Do not schedule executions through Flow View in a Prod instance.

Schedules defined in Flow View are applied to Active and Non-Active releases in Production
environments.
If the scheduled release is deactivated, the schedule still exists, and the jobs are executed on an
flow that is now out-of-date.

Automation

Automation of Deployment Manager is supported through the APIs.

NOTE: When you run a deployment, you run the primary flow in the active release for that deployment.
Running the flow generates the output objects for all recipes in the flow.

NOTE: Scheduled execution of jobs in a deployment environment must be managed through external
tools such as cron. For more information on the endpoint to schedule, see
https://api.trifacta.com/ee/es.t/index.html#operation/runDeployment

For more information on the APIs for Deployment Manager, see API Reference.

For more information on an API-based method for deploying flows, see API Workflow - Deploy a Flow.

Copyright © 2022 Trifacta Inc. Page #617

https://api.trifacta.com/ee/es.t/index.html#operation/runDeployment

Overview of Pattern Matching
Contents:

Overview
Example Patterns

Patterns in the Platform
Column Profiling
Machine Learning

Pattern Matching by Data Type
Using Patterns

Selecting Data
Patterns in Column Details
Advanced Uses

User-Defined Patterns

Trifacta® utilizes columnar pattern matching to identify data patterns of interest to you and to surface them in the
interface for use in building your recipes. Additionally, in your recipe steps, you can apply regular expressions or
Patterns to locate patterns and transform the matching data in your datasets.

Overview

A pattern is a combination of abstracted character sets and literal characters that can summarize data patterns in
a column. Patterns can be applied through one of two methods:

Regular expressions are a standardized method of matching data. The syntax of regular expressions is
both powerful and not easy to understand.
Trifacta patterns are pattern-matching widgets that provide a layer of abstraction on top of regular
expressions. Instead of having to specify the sometimes complex underlying regular expression, you can
specify a simple token to represent the underlying expression.

Tip: While regular expressions are a widely used standard, Patterns are powerful simplifications
that can limit the sometimes "greedy" matching issues in regular expressions.

For more information on the supported patterns, see Text Matching.

This section provides an overview of the pattern matching features of the platform.

Example Patterns

Within a row, multiple patterns may be applied at different levels of abstraction to describe the data in all fields
(columns) of the row. Suppose you have two records like the following:

[cz.laping@gmail.com,3987,1446319063821]
[ajuneauk@gmail.com,5289,1447275151508]

The above records can be described by any of the following patterns:

[{alpha-numeric}+,{4-digits},{13-digits}]
[{email},{4-digits},{13-digits}]
[{alpha-numeric}+@gmail.com,{4-digits},{13-digits}]

Copyright © 2022 Trifacta Inc. Page #618

mailto:cz.laping@gmail.com
mailto:ajuneauk@gmail.com

NOTE: The above patterns utilize the syntax of Patterns . Regular expressions can be used to describe
them as well.

In the above case, all three pattern sets capture the data completely. However, please note the differences
between the patterns for column 1:

Pattern Description

{alpha-numeric}+ This pattern captures alpha-numeric values of one or more characters. So, entries that match on this pattern do not
need to be valid email addresses.

{email} This pattern ensures matching only on valid email addresses. So, values that do not match this pattern are likely to
be flagged as mismatched within the platform.

{alpha-numeric}+@g This partial pattern ensures that the only matches are from gmail.com.
mail.com

Depending on the specific meaning of the data for your use, any of the above may apply.

Patterns in the Platform

Column Profiling

Pattern matching applied to columns can permit users to see the most common patterns and anomalous patterns
of data in a column across the entire sample. Since patterns presented to the user encompass the entire set of
values in the sample, you can gather detailed information about the consistency of data in the column across the
column.

Tip: Column pattern profiling is especially useful after you have addressed the mismatched values in the
column.

Based on the patterns surfaced for the column, you can take any of the following actions:

Filtering a subset of records. For example, you can review patterns for a column of addresses and filter
the rows of data where no street number is provided, based on patterns you select.
Standardize values. You can make selections of patterns for the different patterns for phone numbers.
See Pattern Matching by Data Type below.
Extract values. You can break apart column values based on mismatches in structure. For example,
apartment numbers from an address field can be extracted into a new column.
Variable levels of abstraction. As demonstrated in the previous example, you may be able to select from
multiple matching patterns to determine which one is the best fit for the row values of interest.

Machine Learning

Additionally, Trifacta collects aggregated information about patterns applied by all users. These patterns are
given weight in the set of suggested patterns presented to each user.

Pattern Matching by Data Type

As part of pattern matching, the platform evaluates the data against the specified data type for the column. Type-
specific pattern matching applies to the following data types:

Datetime
Phone

See Standardize Using Patterns.

Copyright © 2022 Trifacta Inc. Page #619

Using Patterns

In the application, patterns can be used as the starting point in building your next recipe step, and you can modify
or iterate on a pattern definition to preview the results of the specified transformation. Patterns are used in the
following actions:

Select text to trigger a pattern-based suggestion or suggestions
Select patterns of varying level of abstraction to modify column data

Selecting Data

When you select a value in the data grid, your options include pattern-based suggestions. In this manner, you
indicate something of interest and enable the platform to interpret your specific interest or broader goal for the
selected data. These broader changes are surfaced as pattern-based suggestions in the context panel.

See Explore Suggestions.
See Selection Details Panel.
For more information on how the platform predicts suggestion cards based on selection, see
Overview of Predictive Transformation.

Patterns in Column Details

In the Column Details panel, you can review sets of patterns that describe subsets of the values in the column.
When you select one of the patterns, you are prompted with a set of suggested transform steps to apply to the
data. See Column Details Panel.

Advanced Uses

In addition to the above basic uses, patterns can be used as the basis for the following advanced uses and more.

Use Description

Standardize records Match values based on a pattern and then change values to fit this pattern. See Standardize Using Patterns.

Filter records Keep or delete records based on patterns of values found in row data. See Filter Data.

Extract values Extract values matching a pattern from one column and insert them into a new c
Extract Values.

olumn of data. See

Generate function
outputs

Use patterns to generate function outputs in new columns.

User-Defined Patterns

In your recipe steps, you can specify patterns using either of the following methods.

Regular expressions

Regular expressions (regexes) are sequence of characters that can be used to define a pattern. This pattern can
be used in the transformations that support regex to identify patterns in your data of interest to you. Example:

replace col: myCol with:/$1/ on:/^\((\d\d\d)\)/ global: false

In the above step, the matching pattern expressed in the on clause evaluates in the following manner:

The forward slashes around the pattern indicate that it is a regular expression.

Copyright © 2022 Trifacta Inc. Page #620

^ indicates the start of the value in the myCol column. So, the matching is only made at the beginning of
the column.
\(and \) are representations in regular expressions of the literal values for parentheses. So, matches
are made on those specific characters.
The interior set of parentheses are used to define a capture group of values. These values, which
correspond to three digits, are captured and inserted as the replacement.

So, the net effect is to search the beginning of a field for values like (555) and replace them with just the digits: 5
55. This replacement removes the parentheses from the area code part of a phone number.

NOTE: Regular expressions are very powerful tools for matching patterns. They can also cause
unexpected results. Use of regular expressions is considered a developer-level skill. You should use the
Patterns described below instead.

Trifacta implements a version of regular expressions based off of RE2 and PCRE regular expressions.

Patterns

Use Patterns to quickly assemble sophisticated patterns to match in your data. The following example includes
the equivalent Pattern as the previous regular expression:

replace col: myCol with:`$1` on:`^\(({digit}{3})\)` global: false

The back-ticks around the pattern indicate that it is a Pattern .

Copyright © 2022 Trifacta Inc. Page #621

Overview of RapidTarget
Contents:

Overview
Targets in the platform
Known Limitations

Creating Targets
Sources for creating a target
Creating a target for a recipe

Using a target
Running jobs on recipes with assigned targets
Configure

Configure fuzzy matching threshold
Disable

In Trifacta®, a target is the set of columns, their order, and their formats to which you are attempting to wrangle
your dataset. This target can be defined through imported or created datasets and must be assigned to an
existing recipe. After it is assigned to a recipe, a target appears in the Transformer page to assist in your
wrangling efforts. You can also apply changes to selected columns based on the target.

This feature was formerly known as, "target matching."

Overview

In general, a target consists of the set of information required to define the expected data in a dataset. Often
referred to as a "schema," this target schema information can include:

Names of columns
Order of columns
Column data types
Data type format
Example rows of data

A dataset associated with a target is expected to conform to the requirements of the schema. Where there are
differences between target schema and dataset schema, a validation indicator (or schema tag) is displayed.

Targets in the platform

In Trifacta, a target is created from the information in a dataset and can be applied to a recipe in a flow. When
you are working with the flow, the target information is available for your wrangling activities, so that you can
match up columns in your dataset (source) with their corresponding columns in the target. As you make changes
in your recipe through the Transformer page, the target schema is available as a reference to see if your latest
changes get you closer to matching the dataset to the target.

Known Limitations

Targets are applied only after initial type inferencing has been applied to the loaded dataset.

Tip: As needed, you can disable initial type inferencing when data is imported into the product.

Type-based matching applies a settype transform to any selected column. No pattern matching or
standardization is applied. For more information, see Overview of Pattern Matching.

Copyright © 2022 Trifacta Inc. Page #622

Changes to the underlying objects of a target schema are not reflected in the schema. A target schema is
a snapshot of the object at the time of its creation. To update, delete the target and create a new one.

Tip: If your target schema source is a recipe, then you can modify the recipe as needed and use it
as your target again.

Creating Targets

Sources for creating a target

The schema used to define a target can be imported and assigned from any of the following objects, including:

Output of a recipe in the same flow
A reference dataset from another flow
An imported dataset

Ideally, the source of the target schema should come from the publishing target. If you are publishing to a pre-
existing target, you can create do one of the following:

Reference the target: If the schema is represented in a dataset to which you have access in Trifacta, you
can use it as your target schema.
Import the target: Import the target table or schematized source into Trifacta as an imported dataset.
Then, it can be selected as the target schema for any recipe to which you have access. See
Import Data Page.
Extract target to a supported format: If you cannot import the target directly into Trifacta, you could
create an extract of a few rows, including the header, for the target into one of the formats supported for
import. For more information, see Supported File Formats.

Creating a target for a recipe

You can create a target through one of the following mechanisms:

Flow View: Select a recipe. From the context menu in the right panel, select Assign Target to Recipe.
See Flow View Page.
Transformer Page: Above the data grid, click the Target icon and select Attach a new Target.

See Transformer Toolbar.
You can do the same thing in the Column Browser panel.

Job Details Page: After you have successfully run a job, you can create a new dataset from the Output
Destinations tab. Through Flow View, this imported dataset can be used as the schema for wrangling. See
Job Details Page.

For more information, see Create Target.

Using a target

After a target has been attached to a recipe, the target schema appears in a toolbar above the data grid along
with a preview of the data. You can then make modifications to the data so that each column matches the
definition for the corresponding column in the schema. See Data Grid Panel.

Through the data grid and the Column Browser, you can perform operations on selected columns in your dataset
to align them with the target schema. For more information, see Column Browser Panel.

Copyright © 2022 Trifacta Inc. Page #623

Running jobs on recipes with assigned targets

NOTE: You can run a job even if there are differences between the schema and your dataset. In Trifacta,
no error checking is performed between schema and data prior to job execution. If you are publishing to a
target that has a predefined schema, a publication error may be generated.

Configure

Configure fuzzy matching threshold

You can experiment with fuzzy matching thresholds to ensure that matches are occurring properly. This
parameter applies a specific threshold value when two values are compared for matching. Lower values increase
the probability of a match.

Steps:

1. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json .
For more information, see Platform Configuration Methods.

2. Adjust the value between 0.00 and 0.99 for the following parameter:

"feature.targetMatching.fuzzyMatchingThreshold": 0.30;

3. Save your changes and restart the platform.

Disable

If you prefer to disable this feature, please complete the following steps.

NOTE: If you are experiencing performance issues with target matching, you can first try to disable fuzzy
matching, which can be resource-intensive.

Tip: If there is no schema associated with a recipe, then the target schema matching features are not
displayed.

Steps:

1. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json .
For more information, see Platform Configuration Methods.

2. Set the following parameters to false:

"feature.targetMatching.enabled" : false,
"feature.targetMatching.fuzzyMatchingEnabled" : false,

3. Save your changes and restart the platform.

Copyright © 2022 Trifacta Inc. Page #624

Using Connections
This section contains some basic information on using common connections to various types of supported
storage.

Copyright © 2022 Trifacta Inc. Page #625

Using Databases
Contents:

Before You Begin
Access

Storing Data in Relational Databases
Reading from Database Tables and Views

Additional Notes on Database Views
Running Jobs from Database Sources
Writing to Databases

This section describes how you interact with your databases through Trifacta®.

Specific versions of each database are supported.
Connections must be enabled and configured for each type of supported database.
See Connection Types.

Before You Begin

Read Access: Your database administrator must configure read permissions to the appropriate
databases, tables and views for your use.

NOTE: To ensure that all user credentials used to access the database system are securely
stored, you must first deploy the encryption key file to the Trifacta node. See Relational Access.

Write Access: Some relational connection types support write access. For more information, see
Connection Types.

Access

Database access is managed through connections.

Individual users can create private connections through the application. See Create Connection Window.

An administrator can make your connection public or create public connections through the application.

Storing Data in Relational Databases

NOTE: Trifacta does not modify source data nor store transformed data in the relational systems.
Datasets sourced from database tables or views are read without modification from their source locations.

Reading from Database Tables and Views

You can create a Trifacta dataset from a table or view stored in a connected database.

Tip: In some scenarios, you can improve performance of loading from database tables by creating a view
on the table to restrict the amount of data loaded to only the required fields. Additional, you can pre-filter
the dataset using custom SQL statements. See Create Dataset with SQL.

Copyright © 2022 Trifacta Inc. Page #626

Additional Notes on Database Views

Some metadata, such as row counts, is not available for database views.
For complex view definitions that require significant processing on the database, there may be a significant
delay when previewing the contents of those views. In some cases, the preview may time out waiting for
the database to respond with the view contents.

For more information, see Database Browser.

Running Jobs from Database Sources

NOTE: When executing a job using a relational source, the job may fail if one or more columns has been
dropped from the underlying source table. As a workaround, the recipe panel may show steps
referencing the missing columns, which be used to fix to either fix the recipe or the source data.

Writing to Databases

Relational connections can be configured to support writing results back to the database.

NOTE: You can only write to databases from the Run Job page. You cannot ad-hoc publish to a
relational database.

NOTE: When writing to a new table in a relational target, the first entry in any mapping is used for writing
out the value. Subsequent entries in the mapping are used for validation only on writing to new tables.

Natively supported connection types are automatically enabled for writeback.

Copyright © 2022 Trifacta Inc. Page #627

Using HDFS
Contents:

Uses of HDFS
Before You Begin Using HDFS

Secure Access
Storing Data in HDFS

Ingest Caching
Reading from Sources in HDFS
Creating Datasets
Writing Job Results

Creating a new dataset from results
Purging Files

This section describes how you interact through the Trifacta® platform with your HDFS environment.

HDFS is a scalable file storage system for use across all of the nodes (servers) of a Hadoop cluster. Many
interactions with HDFS are similar with desktop interactions with files and folders. However, what looks like
a "file" or "folder" in HDFS may be spread across multiple nodes in the cluster. For more information, see
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS.

Uses of HDFS

The Trifacta platform can use HDFS for the following reading and writing tasks:

1. Creating Datasets from HDFS Files: You can read in from a data source stored in HDFS. A source may
be a single HDFS file or a folder of identically structured files. See Reading from Sources in HDFS below.

2. Reading Datasets: When creating a dataset, you can pull your data from another dataset defined in
HDFS. See Creating Datasets below.

3. Writing Job Results: After a job has been executed, you can write the results back to HDFS. See
Writing Job Results below.

In the Trifacta application, HDFS is accessed through the HDFS browser. See HDFS Browser.

NOTE: When the Trifacta platform executes a job on a dataset, the source data is untouched. Results
are written to a new location, so that no data is disturbed by the process.

Before You Begin Using HDFS

Read/Write Access: Your Hadoop administrator must configure read/write permissions to locations in
HDFS. Please see the HDFS documentation provided with your Hadoop distribution.

Avoid using /trifacta/uploads for reading and writing data. This directory is used by
the Trifacta application.

NOTE: Use of HDFS in safe mode is not supported.

Your Hadoop administrator should provide a place or mechanism for raw data to be uploaded to your
Hadoop datastore.

Copyright © 2022 Trifacta Inc. Page #628

https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS

Your Hadoop administrator should provide a writeable home output directory for you, which you can
review. See Storage Config Page.

Secure Access

Depending on the security features you've enabled, the technical methods by which Trifacta users access HDFS
may vary. For more information, see Configure Hadoop Authentication.

Storing Data in HDFS

Your Hadoop administrator should provide raw data or locations and access for storing raw data within HDFS. All
Trifacta users should have a clear understanding of the folder structure within HDFS where each individual can
read from and write their job results.

Users should know where shared data is located and where personal data can be saved without interfering
with or confusing other users.

NOTE: The Trifacta platform does not modify source data in HDFS. Sources stored in HDFS are read
without modification from their source locations, and sources that are uploaded to the platform are stored
in /trifacta/uploads.

Ingest Caching

If JDBC ingest caching has been enabled, users may see a dataSourceCache folder in their browser. This
folder is used to store per-user caches of JDBC-based data that has been ingested into the platform from its
source.

NOTE: The datasourceCache folder should not be used for reading and writing of datasets, metadata, or
results.

 For more information, see Configure JDBC Ingestion.

Reading from Sources in HDFS

You can create a dataset from one or more files stored in HDFS.

NOTE: To be able to import datasets from the base storage layer, your user account must include the da
taAdmin role.

Wildcards:

You can parameterize your input paths to import source files as part of the same imported dataset. For more
information, see Overview of Parameterization.

Folder selection:

When you select a folder in HDFS to create your dataset, you select all files in the folder to be included. Notes:

This option selects all files in all sub-folders. If your sub-folders contain separate datasets, you should be
more specific in your folder selection.
All files used in a single dataset must be of the same format and have the same structure. For example,
you cannot mix and match CSV and JSON files if you are reading from a single directory.
When a folder is selected from HDFS, the following file types are ignored:

*_SUCCESS and *_FAILED files, which may be present if the folder has been populated by Hadoop.

Copyright © 2022 Trifacta Inc. Page #629

If you have stored files in HDFS that begin with an underscore (_), these files cannot be read during
batch transformation and are ignored. Please rename these files through HDFS so that they do not
begin with an underscore.

Creating Datasets

When creating a dataset, you can choose to read data in from a source stored from HDFS or from a local file.

HDFS sources are not moved or changed.
Local file sources are uploaded to /trifacta/uploads where they remain and are not changed.

Data may be individual files or all of the files in a folder. For more information, see Reading from Sources in HDFS.

In the Import Data page, click the HDFS tab. See Import Data Page.

Writing Job Results

When your job results are generated, they can be stored back in HDFS for you at the location defined for your
user account.

The HDFS location is available through the Output Destinations tab of the Job Details page. See
Job Details Page.
Each set of job results must be stored in a separate folder within your HDFS output home directory.
For more information on your output home directory, see Storage Config Page.

If your deployment is using HDFS, do not use the trifacta/uploads directory. This directory is
used for storing uploads and metadata, which may be used by multiple users. Manipulating files
outside of the Trifacta application can destroy other users' data. Please use the tools provided
through the interface for managing uploads from HDFS.

NOTE: Users can specify a default output home directory and, during job execution, an output directory
for the current job. In an encrypted HDFS environment, these two locations must be in the same
encryption zone. Otherwise, writing the job results fails with a Publish Job Failed error.

Access to results:

Depending on how the platform is integrated with HDFS, other users may or may not be able to access your job
results.

If user impersonation is enabled, results are written to HDFS through the HDFS account configured for
your use. Depending on the permissions of your HDFS account, you may be the only person who can
access these results.
If user impersonation is not enabled, then each Trifacta user writes results to HDFS using a shared
account. Depending on the permissions of that account, your results may be visible to all platform users.

Creating a new dataset from results

As part of writing job results, you can choose to create a new dataset, so that you can chain together data
wrangling tasks.

NOTE: When you create a new dataset as part of your job results, the file or files are written to the
designated output location for your user account. Depending on how your Hadoop permissions are
configured, this location may not be accessible to other users.

Copyright © 2022 Trifacta Inc. Page #630

Purging Files

Other than temporary files, the Trifacta platform does not remove any files that were generated or used by the
platform, including:

Uploaded datasets
Generated samples
Generated results

If you are concerned about data accumulation, please contact your HDFS administrator.

Copyright © 2022 Trifacta Inc. Page #631

Using S3

Contents:

Uses of S3
Before You Begin Using S3

Secure Access
Storing Data in S3
Reading from Sources in S3
Creating Datasets
Writing Results

Creating a new dataset from results
Purging Files

This section describes how you interact through the Trifacta® platform with your S3 environment.

Simple Storage Service (S3) is an online data storage service provided by Amazon, which provides low-
latency access through web services. For more information, see https://aws.amazon.com/s3/.

Uses of S3

The Trifacta platform can use S3 for the following tasks:

1. Enabled S3 Integration: The Trifacta platform has been configured to integrate with your S3 instance.For
more information, see S3 Access.

2. Creating Datasets from S3 Files: You can read in source data stored in S3. An imported dataset may be
a single S3 file or a folder of identically structured files. See Reading from Sources in S3 below.

3. Reading Datasets: When creating a dataset, you can pull your data from a source in S3. See
Creating Datasets below.

4. Writing Results: After a job has been executed, you can write the results back to S3.

In the Trifacta application, S3 is accessed through the S3 browser. See S3 Browser.

NOTE: When the Trifacta platform executes a job on a dataset, the source data is untouched. Results
are written to a new location, so that no data is disturbed by the process.

Before You Begin Using S3

Access: If you are using system-wide permissions, your administrator must configure access parameters
for S3 locations. If you are using per-user permissions, this requirement does not apply. See S3 Access.

Avoid using /trifacta/uploads for reading and writing data. This directory is used by
the Trifacta application.

Your administrator should provide a writeable home output directory for you. This directory location is
available through your user profile. See Storage Config Page.

Secure Access

Your administrator can grant access on a per-user basis or for the entire Trifacta platform.

Copyright © 2022 Trifacta Inc. Page #632

https://aws.amazon.com/s3/

The Trifacta platform utilizes an S3 key and secret to access your S3 instance. These keys must enable read
/write access to the appropriate directories in the S3 instance.

NOTE: If you disable or revoke your S3 access key, you must update the S3 keys for each user or for the
entire system.

Storing Data in S3

Your administrator should provide raw data or locations and access for storing raw data within S3. All Trifacta
users should have a clear understanding of the folder structure within S3 where each individual can read from
and write results.

Users should know where shared data is located and where personal data can be saved without interfering
with or confusing other users.
The Trifacta application stores the results of each job in a separate folder in S3.

NOTE: The Trifacta platform does not modify source data in S3. Source data stored in S3 is read without
modification from source locations, and source data uploaded to the Trifacta platform is stored in /trifa
cta/uploads.

Reading from Sources in S3

You can create an imported dataset from one or more files stored in S3.

NOTE: To be able to import datasets from the base storage layer, your user account must include the da
taAdmin role.

NOTE: Import of glaciered objects is not supported.

Wildcards:

You can parameterize your input paths to import source files as part of the same imported dataset. For more
information, see Overview of Parameterization.

Folder selection:

When you select a folder in S3 to create your dataset, you select all files in the folder to be included.

Notes:

This option selects all files in all sub-folders and bundles them into a single dataset. If your sub-folders
contain separate datasets, you should be more specific in your folder selection.
All files used in a single imported dataset must be of the same format and have the same structure. For
example, you cannot mix and match CSV and JSON files if you are reading from a single directory.

When a folder is selected from S3, the following file types are ignored:

*_SUCCESS and *_FAILED files, which may be present if the folder has been populated by the running
environment.

Copyright © 2022 Trifacta Inc. Page #633

NOTE: If you have a folder and file with the same name in S3, search only retrieves the file. You can still
navigate to locate the folder.

Creating Datasets

When creating a dataset, you can choose to read data in from a source stored from S3 or local file.

S3 sources are not moved or changed.
Local file sources are uploaded to /trifacta/uploads where they remain and are not changed.

Data may be individual files or all of the files in a folder. In the Import Data page, click the S3 tab. See
Import Data Page.

Tip: Users can create secondary connections to specific S3 buckets. For more information, see
External S3 Connections.

Writing Results

When you run a job, you can specify the S3 bucket and file path where the generated results are written. By
default, the output is generated in your default bucket and default output home directory.

Each set of results must be stored in a separate folder within your S3 output home directory.
For more information on your output home directory, see Storage Config Page.

NOTE: The append action is not supported when publishing to S3.

If Trifacta installation is using S3, do not use the trifacta/uploads directory. This directory is
used for storing uploads and metadata, which may be used by multiple users. Manipulating files
outside of the Trifacta application can destroy other users' data. Please use the tools provided
through the Trifacta application interface for managing uploads from S3.

NOTE: When writing files to S3, you may encounter an issue where the UI indicates that the job failed,
but the output file or files have been written to S3. This issue may be caused when S3 does not report
the files back to the application before the S3 consistency timeout has expired. For more information on
raising this timeout setting, see S3 Access.

Creating a new dataset from results

As part of writing results, you can choose to create a new dataset, so that you can chain together data wrangling
tasks.

NOTE: When you create a new dataset as part of your results, the file or files are written to the
designated output location for your user account. Depending on how your permissions are configured,
this location may not be accessible to other users.

Purging Files

Other than temporary files, the Trifacta platform does not remove any files that were generated or used by the
platform, including:

Copyright © 2022 Trifacta Inc. Page #634

Uploaded datasets
Generated samples
Generated results

If you are concerned about data accumulation, you should create a bucket policy to periodically backup or purge
directories in use. For more information, please see the S3 documentation.

Copyright © 2022 Trifacta Inc. Page #635

Using SQL DW
Contents:

Limitations
Uses of Azure Synapse Analytics (Formerly Microsoft SQL DW)
Before You Begin Using Azure Synapse Analytics (Formerly Microsoft SQL DW)

Secure Access
Storing Data
Reading Data
Writing to Azure Synapse Analytics (Formerly Microsoft SQL DW)

This section describes how you interact through the Trifacta® platform with your Azure® Synapse Analytics
(Formerly Microsoft® SQL DW)® data warehouse.

Azure Synapse Analytics (Formerly Microsoft SQL DW) is a scalable data warehouse solution available
through Microsoft Azure. For more information, see
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-overview-what-is.
Azure Synapse Analytics (Formerly Microsoft SQL DW) connections can interact with data stored as
managed tables or external tables.
 Azure Synapse Analytics (Formerly Microsoft SQL DW) connections can use dedicated or serverless
SQL pools.
For more information, see Microsoft SQL Data Warehouse Connections.

Limitations

Azure Synapse Analytics (Formerly Microsoft SQL DW) connections are available only if you have
deployed the Trifacta platform onto Azure.
The defined length of a table row cannot exceed 1 MB.

NOTE: In this release, this connection cannot be created through the APIs. Please create
connections of this type through the application.

Uses of Azure Synapse Analytics (Formerly Microsoft SQL DW)

The Trifacta platform can use Azure Synapse Analytics (Formerly Microsoft SQL DW) for the following tasks:

1. Create datasets by reading from Azure Synapse Analytics (Formerly Microsoft SQL DW) tables.
2. Write to Azure Synapse Analytics (Formerly Microsoft SQL DW) tables with your job results.
3. Ad-hoc publication of data to Azure Synapse Analytics (Formerly Microsoft SQL DW) .

Before You Begin Using Azure Synapse Analytics (Formerly Microsoft SQL DW)

Enable Access: Integration requires the following:

Installation of the Trifacta platform on Microsoft Azure.
Either ADL or WASB is supported as the base storage layer. For more information, see
Set Base Storage Layer.

Read Access: Your administrator must configure read permissions. Your administrator should provide a
database for upload.

Copyright © 2022 Trifacta Inc. Page #636

https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-overview-what-is

Write Access: You can write and publish jobs results to Azure Synapse Analytics (Formerly Microsoft
SQL DW) .

Secure Access

These connections require SSL access.

Storing Data

Your Azure Synapse Analytics (Formerly Microsoft SQL DW) administrator should provide database access for
storing datasets. Users should know where shared data is located and where personal data can be saved without
interfering with or confusing other users.

NOTE: The Trifacta platform does not modify source data. Datasets sourced from Azure Synapse
Analytics (Formerly Microsoft SQL DW) connections are read without modification from their source
locations.

Reading Data

You can create a Trifacta dataset from a managed or external table through Azure Synapse Analytics (Formerly
Microsoft SQL DW) .

For more information, see Database Browser.

Writing to Azure Synapse Analytics (Formerly Microsoft SQL DW)

You can write back data to Azure Synapse Analytics (Formerly Microsoft SQL DW) using one of the following
methods:

NOTE: Writing and publishing to Azure Synapse Analytics (Formerly Microsoft SQL DW) is not supported
if Azure AD SSO has been enabled.

Job results can be written directly to Azure Synapse Analytics (Formerly Microsoft SQL DW) as part of
the normal job execution. Create a new publishing action to write to Azure Synapse Analytics (Formerly
Microsoft SQL DW) . See Microsoft SQL Data Warehouse Table Settings.
As needed, you can publish results to Azure Synapse Analytics (Formerly Microsoft SQL DW) for
previously executed jobs.
For more information on how data is converted to Azure Synapse Analytics (Formerly Microsoft SQL DW) ,
see SQL DW Data Type Conversions.

Data Validation issues:

No validation is performed for the connection and any required permissions during job execution. So, you
can be permitted to launch your job even if you do not have sufficient connectivity or permissions to
access the data. The corresponding publish job fails at runtime.
No data validation is performed during writing and publication to Azure Synapse Analytics (Formerly
Microsoft SQL DW) . Your job fails if the schema for the Trifacta dataset varies from the target schema.
Prior to publication, no validation is performed on whether a target is a table or a view, so the job that was
launched fails at runtime.

Copyright © 2022 Trifacta Inc. Page #637

 Copyright © 2022 - Trifacta, Inc.
All rights reserved.

	Trifacta Application User Guide
	Workflow Basics
	Object Overview
	Import Basics
	Profiling Basics
	Transform Basics
	Sampling Basics
	Running Job Basics
	Export Basics

	Common Tasks
	Import Tasks
	Connect to Data
	Share a Connection

	Import a File
	Change File Encoding
	Remove Initial Structure

	Import a Table
	Disable Type Inference

	Import from Another Flow
	Import Excel Data
	Import Google Sheets Data
	Import PDF Data
	Create Dataset with Parameters
	Parameterize Files for Import
	Parameterize Tables for Import

	Create Dataset with SQL

	Discovery Tasks
	Explore Suggestions
	Add or Edit Recipe Steps
	Filter Data
	Locate Outliers
	Compute Counts
	Calculate Metrics across Columns
	Compare Strings
	Analyze across Multiple Columns
	Parse Fixed-Width File and Infer Columns
	Generate a Sample
	Change Recipe Sample Size

	Validation Tasks
	Profile Your Source Data
	Validate Your Data
	Validate Column Values against a Dataset

	Find Bad Data
	Find Missing Data
	Manage Null Values

	Structuring Tasks
	Initial Parsing Steps
	Reshaping Steps
	Split Column
	Move Columns
	Delete Data
	Select
	Create Aggregations
	Nest Your Data
	Unnest Your Data
	Pivot Data
	Unpivot Columns
	Window Transformations
	Working with Arrays
	Working with Objects
	Working with JSON v2
	Working with JSON v1

	Cleanse Tasks
	Rename Columns
	Sanitize Column Names
	Change Column Data Type
	Copy and Paste Columns
	Create Column by Example
	Remove Data
	Deduplicate Data
	Compare Values
	Replace Cell Values
	Replace Values Using Patterns
	Replace Groups of Values
	Normalize Numeric Values
	Standardize Using Patterns
	Modify String Values
	Manage String Lengths
	Extract Values
	Format Dates
	Apply Conditional Transformations
	Prepare Data for Machine Processing

	Enrichment Tasks
	Create New Column
	Add Two Columns
	Generate Primary Keys
	Add Lookup Data
	Append Datasets
	Join Data
	Configure Range Join

	Insert Metadata
	Invoke External Function

	Publishing Tasks
	Create Outputs
	Create Output SQL Scripts

	Publish Results on Demand
	Reuse Recipe

	Project Management Tasks
	Take a Snapshot
	Track Data Changes
	Add Comments to Your Recipe
	Create Target
	Optimize Job Processing
	Diagnose Failed Jobs
	Schedule a Job
	Create Branching Outputs
	Build Sequence of Datasets
	Fix Dependency Issues
	Share a Flow
	Export Flow
	Import Flow
	Reconnect Flow to Source Data
	Reconnect Flow to Outputs
	Define Import Mapping Rules

	Create or Replace Macro
	Apply a Macro
	Export Macro
	Import Macro
	Create Flow Parameter
	Flag for Review
	Manage Environment Parameters

	Operationalization Tasks
	Create Flow Webhook Task
	Create a Plan
	Create Delete Task
	Create HTTP Task
	Create Slack Task

	Share a Plan
	Export Plan
	Import Plan

	Account Management Tasks
	Change Password
	Configure Your Access to S3

	Concepts
	Feature Overviews
	Overview of Data Export
	Overview of Data Import
	Overview of Storage
	Overview of Predictive Transformation
	Overview of the Type System
	Overview of Schema Management
	Overview of Standardization
	Overview of Cluster Clean
	Overview of Visual Profiling
	Overview of Sampling
	Overview of Job Execution
	Trifacta Photon Running Environment
	EMR Running Environment
	Snowflake Running Environment
	AWS Databricks Running Environment
	Azure Databricks Running Environment
	Hadoop Spark Running Environment

	Overview of TBE
	Overview of Data Quality
	Overview of Sharing
	Overview of Job Monitoring
	Overview of Automator
	Overview of Parameterization
	Overview of Authorization
	Overview of Operationalization
	Overview of Macros
	Overview of Deployment Manager
	Overview of Pattern Matching
	Overview of RapidTarget

	Using Connections
	Using Databases
	Using HDFS
	Using S3
	Using SQL DW

