

Developer Guide
Version: 9.2
Doc Build Date: 07/29/2022

 Copyright © Trifacta Inc. 2022 - All Rights Reserved. CONFIDENTIAL

These materials (the “Documentation”) are the confidential and proprietary
information of Trifacta Inc. and may not be reproduced, modified, or distributed
without the prior written permission of Trifacta Inc.

EXCEPT AS OTHERWISE PROVIDED IN AN EXPRESS WRITTEN
AGREEMENT, TRIFACTA INC. PROVIDES THIS DOCUMENTATION AS-IS
AND WITHOUT WARRANTY AND TRIFACTA INC. DISCLAIMS ALL EXPRESS
AND IMPLIED WARRANTIES TO THE EXTENT PERMITTED, INCLUDING
WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE AND
UNDER NO CIRCUMSTANCES WILL TRIFACTA INC. BE LIABLE FOR ANY
AMOUNT GREATER THAN ONE HUNDRED DOLLARS ($100) BASED ON
ANY USE OF THE DOCUMENTATION.

For third-party license information, please select About Trifacta from the Help
menu.

1. Developer . 4
1.1 User-Defined Functions . . 5

1.1.1 Java UDFs . . 8
1.2 Create Custom Data Types Using RegEx . 18
1.3 API Reference 23

1.3.1 Manage API Access Tokens . 24
1.3.2 API Endpoints for Trifacta Self-Managed Enterprise . 27
1.3.3 API Workflows . 39

1.3.3.1 API Workflow - Develop a Flow . 40
1.3.3.2 API Workflow - Deploy a Flow . 48
1.3.3.3 API Workflow - Run Job . 60
1.3.3.4 API Workflow - Run Job on Dataset with Parameters . 76
1.3.3.5 API Workflow - Run Deployment . 89
1.3.3.6 API Workflow - Publish Results . 97
1.3.3.7 API Workflow - Swap Datasets 102
1.3.3.8 API Workflow - Manage Outputs 107
1.3.3.9 API Workflow - Manage AWS Configurations 121
1.3.3.10 API Workflow - Run Plan 131
1.3.3.11 API Workflow - Wrangle Output to Python 136

1.3.4 API Documentation Versions 139
1.4 Python SDK 140

Page #3

Use of the features documented in this section requires programming skills.

Developer
This section contains topics of interest to data engineers and other developers.

Copyright © 2022 Trifacta Inc. Page #4

User-Defined Functions
Contents:

UDF Service
Supported UDF Language Frameworks
Running a UDF within the Platform

The Trifacta® platform enables the creation of user-defined functions (UDFs) for use in your Trifacta deployment.
A user-defined function is a way to specify a custom process or transformation for use in your specific Trifacta
solution, using familiar development languages and third-party libraries. Through UDFs, you can apply enterprise-
or industry-specific expertise consistently into your data transformations. A user-defined function is a custom
function that is created in one of the supported language frameworks. Each user-defined function has a defined
set of inputs and generates a single output.

UDF Service

The following diagram provides a high-level overview of the UDF service which provides integration of user-
defined functions into recipe execution.

Diagram 1: The figure illustrates execution of a UDF in interactive mode, where a user interacts with the
Transformer grid.
Diagram 2: This feature illustrates how UDFs interact with the cluster at job execution time.

Copyright © 2022 Trifacta Inc. Page #5

Figure: User-Defined Service

Supported UDF Language Frameworks

Please use the following links to enable the creation of user-defined functions in the listed language.

Java UDFs

Copyright © 2022 Trifacta Inc. Page #6

Running a UDF within the Platform

After you have created and tested your UDF, you can execute it by entering udf in the Search panel and
populating the rest of the step in the Transform Builder.

In this example, the AdderUDF function is added:

Transformation Name Invoke external function

Parameter: Column colA

Parameter: Arguments 100

Parameter: New column
name

myAdderUDFColumn

Notes:

After entering udf, your UDF should appear in a drop-down list. If not, please verify that it has been
properly created, compiled, and registered and that the udf-service has been restarted.
The Column parameter is a comma-separated list of the source data to be used as inputs to the exec
method.
The Argument parameter is a string of comma-separated values used as inputs to the init method.
Optionally, The New column name parameter can be used to provide a specific name to the generated
column. If it is not used, a column name is generated.

NOTE: When a recipe containing a user-defined function is applied to text data, any non-printing (control)
characters cause records to be truncated by the Spark running environment during job execution. In
these cases, please execute the job on the Photon running environment.

For more information, see Invoke External Function.

NOTE: Running user-defined functions for an external service, such as Hive, is not supported from within
a recipe step. As a workaround, you may be able to execute recipes containing such external UDFs on
the Photon running environment. Performance issues should be expected on larger datasets.

See Transformer Page.

Copyright © 2022 Trifacta Inc. Page #7

Java UDFs
Contents:

Prerequisites
Overview

Known Limitations
Enable Service
Deployment
Creating a UDF

UDF Requirements
Example - Concatenate strings
Example - Add by constant
Error Handling

Testing the UDF
Compiling the UDF

JDK version mismatches
Registering the UDF
Running Your UDF
Troubleshooting

"Websocket Receive()" error in Transformer page UI
Photon crashes during execution of UDF
Databricks cluster has either stale or unknown libraries error
Build timestamp is missing in <filename>.JAR

This section describes how to create and deploy Java-based user-defined functions (UDFs) into your Trifacta®
deployment.

Creation of UDFs requires development experience and access to an integrated development
environment (IDE).

Prerequisites

1. Access to the Trifacta deployment
2. IDE
3. The Java UDF is stored in the Trifacta deployment in the following location: libs/custom-udfs-sdk

/build/distributions/java-custom-udf-sdk.zip

NOTE: custom-udf-sdk.zip is required for compilation and executing of the unit test. Any JAR
files present in , such as , do not need to becustom-udf-sdk.zip trifacta-base-udf.jar
packaged in the custom UDF JAR.

NOTE: If you are installing custom UDFs and the does not have an Internet connection,Trifacta node
you should download the Java UDF SDK in an Internet-accessible location, build your customer UDF
JAR there, and then upload the JAR to the .Trifacta node

Overview

Each UDF requires at least one input and produces a single output value (map only).

Copyright © 2022 Trifacta Inc. Page #8

Inputs and outputs must be one of the following types:

Bool
String
Long
Double

NOTE: If your UDF does not require an input value, you must create a dummy input as part of your UDF
definition.

Known Limitations

In the Trifacta application, previews are not available for user-defined functions.
Retaining state information across the exec method is unstable. More information is provided below.

NOTE: When a recipe containing a user-defined function is applied to text data, any null
characters cause records to be truncated by the running environment during jobTrifacta Photon
execution. In these cases, please execute the job in the Spark running environment.

Enable Service

You must enable the Java UDF service in the Trifacta platform.

Steps:

1. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json.
For more information, see Platform Configuration Methods.

2. Enable the correct flag:

"feature.enableUDFTransform.enabled": true,

3. Save your changes.

Deployment

Steps:

1. Unzip java-custom-udf-sdk.zip.
2. Within the unzipped directory, execute the install command. The following is specific to the Eclipse IDE:

gradlew eclipse

3. Import the project into your IDE.

Creating a UDF

UDF Requirements

All UDFs must implement the TrifactaUDF interface. This interface adds the four methods that each UDF must
override: init, exec, inputSchema, and finish.

Copyright © 2022 Trifacta Inc. Page #9

1. init method: Used for setting private variables in the UDF. This method may be a no-op function if no
variables must be set. See the Example - Concatenate strings below.

Tip: In this method, perform your data validation on the input parameters, including count, data
type, and other constraints.

NOTE: The init method must be specified but can be empty, if there are no input parameters.

2. exec method: Contains functionality of the UDF. The output of the exec method must be one of the
supported types. It is also must match the generic as described. In the following example, TrifactaUDF<
String> implements a String. This method is run on each record.

Tip: In this method, you should check the number of input columns.

Keep state that varies across calls to the exec method can lead to unexpected behavior.
One-time initialization, such as initializing the regex compiler, is safe, but do not allow state
information to mutate across calls to exec. This is a known issue.

3. inputSchema method: The inputSchema method describes the schema of the list on which the exec
method is acting. The classes in the schema must be supported. Essentially, you should support the I/O
types described earlier.

4. finish method: The finish method is run at the end of UDF. Typically, it is a no-op.

NOTE: If you are executing your UDF on the Spark running environment, the finish method cannot
be invoked at this point. Instead, it is invoked as part of the shutdown of the Java VM. This later
execution may result in the finish method failing to be invoked in situations like a JVM crash.

Example - Concatenate strings

The following code example concatenates two input strings in the List<Object>. This UDF can be easily
modified to concatenate more strings by modifying the inputSchema function.

Copyright © 2022 Trifacta Inc. Page #10

Example UDF: ConcatUDF

package com.trifacta.trifactaudfs;
import java.io.IOException;
import java.util.List;

/**
 * Example UDF that concatenates two columns
 */
public class ConcatUDF implements TrifactaUDF<String> {
 @Override
 public String exec(List<Object> inputs) throws IOException {

 if (inputs == null) {
 return null;

 }
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < inputSchema().length; i += 1) {

 if (inputs.get(i) == null) {
 return null;

 }
 sb.append(inputs.get(i));

 }
 return sb.toString();

 }
 @SuppressWarnings("rawtypes")
 public Class[] inputSchema() {

 return new Class[]{String.class, String.class};
 }
 @Override
 public void finish() throws IOException {
 }
 @Override
 public void init(List<Object> initArgs) {
 }

}

Notes:

The first line indicates that the function is part of the com.trifacta.trifactaudfs package.
The defined UDF class implements the TrifactaUDF class, which is the base interface for UDFs.

It is parameterized with the return type of the UDF (a Java String in this case).
The input into the function is a list with input parameters in the order they are passed to the function
within the Trifacta platform. See Running Your UDF below.

The UDF checks the input data for null values, and if any nulls are detected, returns a null.
The inputSchema describes the input list passed into the exec method.

An error is thrown if the type of the data that is passed into the UDF does not match the schema.
The UDF must handle improper data. See Error Handling below.

Example - Add by constant

In this example, the input value is added by a constant, which is defined in the init method.

The init method consumes a list of objects, each of which can be used to set a variable in the UDF. The
input into the init function is a list with parameters in the order they are passed to the function within the Trif
acta platform. See Running Your UDF below.

Copyright © 2022 Trifacta Inc. Page #11

Example UDF: AdderUDF

package com.trifacta.trifactaudfs;
import java.io.IOException;
import java.util.List;

/**
 * Example UDF. Adds a constant amount to an Integer column.
 */
public class AdderUDF implements TrifactaUDF<Long> {
 private Long _addAmount;
 @Override
 public void init(List<Object> initArgs) {

 if (initArgs.size() != 1) {
 System.out.println("AdderUDF takes in exactly one init argument");

 }
 Long addAmount = (Long) initArgs.get(0);
 _addAmount = addAmount;

 }
 @Override
 public Long exec(List<Object> input) {

 if (input == null) {
 return null;

 }
 if (input.size() != 1) {

 return null;
 }
 return (Long) input.get(0) + _addAmount;

 }
 @SuppressWarnings("rawtypes")
 public Class[] inputSchema() {

 return new Class[]{Long.class};
 }
 @Override
 public void finish() throws IOException {
 }

}

Error Handling

The UDF must handle any error that should occur when processing the function. Two ways of dealing with errors:

1. For null data generated in the exec method, a null value can be returned. It appears in the final generated
column.

2. Any errors that cause the UDF to stop in the init or exec methods cause an IOException to be thrown. This
error signals the platform that an issue occurred with the UDF.

Tip: You can add to the through Logger. Annotate your exceptions at the appropriateTrifacta logs
logging level.

Testing the UDF

JUnit can be used to test the UDF. Below are examples of testing the two example UDFs.

Example - JUnit test for Concatenate strings:

Copyright © 2022 Trifacta Inc. Page #12

ConcatUDF Test

@Test
public void concatUDFTest() throws IOException {
 ConcatUDF concat = new ConcatUDF();
 ArrayList<Object> input = new ArrayList<Object>();
 input.add("hello");
 input.add("world");
 String result = concat.exec(input);
 String expected = "helloworld";
 assertEquals(expected, result);

}

Example - JUnit test for Add by constant:

AdderUDF Test

@Test
public void adderUDFTest() {
 AdderUDF add = new AdderUDF();
 ArrayList<Object> initArgs = new ArrayList<Object>(1);
 initArgs.add(1L);
 add.init(initArgs);
 ArrayList<Object> inputs1 = new ArrayList<Object>();
 inputs1.add(1L);
 long result = add.exec(inputs1);
 long expected = 2L;
 assertEquals(expected, result);

 ArrayList<Object> inputs2 = new ArrayList<Object>();
 inputs2.add(9000L);
 result = add.exec(inputs2);
 expected = 9001L;
 assertEquals(expected, result);

}

Compiling the UDF

After writing the UDF, it must be compiled and included in a JAR before registering it with the platform. To
compile and package the function, run the following command from the root directory:

gradlew build

The UDF code is assembled, and unit tests are executed. If all is well, the following JAR file is created in build
/libs.

NOTE: Custom UDFs should be compiled to one or more JAR files. Avoid using the example JAR
filename, which can be overwritten on upgrade.

JDK version mismatches

To avoid an Unsupported major.minor version error during execution, the JDK version used to compile
the UDF JAR file should be less than or equal to the JDK version on the Hadoop cluster.

Copyright © 2022 Trifacta Inc. Page #13

If this is not possible, then set the value of the Compatibility properties in the local build.gradle file to the
JDK version on the Hadoop cluster prior to building the JAR file.

Example:

If the Hadoop cluster is on JDK 1.8, then add the following to the build.gradle file:

targetCompatibility = '1.8'
sourceCompatibility = '1.8'

Registering the UDF

After a function is compiled it must be registered with the platform.:

1. Enable user-defined functions (if not done so already)
2. Path to the JAR file that was generated in the previous steps.
3. The udfPackages value should contain the package name where the UDFs can be found.

Example configuration:

To apply this configuration change, login as an administrator to the Trifacta node. Then, edit trifacta-conf.
json. Some of these settings may not be available through the Admin Settings Page. For more information, see
Platform Configuration Methods.

Example Config

...
"feature": {
 "enableUDFTransform": {

 "enabled": true
 }

},
"udf-service": {
 "classpath": "%(topOfTree)s/services/udf-service/build/libs/udf-service.jar:%(topOfTree)s/services/udf-

service/build/dependencies/*",
 "additionalJars": [

 "/vagrant/libs/custom-udfs-sdk/build/libs/custom-udfs-example.jar"
],
 "udfPackages": [

 "com.trifacta.trifactaudfs"
]

},
...

Notes:

Set enableUDFTransform.enabled to true, which enables UDFs in general.
Under udf-service:

specify the full path to the JAR under additionalJars
append the paths of any extra JAR dependencies that your UDFs require under classpath

NOTE: Do not include any extra JAR dependencies in the udf-service/build
directory, as this directory may be purged at build time./dependencies

specify the fully qualified package names under udfPackages

This list contains all fully qualified names of your UDFs.

Copyright © 2022 Trifacta Inc. Page #14

For example. if your UDF is com.company.ourudfs.MyUDF, then the package name is the
following: com.company.ourudfs

Steps:

After modifying the config, the udf-service needs to be restarted.

a. If you created a new UDF, restart the Trifacta application:

service trifacta restart

b. If you have modified an existing UDF, restart the UDF service:

service java-udf-service restart

NOTE: For an existing UDF, you must rebuild the JAR first. Otherwise, the changes are not
recognized during service re-initialization.

2. As part of the restart, any newly added Java UDFs are registered with the application.

Running Your UDF

For more information on executing your UDF in the Transformer page, see User-Defined Functions.

For examples, see Invoke External Function.

Troubleshooting

"Websocket Receive()" error in Transformer page UI

If you execute a Java UDF, you may see an error similar to the following in the Transformer page:

Please reload page (query execution failed).pp::WebSocket::Receive() error: Unspecified failure.

When you check the udf.log file on the server, the following may be present:

UDFWebsocket closed with status: CloseStatus[code=1009, reason=The decoded text message was too big for the
output buffer and the endpoint does not support partial messages]

Solution

The above issue is likely to be caused by the Trifacta Photon running environment sending too much data
through the buffer of the UDF's Websocket service. By default, this buffer size is set to 1048576 bytes (1 MB).

The Trifacta Photon running environment processes data through the Websocket service in 1024 (1 K) rows at a
time for the input and output columns of the UDF. If the data in the input columns to the UDF or output columns
from the UDF exceeds 1 KB (1024 characters) in total size for each row, the default size of the buffer is too small,
since the Trifacta Photon running environment processed 1K records at a time (1 K characters * 1 K rows >
1048576). The query then fails.

When setting a new buffer size:

Assume that 1024 rows are processed from the buffer each time.
Identify the input columns and output columns for the UDF that is failing.

Copyright © 2022 Trifacta Inc. Page #15

Identify the dataset that has the widest columns for both inputs and outputs here.

Tip: You can use the function to do string-based computations of column width. SeeLEN
.LEN Function

Perform the following estimate on the widest set of input and output columns that you are processing:
Estimate the total expected number of characters for the input columns of the UDF.
Add a 20% buffer to the above estimate.
Repeat the above estimate for the widest output columns for the UDF.
Set your buffer size to the larger of the two estimates (input columns' width or output columns'
width).

Example: A UDF takes two inputs and produces one output:

If each input column is 256 characters, then the size of 1K rows of input would be 256 bytes * 2
(input cols) * 1024 rows = 0.5 MB.
If the output of the UDF per row is estimated to be 1024 characters, then the output estimate would
be 1024 bytes * 1024 rows = 1MB.
So, set the buffer size to be 1 MB + 20% buffer over the larger estimate between input and output.
In this example, the buffer size should be 1.2 MB or 1258291 Bytes.

Steps:

1. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json.
For more information, see Platform Configuration Methods.

2. Change the following setting:

"udf-service.outputBufferSize": 1048576,

3. Save your changes and restart the platform.

Photon crashes during execution of UDF

During the execution of a UDF, the Photon client can crash. Possible errors include:

Error in changeCurrentEdit Error: Transformation engine has crashed. Please reload your browser (exit code:
null; message ID: 161)

Solution:

This crash can be caused by a number of issues. You can try the following:

1. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json.
For more information, see Platform Configuration Methods.

2. Bump the value for udf-service.udfCommunicationTimeout setting. Raise this value a bit at a time
to see if that allows the UDF to execute.

NOTE: Avoid setting this value to high, which can cause the Java heap size to be exceeded and
another Photon crash. Maximum value is .2147483646

3. Save your changes and restart the platform.

Databricks cluster has either stale or unknown libraries error

When running a job on a Databricks cluster, you may receive an error message that the cluster has either stale or
unknown libraries.

Copyright © 2022 Trifacta Inc. Page #16

NOTE: This issue occurs only on a Databricks-based cluster during job execution.

This issue is caused by a change that was made to the custom UDFs code for Databricks. Prior to Release 7.10,
custom UDF jobs were checked for use in the Trifacta platform based on when the JAR file was created.
However, this timestamp presented inconsistencies in the following cases:

In high availability environments, the created-at time for the file might be different between nodes on the
cluster.
If the JAR file was passed between different services, each service might apply a different time as the file
was written to new locations.

Solution:

The platform now uses a built-at timestamp instead. This timestamp is assigned in the manifest file when the JAR
is assembled for the first time on a developer's local desktop. That timestamp remains consistent when the JAR
is delivered to the cluster or to different nodes or services.

NOTE: If you are receiving the above error, you must clean the UDF JAR files off of the cluster and
rebuild your custom UDFs for use in the platform. Please see earlier instructions for how to build.

Build timestamp is missing in <filename>.JAR

After you have executed a job, you may receive an error similar to the following in the Job Summary page:

Build Timestamp is missing in <filename>.jar. Please rebuild your jars and try again.

Solution:

In this case, the referenced JAR file does not have a build timestamp in it. You must rebuild and redeploy the
custom UDF JAR file. See the previous Troubleshooting section for details.

Copyright © 2022 Trifacta Inc. Page #17

Create Custom Data Types Using RegEx
Contents:

Custom Types Location
Examples

Example - Days of the week
Example - Sizes

Reference
Parameters
Defining probabilities for Your Custom Data Type

Add custom types to manifest
Enable custom types
Register your custom types
Restart platform

As needed, you can deploy custom data types into the Trifacta® platform, in which type validation is performed
against regular expressions that you specify. This method is most useful for validating against patterns, as
opposed to specific values.

After a custom type has been added, it cannot be removed or disabled. Please verify your regular
expression before saving the type.

Custom Types Location

On the server hosting the Trifacta platform, type definitions are stored in the following directory:

/opt/trifacta/node_modules/jsdata/type-packs/trifacta

This directory is referenced as $CUSTOM_TYPE_DIR in the steps below.

Before you begin creating custom data types, you should backup the type-packs/trifacta
directory to a location outside of your .Trifacta deployment

NOTE: The directory in the directory contains experimental customtrifacta-extras type-packs
data types. These data types are not officially supported. Please use with caution.

Examples

Example - Days of the week

Each custom data type is created and stored in a separate file. The following example file contains a regular
expression method for validating data against the set of days of the week:

Copyright © 2022 Trifacta Inc. Page #18

{
 "name": "DayOfWeek",
 "prettyName": "Day of Week",
 "category" : "Date/Time",
 "defaultProbability": 1E-15,
 "testCase": {

 "stripWhitespace": true,
 "regexes": [

 "^(monday|tuesday|wednesday|thursday|friday|saturday|sunday)$",
 "^(Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday)$",
 "^(mon|tue|wed|thu|fri|sat|sun)$",
 "^(Mon|Tue|Wed|Thu|Fri|Sat|Sun)$"

],
 "probability": 0.001

 }
}

Example - Sizes

Suppose your data contains size information from Extra Small (XS) to Extra Extra Large (XXL). You can create a
regular expression to test for these sizes within a column of values. These sizes could be the following:

Extra Small

Small

Medium

Large

Extra Large

Extra Extra Large

XS

S

M

L

XL

XXL

Extra-Small

Extra-Large

Extra-Extra-Large

You may have noticed that there are multiple ways of expressing sizes and multiple types of case (upper case
and title case). To standardize, all values should be converted to lower case to simplify evaluation. The definition
may look like the following:

Copyright © 2022 Trifacta Inc. Page #19

{
 "name": "size",
 "prettyName": "Size",
 "category" : "String",
 "defaultProbability": 1E-15,
 "testCase": {

 "stripWhitespace": true,
 "regexes": [

 "^(xs|s|m|l|xl|xxl)$",
 "^(extra-small|small|medium|large|extra-large|extra-extra-large)$"

],
 "probability": 0.001

 }
}

Reference

Parameters

Parameter
Name

Description

name Internal identifier for the custom type. Must be unique across all standard types and custom types.

prettyName Display name for the custom type.

category The category to assign to the type. The current categories are displayed within the data type drop-down for each
column.

defaultPro
bability

Assign a default probability for the custom type. See below.

testCase This block contains the regular expression specification to be applied to the column values.

stripWhite
space

When set to , whitespace is removed from any value prior for purposes of validation. The original value istrue
untouched.

regexes This array contains a set of regular expressions that are used to validate the column values. For a regex type, the
column value must match with at least one value among the set of expressions.

 implements a version of regular expressions based off of and regular expressions.Trifacta RE2 PCRE

probability (optional) Assign an incremental change to the probability when a match is found between a value and one of the
regular expressions. See below.Defining probabilities

NOTE: You should verify that your data type's value does not conflict with other custom data typename
names.

NOTE: Matching is case-insensitive.

NOTE: All match types must be double-escaped in the regex expression. For example, to replicate the \d
pattern, you must enter: .\\d

Tip: In the types sub-directory, you can review the regex-based types that are provided with the Trifacta
platform. While you should not edit these files directly, they may provide some guidance and some regex
tips on how to configure your own custom data types.

Copyright © 2022 Trifacta Inc. Page #20

Defining probabilities for Your Custom Data Type

For your custom type, the probability values are used to determine the likelihood that matching values indicate
that the entire column is of the custom data type.

The defaultProbability value specifies the baseline probability that a match between a value and
one of the regular expressions indicates that the column is the specified type. On a logarithmic scale,
values are typically 1E-15 to 1E-20.
When a value is matched to one of the regular expressions, the probability value is used to increment
the baseline probability that the next matching value is of the specified type. This value should also be
expressed on a logarithmic scale (e.g. 0.001).
In this manner, a higher number of matching values increases the probability that the type is also a match
to the custom type.

Probabilities become important primarily if you are creating a custom type that is a subset of an existing type. For
example, the Email Address custom type is a subset of String type. So, matches for the patterns expressed in the
Email Address definition should register a higher probability value than the same incremental for the String
type definition.

Tip: For custom types that are subsets of other, non-String types, you should lower the defaultProbab
of the baseline type by a factor of 10 (e.g. 1E-15 to 1E-16) and raise the same probability in theility

custom type by a factor of 10 (e.g. 1E-14). In this manner, you can give higher probability of matching to
these subset types.

Add custom types to manifest

To the $CUSTOM_TYPE_DIR/manifest.json file, you must add the filenames of any custom types that you
have created and stored in the types directory:

{
 "types": ["bodies-of-water.json", "dayofweek.json"],
 "dictionaries": ["oceans", "seas"]

}

Enable custom types

Steps:

1. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json.
For more information, see Platform Configuration Methods.

2. Locate the following property:

"feature.enableCustomTypes": true,

3. To enable use of your custom data types in the Trifacta platform, locate and edit enabledSemanticTypes
 property.

NOTE: Add your entries to the items that are already present in . DoenabledSemanticTypes
not delete and replace entries.

Copyright © 2022 Trifacta Inc. Page #21

NOTE: Do not use this parameter to attempt to remove specific data types. Removal of the default
types is not supported.

"webapp.enabledSemanticTypes": [
 "<CustomTypeName1>",
 "<CustomTypeName2>",
 "<CustomTypeNameN>"

]

where:

<CustomTypeName1> corresponds to the internal name value for your custom data type.
Save your changes and restart the platform.4.

Register your custom types

To add your custom types to the Trifacta platform, run the following command from the js-data directory:

node bin/load-types --manifest ${PATH_TO_MANIFEST_FILE}

Restart platform

Restart services. See Start and Stop the Platform.

Check for the availability of your types in the column drop-down. See Column Menus.

Copyright © 2022 Trifacta Inc. Page #22

API Reference

This section contains reference information on the REST APIs that are made available by Trifacta®.

Access to API docs locally

NOTE: URLs to API endpoint documentation are case-sensitive.

To access the API documentation for each API endpoint and method that is available to your specific user
account, select Help menu > API Documentation in the Trifacta application.

NOTE: This API documentation portal displays only the API endpoints based on your specific user
account and the features enabled in your . Additional API endpoint documentation mayTrifacta instance
be available at . For more information on the differences between thesehttps://api.trifacta.com
documentation portals, see .API Documentation Versions

Enable Access

Access tokens required

If the API documentation is not available, a workspace administrator must enable the use of API access tokens.

API tokens enable users and processes to access the REST APIs available through the platform.

Tip: Individual users do not need personal API access tokens to use the API documentation. The feature
must be enabled.

For more information, see Workspace Settings Page.

Enable access through the menu

To enable the Help menu option and access to the API documentation, the following parameter must be enabled.

Steps:

1. Login to the application as an administrator.
2. You can apply this change through the Admin Settings Page (recommended) or trifacta-conf.json.

For more information, see Platform Configuration Methods.
3. Locate the following parameter and set it to true:

"webapp.apiDoc.enabled": true,

4. Save your changes and restart the platform.

API Endpoint Documentation

You can access API reference documentation through the Trifacta application. In the left navigation bar, select He
lp menu > API Documentation.

Copyright © 2022 Trifacta Inc. Page #23

Manage API Access Tokens
Contents:

Enable
Enable individual access

Generate New Token
Via API
Via UI

Use Token
List Tokens
Renew Token
Delete Token

This section provides some workflow information for how to use API access tokens as part of your API projects
in Trifacta®. An access token is a hashed string that enables authentication when submitted to any endpoint.
Access tokens limit exposure of clear-text authentication values and provide an easy method of managing
authentication outside of the browser.

Notes:

An access token is linked to its creator and can be generated by submitting a username/password
combination or another valid token from the same user.

If a token is created for userA, userB can be provided the token to impersonate userA.
You cannot create access tokens for users without their authentication credentials.
Changes to passwords do not affect tokens.

After a token has been created, it cannot be modified or extended.
You can create an unlimited number of tokens.

Access tokens can be used for authentication with any supported version of the APIs.

Enable

This feature must be enabled in your instance of the platform. For more information, see
Enable API Access Tokens.

Enable individual access

When access tokens are enabled, by default only administrators are permitted to generate tokens. Optionally,
workspace administrators can enable individual users in the workspace to generate and use their own API
access tokens. For more information, see Workspace Settings Page.

Generate New Token

API access tokens must be created.

NOTE: The first time that you request a new API token, you must submit a separate form of
authentication to the endpoint. To generate new access tokens after you have created one, you can use
a valid access token if you have one.

Copyright © 2022 Trifacta Inc. Page #24

Via API

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/getApiAccessToken

Via UI

Tokens can be generated from the web application.

Steps:

1. Login to the Trifacta application.
2. From the left nav bar, select User menu > Preferences > Access Tokens.
3. Click Generate New Token.
4. Specify the number of days for how long the token should live.

Tip: Depending on how your environment is configured, you may be able to enter to create a-1
non-expiring token.

5. Add a user-friendly description if desired.
6. Click Generate.

NOTE: Copy the value of the token to the clipboard and store it in a secure location for use with your
scripts. For security reasons, the token value itself cannot be retrieved from the application after it has
been created.

Tip: If you wish to manage your token via the APIs, you should copy the Token ID value, too. The Token
ID can always be retrieved from the .Trifacta application

For more information, see Access Tokens Page.

Use Token

After a token has been acquired, it must be included in each request to the server, for as long as it is valid.

NOTE: After a token has been created, it cannot be extended or modified.

NOTE: API access tokens are not used by users through the .Trifacta application

NOTE: When using the APIs in SSO environments, API access tokens work seamlessly with platform-
native versions of SAML and LDAP-AD. They do not work with the reverse proxy SSO methods. For
more information, see https://api.trifacta.com/ee/es.t/index.html#section/Authentication

After you have acquired the token, you submit it with each API request to the platform.

Example - cURL:

Copyright © 2022 Trifacta Inc. Page #25

The following example returns a JSON version of the list of available REST API endpoints for your environment:

curl http://tri.example.com:3005/v4/open-api-spec -X GET -H "Authorization: Bearer (tokenValue)"

(tokenValue) is the value returned for the token when it was created.

Example - REST client:

If you are submitting your API calls through a REST client, the Authorization header must be specified as follows:

Authorization: Bearer (tokenValue)

List Tokens

Endpoint Description

https://api.trifacta.com/ee/es.t/index.html#operation/listApiAccessTokens List all access tokens for your user account.

https://api.trifacta.com/ee/es.t/index.html#operation/getApiAccessToken List your access token for the specified token ID.

NOTE: For security reasons, you cannot acquire the actual token through any of these means.

Tip: You can see all of your current and expired tokens through the . SeeTrifacta application
.Access Tokens Page

Renew Token

New tokens can be acquired at any time.

NOTE: It is the responsibility of the user to acquire a new API token before the current one expires. If a
token is permitted to expire, a request for a new token must include userId and password information.

See https://api.trifacta.com/ee/es.t/index.html#operation/createApiAccessToken

See Access Tokens Page.

Delete Token

Via API: Acquire the tokenId value for the token and use the delete endpoint. See
https://api.trifacta.com/ee/es.t/index.html#operation/deleteApiAccessToken

Via UI: In the Access Tokens page, select Delete Token... from the context menu for the token listing. See
Access Tokens Page.

Copyright © 2022 Trifacta Inc. Page #26

API Endpoints for Trifacta Self-Managed Enterprise
The following endpoints are available for Trifacta® Self-Managed Enterprise Edition.

To access the reference documentation for each available API endpoint and method, select Help menu > API
Documentation in the Trifacta application.

ApiAccessToken

Path Description Documentation URL

POST /v4/apiAccessTokens Create api access
token

https://api.trifacta.com/ee/es.t/index.html#operation
/createApiAccessToken

GET /v4/apiAccessTokens List api access tokens https://api.trifacta.com/ee/es.t/index.html#operation/listApiAccessTokens

GET /v4/apiAccessTokens/:tokenId Get api access token https://api.trifacta.com/ee/es.t/index.html#operation/getApiAccessToken

DELETE /v4/apiAccessTokens/:
tokenId

Delete api access
token

https://api.trifacta.com/ee/es.t/index.html#operation
/deleteApiAccessToken

AwsConfig

Path Description Documentation URL

POST /v4/awsConfigs Create AWS Config https://api.trifacta.com/ee/es.t/index.html#operation/createAwsConfig

GET /v4/awsConfigs List AWS configs https://api.trifacta.com/ee/es.t/index.html#operation/listAwsConfigs

PUT /v4/awsConfigs/:id Update AWS Config https://api.trifacta.com/ee/es.t/index.html#operation/updateAwsConfig

PATCH /v4/awsConfigs/:id Update AWS Config https://api.trifacta.com/ee/es.t/index.html#operation/patchAwsConfig

AwsRole

Path Description Documentation URL

POST /v4/awsRoles Create AWS role https://api.trifacta.com/ee/es.t/index.html#operation/createAwsRole

GET /v4/awsRoles List AWS roles https://api.trifacta.com/ee/es.t/index.html#operation/listAwsRoles

PUT /v4/awsRoles/:id Update AWS role https://api.trifacta.com/ee/es.t/index.html#operation/updateAwsRole

DELETE /v4/awsRoles/:id Delete AWS role https://api.trifacta.com/ee/es.t/index.html#operation/deleteAwsRole

Connection

Path Description Documentation URL

POST /v4/connections Create connection https://api.trifacta.com/ee/es.t/index.html#operation/createConnection

GET /v4/connections List connections https://api.trifacta.com/ee/es.t/index.html#operation/listConnections

GET /v4/connections/count Count connections https://api.trifacta.com/ee/es.t/index.html#operation/countConnections

GET /v4/connections/:id Get connection https://api.trifacta.com/ee/es.t/index.html#operation/getConnection

PATCH /v4/connections/:id Update connection https://api.trifacta.com/ee/es.t/index.html#operation/updateConnection

DELETE /v4/connections/:id Delete connection https://api.trifacta.com/ee/es.t/index.html#operation/deleteConnection

GET /v4/connections/:id/status Get connection status https://api.trifacta.com/ee/es.t/index.html#operation/getConnectionStatus

ConnectionPermission

Path Description Documentation URL

Copyright © 2022 Trifacta Inc. Page #27

POST /v4/connections/:id/permissions Create
connection
permission

https://api.trifacta.com/ee/es.t/index.
html#operation/createConnectionPermission

GET /v4/connections/:id/permissions Get connection
permissions

https://api.trifacta.com/ee/es.t/index.
html#operation/getConnectionPermissions

GET /v4/connections/:id/permissions/

Unknown macro: {aid}

Get connection
permission

https://api.trifacta.com/ee/es.t/index.
html#operation/getConnectionPermission

DELETE /v4
/connections/:id
/permissions/

Delete
connection
permission

https://api.trifacta.com/ee/es.t/index.
html#operation/deleteConnectionPermission

Path Description Documentation URL

POST /v4/connectorMetadata/:connector
/overrides

Create overrides for connector https://api.trifacta.com/ee/es.t/index.html#operation
/updateConnectorOverrides

GET /v4/connectorMetadata/:connector
/overrides

Get overrides for connector https://api.trifacta.com/ee/es.t/index.html#operation
/getConnectorOverrides

DELETE /v4/connectorMetadata/:
connector/overrides

Delete all custom overrides for a
connector

https://api.trifacta.com/ee/es.t/index.html#operation
/deleteConnectorOverrides

GET /v4/connectorMetadata/:connector Get connector metadata
information

https://api.trifacta.com/ee/es.t/index.html#operation
/getConnectorConfig

GET /v4/connectorMetadata/:connector
/defaults

Get default connector metadata
information

https://api.trifacta.com/ee/es.t/index.html#operation
/getConnectorDefaults

GET /v4/connectorMetadata/:connector
/publish/info

Get connector publish
information

https://api.trifacta.com/ee/es.t/index.html#operation
/getPublishInfo

Path Description Documentation URL

GET /v4/databricksClusters/hasToken Check for Databricks access
token

https://api.trifacta.com/ee/es.t/index.html#operation
/hasDatabricksAccessToken

GET /v4/databricksClusters
/getDatabricksTableClusterName

Get Databricks Table cluster
name for user

https://api.trifacta.com/ee/es.t/index.html#operation
/getDatabricksTableClusterName

PUT /v4/databricksClusters
/saveDatabricksToken

Save Databricks access token https://api.trifacta.com/ee/es.t/index.html#operation
/saveDatabricksAccessToken

PUT /v4/databricksClusters
/saveDatabricksTokenByAdmin

Update Databricks access
token for user

https://api.trifacta.com/ee/es.t/index.html#operation
/saveDatabricksAccessTokenByAdmin

PUT /v4/databricksClusters
/saveDatabricksCluster

Save Databricks cluster for
current user

https://api.trifacta.com/ee/es.t/index.html#operation
/saveDatabricksCluster

PUT /v4/databricksClusters
/saveDatabricksClusterByAdmin

Save Databricks cluster for
user

https://api.trifacta.com/ee/es.t/index.html#operation
/saveDatabricksClusterByAdmin

PUT /v4/databricksClusters
/saveDatabricksTableClusterName

Save Databricks Table cluster
name for user

https://api.trifacta.com/ee/es.t/index.html#operation
/saveDatabricksTableClusterName

Path Description Documentation URL

POST /v4/deployments Create deployment https://api.trifacta.com/ee/es.t/index.html#operation/createDeployment

Unknown macro: {aid}

ConnectorMetadata

DatabricksCluster

Deployment

Copyright © 2022 Trifacta Inc. Page #28

GET /v4/deployments List deployments https://api.trifacta.com/ee/es.t/index.html#operation/listDeployments

POST /v4/deployments/:id/run Run Deployment https://api.trifacta.com/ee/es.t/index.html#operation/runDeployment

POST /v4/deployments/:id/releases Import Flow package for
deployment

https://api.trifacta.com/ee/es.t/index.html#operation
/importPackageForDeployment

GET /v4/deployments/:id/releases Get releases for deployment https://api.trifacta.com/ee/es.t/index.html#operation
/getReleasesForDeployment

POST /v4/deployments/:id/releases
/dryRun

Import deployment package
- Dry run

https://api.trifacta.com/ee/es.t/index.html#operation
/importPackageForDeploymentDryRun

GET /v4/deployments/count Count deployments https://api.trifacta.com/ee/es.t/index.html#operation/countDeployments

GET /v4/deployments/:id Get deployment https://api.trifacta.com/ee/es.t/index.html#operation/getDeployment

PUT /v4/deployments/:id Update deployment https://api.trifacta.com/ee/es.t/index.html#operation/updateDeployment

PATCH /v4/deployments/:id Patch deployment https://api.trifacta.com/ee/es.t/index.html#operation/patchDeployment

DELETE /v4/deployments/:id Delete deployment https://api.trifacta.com/ee/es.t/index.html#operation/deleteDeployment

GET /v4/deployments/:id
/activeOutputs

Get active Outputs for
Deployment

https://api.trifacta.com/ee/es.t/index.html#operation
/listActiveOutputsForDeployment

PATCH /v4/deployments/:id
/objectImportRules

Update Object Import Rules https://api.trifacta.com/ee/es.t/index.html#operation
/updateObjectImportRules

PATCH /v4/deployments/:id
/valueImportRules

Update Value Import Rules https://api.trifacta.com/ee/es.t/index.html#operation
/updateValueImportRules

Edit

Path Description Documentation URL

GET /v4/edits/:id/history Get Recipe Edit history https://api.trifacta.com/ee/es.t/index.html#operation/getEditHistoryForEdit

EmrCluster

Path Description Documentation URL

POST /v4/emrClusters Create emr cluster https://api.trifacta.com/ee/es.t/index.html#operation/createEmrCluster

GET /v4/emrClusters List emr clusters https://api.trifacta.com/ee/es.t/index.html#operation/listEmrClusters

GET /v4/emrClusters/count Count emr clusters https://api.trifacta.com/ee/es.t/index.html#operation/countEmrClusters

GET /v4/emrClusters/:id Get emr cluster https://api.trifacta.com/ee/es.t/index.html#operation/getEmrCluster

PATCH /v4/emrClusters/:id Update emr cluster https://api.trifacta.com/ee/es.t/index.html#operation/updateEmrCluster

DELETE /v4/emrClusters/:id Delete emr cluster https://api.trifacta.com/ee/es.t/index.html#operation/deleteEmrCluster

EnvironmentParameter

Path Description Documentation URL

POST /v4
/environmentParameters

Create environment parameter https://api.trifacta.com/ee/es.t/index.html#operation
/createEnvironmentParameter

GET /v4/environmentParameters List environment parameters https://api.trifacta.com/ee/es.t/index.html#operation
/listEnvironmentParameters

POST /v4
/environmentParameters
/package

Import environment
parameters package

https://api.trifacta.com/ee/es.t/index.html#operation
/importEnvironmentParametersPackage

GET /v4/environmentParameters
/package

Export environment
parameters list

https://api.trifacta.com/ee/es.t/index.html#operation
/getEnvironmentParametersPackage

Copyright © 2022 Trifacta Inc. Page #29

GET /v4
/environmentParameters/:id

Get environment parameter https://api.trifacta.com/ee/es.t/index.html#operation
/getEnvironmentParameter

DELETE /v4
/environmentParameters/:id

Delete environment parameter https://api.trifacta.com/ee/es.t/index.html#operation
/deleteEnvironmentParameter

GET /v4/environmentParameters
/count

Count environment parameters https://api.trifacta.com/ee/es.t/index.html#operation
/countEnvironmentParameters

Flow

Path Description Documentation URL

POST /v4/flows Create flow https://api.trifacta.com/ee/es.t/index.html#operation/createFlow

GET /v4/flows List flows https://api.trifacta.com/ee/es.t/index.html#operation/listFlows

POST /v4/flows/package Import Flow package https://api.trifacta.com/ee/es.t/index.html#operation/importPackage

POST /v4/flows/package/dryRun Import Flow package - Dry run https://api.trifacta.com/ee/es.t/index.html#operation
/importPackageDryRun

POST /v4/flows/:id/copy Copy Flow https://api.trifacta.com/ee/es.t/index.html#operation/copyFlow

POST /v4/flows/:id/run Run Flow https://api.trifacta.com/ee/es.t/index.html#operation/runFlow

GET /v4/flows/count Count flows https://api.trifacta.com/ee/es.t/index.html#operation/countFlows

GET /v4/flows/:id Get flow https://api.trifacta.com/ee/es.t/index.html#operation/getFlow

PUT /v4/flows/:id Update flow https://api.trifacta.com/ee/es.t/index.html#operation/updateFlow

PATCH /v4/flows/:id Patch flow https://api.trifacta.com/ee/es.t/index.html#operation/patchFlow

DELETE /v4/flows/:id Delete flow https://api.trifacta.com/ee/es.t/index.html#operation/deleteFlow

GET /v4/flows/:id/validate Validate Flow https://api.trifacta.com/ee/es.t/index.html#operation/validateFlow

GET /v4/flows/:id/package Export flow https://api.trifacta.com/ee/es.t/index.html#operation
/getFlowPackage

GET /v4/flows/:id/package/dryRun Export flow - Dry run https://api.trifacta.com/ee/es.t/index.html#operation
/getFlowPackageDryRun

GET /v4/flowsLibrary Flow Library (list) https://api.trifacta.com/ee/es.t/index.html#operation
/listFlowsLibrary

GET /v4/flowsLibrary/count Flow Library (count) https://api.trifacta.com/ee/es.t/index.html#operation
/countFlowsLibrary

GET /v4/flows/:id
/recipeParameters

Get flow level parameters and
overrides

https://api.trifacta.com/ee/es.t/index.html#operation
/getRecipeParameterSpec

GET /v4/flows/:id/inputs List Flow inputs https://api.trifacta.com/ee/es.t/index.html#operation/getFlowInputs

GET /v4/flows/:id/outputs List Flow outputs https://api.trifacta.com/ee/es.t/index.html#operation
/getFlowOutputs

GET /v4/folders/:id/flows List flows in folder https://api.trifacta.com/ee/es.t/index.html#operation
/getFlowsForFolder

GET /v4/folders/:id/flows/count Count flows in folder https://api.trifacta.com/ee/es.t/index.html#operation
/getFlowCountForFolder

PATCH /v4/flows/:id
/replaceDataset

Replace dataset https://api.trifacta.com/ee/es.t/index.html#operation
/replaceDatasetInFlow

PATCH /v4/flows/:id
/resetDependencies

Reset flow dependencies https://api.trifacta.com/ee/es.t/index.html#operation
/resetDependencies

FlowNode

Path Description Documentation URL

Copyright © 2022 Trifacta Inc. Page #30

POST /v4/flowNodes/:id/commitEdges Create new edges https://api.trifacta.com/ee/es.t/index.html#operation/commitEdges

GET /v4/flowNodes/:id/validate Validate Flow Node https://api.trifacta.com/ee/es.t/index.html#operation/validateFlowNode

FlowPermission

Path Description Documentation URL

POST /v4/flows/:id/permissions Share Flow https://api.trifacta.com/ee/es.t/index.
html#operation/shareFlow

GET /v4/flows/:id/permissions List
permissions
for Flow

https://api.trifacta.com/ee/es.t/index.
html#operation/getFlowPermissions

GET /v4/flows/:id/permissions/

Unknown macro: {aid}

Get flow permission https://api.trifacta.com/ee/es.t/index.
html#operation/getFlowPermission

DELETE /v4/flows/:id
/permissions/

Delete flow
permission

https://api.trifacta.com/ee/es.t/index.
html#operation/deleteFlowPermission

Unknown macro: {aid}

FlowRun

Path Description Documentation URL

GET /v4/flowRuns/:id Get flow run https://api.trifacta.com/ee/es.t/index.html#operation/getFlowRun

GET /v4/flowRuns/:id/status Get Flow Run Status https://api.trifacta.com/ee/es.t/index.html#operation/getFlowRunStatus

GET /v4/flowRuns/:id/jobGroups Get JobGroups for Flow Run https://api.trifacta.com/ee/es.t/index.html#operation/getFlowRunJobGroups

FlowRunParameterOverride

Path Description Documentation URL

POST /v4
/flowRunParameterOverrides

Create flow run parameter
override

https://api.trifacta.com/ee/es.t/index.html#operation
/createFlowRunParameterOverride

GET /v4
/flowRunParameterOverrides/:id

Get flow run parameter
override

https://api.trifacta.com/ee/es.t/index.html#operation
/getFlowRunParameterOverride

PATCH /v4
/flowRunParameterOverrides/:id

Patch flow run parameter
override

https://api.trifacta.com/ee/es.t/index.html#operation
/patchFlowRunParameterOverride

DELETE /v4
/flowRunParameterOverrides/:id

Delete flow run parameter
override

https://api.trifacta.com/ee/es.t/index.html#operation
/deleteFlowRunParameterOverride

Folder

Path Description Documentation URL

POST /v4/folders Create folder https://api.trifacta.com/ee/es.t/index.html#operation/createFolder

GET /v4/folders List folders https://api.trifacta.com/ee/es.t/index.html#operation/listFolders

GET /v4/folders/count Count folders https://api.trifacta.com/ee/es.t/index.html#operation/countFolders

GET /v4/folders/:id Get folder https://api.trifacta.com/ee/es.t/index.html#operation/getFolder

PUT /v4/folders/:id Update folder https://api.trifacta.com/ee/es.t/index.html#operation/updateFolder

PATCH /v4/folders/:id Patch folder https://api.trifacta.com/ee/es.t/index.html#operation/patchFolder

DELETE /v4/folders/:id Delete folder https://api.trifacta.com/ee/es.t/index.html#operation/deleteFolder

Copyright © 2022 Trifacta Inc. Page #31

ImportedDataset

Path Description Documentation URL

POST /v4/importedDatasets Create imported dataset https://api.trifacta.com/ee/es.t/index.html#operation
/createImportedDataset

GET /v4/importedDatasets List imported datasets https://api.trifacta.com/ee/es.t/index.html#operation
/listImportedDatasets

POST /v4/importedDatasets/:id
/addToFlow

Add Imported Dataset to Flow https://api.trifacta.com/ee/es.t/index.html#operation
/addImportedDatasetToFlow

POST /v4/importedDatasets/:id/copy Copy imported dataset https://api.trifacta.com/ee/es.t/index.html#operation
/copyDataSource

POST /v4/importedDatasets/:id
/asyncRefreshSchema

Fetch and update latest
datasource schema

https://api.trifacta.com/ee/es.t/index.html#operation
/asyncRefreshSchema

GET /v4/importedDatasets/count Count imported datasets https://api.trifacta.com/ee/es.t/index.html#operation
/countImportedDatasets

GET /v4/importedDatasets/:id Get imported dataset https://api.trifacta.com/ee/es.t/index.html#operation
/getImportedDataset

PUT /v4/importedDatasets/:id Update imported dataset https://api.trifacta.com/ee/es.t/index.html#operation
/updateImportedDataset

PATCH /v4/importedDatasets/:id Patch imported dataset https://api.trifacta.com/ee/es.t/index.html#operation
/patchImportedDataset

DELETE /v4/importedDatasets/:id Delete imported dataset https://api.trifacta.com/ee/es.t/index.html#operation
/deleteImportedDataset

GET /v4/datasetLibrary List Datasets https://api.trifacta.com/ee/es.t/index.html#operation
/listDatasetLibrary

GET /v4/datasetLibrary/count Count Datasets https://api.trifacta.com/ee/es.t/index.html#operation
/countDatasetLibrary

PUT /v4/importedDatasets/:id/scriptlines Update existing scriptlines for the
datasource

https://api.trifacta.com/ee/es.t/index.html#operation
/updateScriptLines

Job

Path Description Documentation URL

GET /v4/jobs/:id/status Get Job Status https://api.trifacta.com/ee/es.t/index.html#operation/getJobStatus

JobGroup

Path Description Documentation URL

POST /v4/jobGroups Run Job Group https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

GET /v4/jobGroups List job groups https://api.trifacta.com/ee/es.t/index.html#operation/listJobGroups

POST /v4/jobGroups/:id
/cancel

Cancel Job Group https://api.trifacta.com/ee/es.t/index.html#operation/cancelJobGroup

GET /v4/jobGroups/count Count job groups https://api.trifacta.com/ee/es.t/index.html#operation/countJobGroups

GET /v4/jobGroups/:id Get job group https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroup

GET /v4/jobGroups/:id
/profile

Get Profile Information for Job
Group

https://api.trifacta.com/ee/es.t/index.html#operation
/getProfilingInformationForJobGroup

GET /v4/jobGroups/:id
/profileResults

Get Profile Information for Job
Group As a Map

https://api.trifacta.com/ee/es.t/index.html#operation
/getProfilingInformationForJobGroupConsistent

GET /v4/jobGroups/:id
/pdfResults

Get PDF Results for Job Group https://api.trifacta.com/ee/es.t/index.html#operation
/getJobGroupPdfResults

Copyright © 2022 Trifacta Inc. Page #32

GET /v4/jobGroups/:id
/status

Get JobGroup Status https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroupStatus

GET /v4/jobGroups/:id
/inputs

Get Job Group Inputs https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroupInputs

GET /v4/jobGroups/:id
/outputs

Get Job Group Outputs https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroupOutputs

GET /v4/jobLibrary List Job Groups https://api.trifacta.com/ee/es.t/index.html#operation/listJobLibrary

GET /v4
/validateLicensedUserQuota

Macro

GET /v4/jobLibrary/count Count Job Groups https://api.trifacta.com/ee/es.t/index.html#operation/countJobLibrary

GET /v4/jobGroups/:id/jobs Get Jobs for Job Group https://api.trifacta.com/ee/es.t/index.html#operation/getJobsForJobGroup

GET /v4/jobGroups/:id/logs Get Job Group logs https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroupLogs

GET /v4/jobGroups/:id
/publications

Get Publications for Job Group https://api.trifacta.com/ee/es.t/index.html#operation
/getPublicationsForJobGroup

PUT /v4/jobGroups/:id
/publish

Publish Job Group https://api.trifacta.com/ee/es.t/index.html#operation/publishJobGroup

License

Path Description Documentation URL

https://api.trifacta.com/ee/es.t/index.html#operation
/validateLicensedUserQuota

Validate User Quota in
License

Path Description Documentation URL

POST /v4/macros/package Import Macro Package https://api.trifacta.com/ee/es.t/index.html#operation
/importMacroPackage

POST /v4/macros/:id/package
/dryRun

Import Macro Package - Dry
run

https://api.trifacta.com/ee/es.t/index.html#operation
/importMacroPackageDryRun

GET /v4/macros/:id/package Get Macro Package https://api.trifacta.com/ee/es.t/index.html#operation/getMacroPackage

Misc

Path Description Documentation URL

GET /v4/open-api-spec Get OpenAPI specification https://api.trifacta.com/ee/es.t/index.html#operation/getOpenApiSpec

Oauth2ClientDetail

Path Description Documentation URL

POST /v4/oauth2ClientDetails Create oauth 2 client detail https://api.trifacta.com/ee/es.t/index.html#operation
/createOauth2ClientDetail

GET /v4/oauth2ClientDetails
/oauth2ClientModels/

Get all oauth2 client models for
enterprise edition

https://api.trifacta.com/ee/es.t/index.html#operation
/allOAuth2ClientModels

GET /v4/oauth2ClientDetails
/oauth2ClientModels/available

Get available oauth2 client models for
enterprise edition

https://api.trifacta.com/ee/es.t/index.html#operation
/availableAuth2ClientModels

GET /v4/oauth2ClientDetails
/oauth2ClientModels/:type

Get oauth2 client models according to
edition

https://api.trifacta.com/ee/es.t/index.html#operation
/oauth2ClientModels

OutputObject

Path Description Documentation URL

Copyright © 2022 Trifacta Inc. Page #33

POST /v4/outputObjects Create output object https://api.trifacta.com/ee/es.t/index.html#operation
/createOutputObject

GET /v4/outputObjects List output objects https://api.trifacta.com/ee/es.t/index.html#operation
/listOutputObjects

POST /v4/outputObjects/:id
/wrangleToPython

Generate python script for wrangle recipe
linked to an output object

https://api.trifacta.com/ee/es.t/index.html#operation
/getPythonScriptForOutputObjectInput

GET /v4/outputObjects/count Count output objects https://api.trifacta.com/ee/es.t/index.html#operation
/countOutputObjects

GET /v4/outputObjects/:id Get output object https://api.trifacta.com/ee/es.t/index.html#operation
/getOutputObject

PUT /v4/outputObjects/:id Update output object https://api.trifacta.com/ee/es.t/index.html#operation
/updateOutputObject

PATCH /v4/outputObjects/:id Patch output object https://api.trifacta.com/ee/es.t/index.html#operation
/patchOutputObject

DELETE /v4/outputObjects/:id Delete output object https://api.trifacta.com/ee/es.t/index.html#operation
/deleteOutputObject

GET /v4/outputObjects/:id
/inputs

List inputs for Output Object https://api.trifacta.com/ee/es.t/index.html#operation
/getInputsForOutputObject

Person

Path Description Documentation URL

GET /v4/people/current Get Current Person https://api.trifacta.com/ee/es.t/index.html#operation/getCurrentPerson

GET /v4/people/:id Get person https://api.trifacta.com/ee/es.t/index.html#operation/getPerson

PUT /v4/people/:id Update person https://api.trifacta.com/ee/es.t/index.html#operation/updatePerson

PATCH /v4/people/:id Patch person https://api.trifacta.com/ee/es.t/index.html#operation/patchPerson

DELETE /v4/people/:id Delete person https://api.trifacta.com/ee/es.t/index.html#operation/deletePerson

GET /v4/people List people https://api.trifacta.com/ee/es.t/index.html#operation/listPerson

POST /v4/people Create person https://api.trifacta.com/ee/es.t/index.html#operation/createPerson

GET /v4/people/count Count people https://api.trifacta.com/ee/es.t/index.html#operation/countPerson

PATCH /v4/people/current
/updatePassword

Update password https://api.trifacta.com/ee/es.t/index.html#operation/updatePassword

POST /v4/passwordresetrequest Reset password
request

https://api.trifacta.com/ee/es.t/index.html#operation
/passwordResetRequest

Plan

Path Description Documentation URL

POST /v4/plans Create plan https://api.trifacta.com/ee/es.t/index.html#operation/createPlan

GET /v4/plans List plans https://api.trifacta.com/ee/es.t/index.html#operation/listPlans

POST /v4/plans/:id/run Run plan https://api.trifacta.com/ee/es.t/index.html#operation/runPlan

POST /v4/plans/:id/permissions Share Plan https://api.trifacta.com/ee/es.t/index.html#operation/sharePlan

GET /v4/plans/:id/permissions List permissions for plan https://api.trifacta.com/ee/es.t/index.html#operation
/getPlanPermissions

POST /v4/plans/package Import plan package https://api.trifacta.com/ee/es.t/index.html#operation
/importPlanPackage

GET /v4/plans/count Count plans https://api.trifacta.com/ee/es.t/index.html#operation/countPlans

Copyright © 2022 Trifacta Inc. Page #34

GET /v4/plans/:id/runParameters List run parameters https://api.trifacta.com/ee/es.t/index.html#operation
/planRunParameters

GET /v4/plans/:id/full Read plan with all attributes https://api.trifacta.com/ee/es.t/index.html#operation/readFull

GET /v4/plans/:id/schedules List plan schedules https://api.trifacta.com/ee/es.t/index.html#operation
/getSchedulesForPlan

GET /v4/plans/:id/package Export plan https://api.trifacta.com/ee/es.t/index.html#operation/getPlanPackage

PATCH /v4/plans/:id Update plan https://api.trifacta.com/ee/es.t/index.html#operation/updatePlan

DELETE /v4/plans/:id Delete plan https://api.trifacta.com/ee/es.t/index.html#operation/deletePlan

DELETE /v4/plans/:id
/permissions/

Unknown macro: {subjectId}

Delete plan permissions for a
user

https://api.trifacta.com/ee/es.t/index.html#operation
/deletePlanPermissions

PlanNode

Path Description Documentation URL

POST /v4/planNodes Create plan node https://api.trifacta.com/ee/es.t/index.html#operation/createPlanNode

GET /v4/planNodes/:id
/runParameters

List run parameters for a plan
node

https://api.trifacta.com/ee/es.t/index.html#operation
/getPlanNodeRunParameters

DELETE /v4/planNodes/:id Delete plan node https://api.trifacta.com/ee/es.t/index.html#operation/deletePlanNode

Unknown macro: {subjectId}

PlanOverride

Path Description Documentation URL

POST /v4
/planOverrides

Override a parameter in a plan https://api.trifacta.com/ee/es.t/index.html#operation
/createPlanOverride

PUT /v4
/planOverrides/:id

Update the value of a parameter override in a
plan

https://api.trifacta.com/ee/es.t/index.html#operation
/updatePlanOverride

PlanSnapshotRun

Path Description Documentation URL

Copyright © 2022 Trifacta Inc. Page #35

POST /v4/planSnapshotRuns/:id
/cancel

Cancel a plan execution https://api.trifacta.com/ee/es.t/index.html#operation
/cancelPlanSnapshotRun

GET /v4/planSnapshotRuns List plan snapshot runs https://api.trifacta.com/ee/es.t/index.html#operation
/listPlanSnapshotRuns

GET /v4/planSnapshotRuns/count Count plan snapshot
runs

https://api.trifacta.com/ee/es.t/index.html#operation
/countPlanSnapshotRuns

GET /v4/planSnapshotRuns/:id Get plan snapshot run https://api.trifacta.com/ee/es.t/index.html#operation
/getPlanSnapshotRun

GET /v4/planSnapshotRuns/:id
/schedule

Get schedule for plan
run

https://api.trifacta.com/ee/es.t/index.html#operation
/getScheduleForPlanRun

PlanStorageTask

Path Description Documentation URL

PATCH /v4/planStorageTasks/:id Update plan storage task https://api.trifacta.com/ee/es.t/index.html#operation/updatePlanStorageTask

Publication

Path Description Documentation URL

POST /v4/publications Create publication https://api.trifacta.com/ee/es.t/index.html#operation/createPublication

GET /v4/publications List publications https://api.trifacta.com/ee/es.t/index.html#operation/listPublications

GET /v4/publications/count Count publications https://api.trifacta.com/ee/es.t/index.html#operation/countPublications

GET /v4/publications/:id Get publication https://api.trifacta.com/ee/es.t/index.html#operation/getPublication

PUT /v4/publications/:id Update publication https://api.trifacta.com/ee/es.t/index.html#operation/updatePublication

PATCH /v4/publications/:id Patch publication https://api.trifacta.com/ee/es.t/index.html#operation/patchPublication

DELETE /v4/publications/:id Delete publication https://api.trifacta.com/ee/es.t/index.html#operation/deletePublication

Release

Path Description Documentation URL

GET /v4/releases List releases https://api.trifacta.com/ee/es.t/index.html#operation/listReleases

GET /v4/releases/count Count releases https://api.trifacta.com/ee/es.t/index.html#operation/countReleases

GET /v4/releases/:id Get release https://api.trifacta.com/ee/es.t/index.html#operation/getRelease

PUT /v4/releases/:id Update release https://api.trifacta.com/ee/es.t/index.html#operation/updateRelease

PATCH /v4/releases/:id Patch release https://api.trifacta.com/ee/es.t/index.html#operation/patchRelease

DELETE /v4/releases/:id Delete release https://api.trifacta.com/ee/es.t/index.html#operation/deleteRelease

GET /v4/releases/:id/package Export Release https://api.trifacta.com/ee/es.t/index.html#operation/getReleasePackage

GET /v4/releases/:id/package
/dryRun

Export Release - dry
run

https://api.trifacta.com/ee/es.t/index.html#operation
/getReleasePackageDryRun

ResourceTaskState

Path Description Documentation URL

POST /v4/resourceTaskStates Get Resource Task States https://api.trifacta.com/ee/es.t/index.html#operation
/getResourceTaskStates

POST /v4/resourceTaskStates
/byResourceIds

Get Resource Task Ids for given
resources

https://api.trifacta.com/ee/es.t/index.html#operation
/getResourceTaskIds

RunParameter

Path Description Documentation URL

POST /v4/runParameters Create run parameter https://api.trifacta.com/ee/es.t/index.html#operation/createRunParameter

PUT /v4/runParameters/:id Update run parameter https://api.trifacta.com/ee/es.t/index.html#operation/updateRunParameter

DELETE /v4/runParameters/:id Delete run parameter https://api.trifacta.com/ee/es.t/index.html#operation/deleteRunParameter

Schedule

Path Description Documentation URL

POST /v4/schedules Create a schedule https://api.trifacta.com/ee/es.t/index.html#operation/createSchedule

GET /v4/schedules List schedules https://api.trifacta.com/ee/es.t/index.html#operation/listSchedules

POST /v4/schedules/:id/enable Enable schedule https://api.trifacta.com/ee/es.t/index.html#operation/enableSchedule

POST /v4/schedules/:id/disable Disable schedule https://api.trifacta.com/ee/es.t/index.html#operation/disableSchedule

GET /v4/schedules/count Count schedules https://api.trifacta.com/ee/es.t/index.html#operation/countSchedules

GET /v4/schedules/:id Get schedule https://api.trifacta.com/ee/es.t/index.html#operation/getSchedule

Copyright © 2022 Trifacta Inc. Page #36

PUT /v4/schedules/:id Update a schedule https://api.trifacta.com/ee/es.t/index.html#operation/updateSchedule

DELETE /v4/schedules/:id Delete schedule https://api.trifacta.com/ee/es.t/index.html#operation/deleteSchedule

SqlScript

Path Description Documentation URL

POST /v4/sqlScripts Create sql script https://api.trifacta.com/ee/es.t/index.html#operation/createSqlScript

GET /v4/sqlScripts List sql scripts https://api.trifacta.com/ee/es.t/index.html#operation/listSqlScripts

GET /v4/sqlScripts/count Count sql scripts https://api.trifacta.com/ee/es.t/index.html#operation/countSqlScripts

GET /v4/sqlScripts/:id Get sql script https://api.trifacta.com/ee/es.t/index.html#operation/getSqlScript

PATCH /v4/sqlScripts/:id Patch sql script https://api.trifacta.com/ee/es.t/index.html#operation/patchSqlScript

DELETE /v4/sqlScripts/:id Delete sql script https://api.trifacta.com/ee/es.t/index.html#operation/deleteSqlScript

SupportBundle

Path Description Documentation URL

GET /v4/supportbundle Get Support Bundle https://api.trifacta.com/ee/es.t/index.html#operation/getSupportBundle

GET /v4/supportbundle
/currentsession

Get Support Bundle for current
session

https://api.trifacta.com/ee/es.t/index.html#operation
/getSupportBundleForCurrentSession

Usage

Path Description Documentation URL

GET /v4/usages/jobMetrics/compute/from/:
from/to/:to

List compute usage https://api.trifacta.com/ee/es.t/index.html#operation
/listComputeUsage

GET /v4/usages/jobMetrics/detailedReport
/compute/from/:from/to/:to

Get the Usage Detailed Report
for the specified period

https://api.trifacta.com/ee/es.t/index.html#operation
/getComputeUsageDetailedReport

GET /v4/usages/userMetrics/projects/:
projectId/from/:from/to/:to

List user usages for project https://api.trifacta.com/ee/es.t/index.html#operation
/listUserUsageForProject

GET /v4/usages/userMetrics/entitlements/:
entitlementId/from/:from/to/:to

List user usages for entitlement https://api.trifacta.com/ee/es.t/index.html#operation
/listUserUsageForEntitlement

WebhookFlowTask

Path Description Documentation URL

POST /v4/webhookFlowTasks Create webhook https://api.trifacta.com/ee/es.t/index.html#operation/createWebhookFlowTask

POST /v4/webhooks/test Test webhook settings https://api.trifacta.com/ee/es.t/index.html#operation/testWebhook

GET /v4/webhookFlowTasks/:id Read webhook https://api.trifacta.com/ee/es.t/index.html#operation/getWebhookFlowTask

DELETE /v4/webhookFlowTasks/:id Delete webhook https://api.trifacta.com/ee/es.t/index.html#operation/deleteWebhookFlowTask

Workspace

Path Description Documentation URL

POST /v4/workspaces/current
/delete-configuration

Reset a configuration settings for
the current workspace

https://api.trifacta.com/ee/es.t/index.html#operation
/deleteCurrentWorkspaceConfigurationSettings

POST /v4/workspaces/:id/delete-
configuration

Reset a workspace configuration
settings

https://api.trifacta.com/ee/es.t/index.html#operation
/deleteWorkspaceConfigurationSettings

Copyright © 2022 Trifacta Inc. Page #37

POST /v4/wrangledDatasets Create wrangled
dataset

https://api.trifacta.com/ee/es.t/index.html#operation
/createWrangledDataset

GET /v4/wrangledDatasets List wrangled datasets https://api.trifacta.com/ee/es.t/index.html#operation
/listWrangledDatasets

POST /v4/wrangledDatasets/:id
/addToFlow

Add wrangled dataset
to flow

https://api.trifacta.com/ee/es.t/index.html#operation
/addWrangledDatasetToFlow

GET /v4/wrangledDatasets/count Count wrangled
datasets

https://api.trifacta.com/ee/es.t/index.html#operation
/countWrangledDatasets

GET /v4/wrangledDatasets/:id Get wrangled dataset https://api.trifacta.com/ee/es.t/index.html#operation
/getWrangledDataset

PATCH /v4/wrangledDatasets/:id Patch Wrangled Dataset https://api.trifacta.com/ee/es.t/index.html#operation
/patchWrangledDataset

DELETE /v4/wrangledDatasets/:id Delete wrangled dataset https://api.trifacta.com/ee/es.t/index.html#operation
/deleteWrangledDataset

GET /v4/wrangledDatasets/:id
/primaryInputDataset

Get Input Dataset https://api.trifacta.com/ee/es.t/index.html#operation/getInputDataset

PUT /v4/wrangledDatasets/:id
/primaryInputDataset

Swap Input Dataset https://api.trifacta.com/ee/es.t/index.html#operation
/updateInputDataset

WriteSetting

GET /v4/workspaces/current
/configuration

Get current workspace configuration https://api.trifacta.com/ee/es.t/index.html#operation
/getCurrentConfigurationForWorkspace

PATCH /v4/workspaces/current
/configuration

Save current workspace
configuration

https://api.trifacta.com/ee/es.t/index.html#operation
/saveCurrentWorkspaceConfiguration

GET /v4/workspaces/:id
/configuration

Get workspace configuration https://api.trifacta.com/ee/es.t/index.html#operation
/getConfigurationForWorkspace

PATCH /v4/workspaces/:id
/configuration

Save workspace configuration https://api.trifacta.com/ee/es.t/index.html#operation
/saveWorkspaceConfiguration

GET /v4/workspaces/:id
/configuration-schema

Get configuration schema https://api.trifacta.com/ee/es.t/index.html#operation
/getConfigurationSchema

GET /v4/workspaces/current
/configuration-schema

Get current configuration schema https://api.trifacta.com/ee/es.t/index.html#operation
/getCurrentConfigurationSchema

PATCH /v4/workspaces/current
/transfer

Transfer User Assets https://api.trifacta.com/ee/es.t/index.html#operation
/transferUserAssetsInCurrentWorkspace

PATCH /v4/workspaces/:id
/transfer

Transfer User Assets https://api.trifacta.com/ee/es.t/index.html#operation
/transferUserAssetsInWorkspace

WrangledDataset

Path Description Documentation URL

Path Description Documentation URL

POST /v4/writeSettings Create writesetting https://api.trifacta.com/ee/es.t/index.html#operation/createWriteSetting

GET /v4/writeSettings List write settings https://api.trifacta.com/ee/es.t/index.html#operation/listWriteSettings

GET /v4/writeSettings/count Count write settings https://api.trifacta.com/ee/es.t/index.html#operation/countWriteSettings

GET /v4/writeSettings/:id Get write setting https://api.trifacta.com/ee/es.t/index.html#operation/getWriteSetting

PUT /v4/writeSettings/:id Update write setting https://api.trifacta.com/ee/es.t/index.html#operation/updateWriteSetting

PATCH /v4/writeSettings/:id Patch write setting https://api.trifacta.com/ee/es.t/index.html#operation/patchWriteSetting

DELETE /v4/writeSettings/:id Delete write setting https://api.trifacta.com/ee/es.t/index.html#operation/deleteWriteSetting

Copyright © 2022 Trifacta Inc. Page #38

API Workflows
In this section, you can review examples of how to execute workflows using one or more of the available REST
APIs.

Copyright © 2022 Trifacta Inc. Page #39

API Workflow - Develop a Flow
Contents:

Overview
Example Datasets

Step - Create Containing Flow
Step - Create Datasets
Step - Wrangle Data
Step - Create Output Objects
Step - Run Job
Step - Monitoring Your Job
Step - Re-run Job

Overview

This example walks through the process of creating, identifying, and executing a job through automated methods.
For this example, these tasks are accomplished using the following methods:

NOTE: This API workflow applies to a Development instance of the , which is theTrifacta® platform
default platform instance type. For more information on Development and Production instance, see

.Overview of Deployment Manager

1. Locate or create flow. The datasets that you wrangle must be contained within a flow. You can add them
to an existing flow or create a new one through the APIs.

2. Create dataset. Through the APIs, you create an imported dataset from an asset that is accessible
through one of the established connections. Then, you create the recipe object through the API.

a. For the recipe, you must retrieve the internal identifier.
b. Through the application, you modify the recipe for the dataset.

3. Automate job execution. Using the APIs, you can automate execution of the wrangling of the dataset.
a. As needed, this job can be re-executed on a periodic basis or whenever the source files are

updated.

Example Datasets

In this example, you are attempting to wrangle monthly point of sale (POS) data from three separate regions into
a single dataset for the state. This monthly data must be enhanced with information about the products and
stores in the state. So, the example has a combination of transactional and reference data, which must be
brought together into a single dataset.

Tip: To facilitate re-execution of this job each month, the transactional data should be stored in a
dedicated directory. This directory can be overwritten with next month's data using the same filenames.
As long as the new files are structured in an identical manner to the original ones, the new month's data
can be processed by re-running the API aspects of this workflow.

Example Files:

The following files are stored on HDFS:

Copyright © 2022 Trifacta Inc. Page #40

Path and Filename Description

hdfs:///user/pos/POS-r01.txt Point of sale transactions for Region 1.

hdfs:///user/pos/POS-r02.txt Point of sale transactions for Region 2.

hdfs:///user/pos/POS-r03.txt Point of sale transactions for Region 3.

hdfs:///user/ref/REF_PROD.txt Reference data on products for the state.

hdfs:///user/ref/REF_CAL.txt Reference data on stores in the state.

NOTE: The reference and transactional data are stored in separate directories. In this case, you can
assume that the user has read access through his to these directories, although thisTrifacta account
access must be enabled and configured for real use cases.

Base URL:

For purposes of this example, the base URL for the Trifacta platform is the following:

http://www.example.com:3005

Step - Create Containing Flow

To begin, you must locate a flow or create a flow through the APIs to contain the datasets that you are importing.

NOTE: You cannot add datasets to the flow through the endpoint. Moving pre-existing datasetsflows
into a flow is not supported in this release. Create or locate the flow first and then when you create the
datasets, associate them with the flow at the time of creation.

See https://api.trifacta.com/ee/es.t/index.html#operation/createImportedDataset
See https://api.trifacta.com/ee/es.t/index.html#operation/createWrangledDataset

Locate:

NOTE: If you know the display name value for the flow and are confident that it is not shared with any
other flows, you can use the APIs to retrieve the flowId. See
https://api.trifacta.com/ee/es.t/index.html#operation/listFlows

1. Login through the application.
2. In the Flows page, select or create the flow to contain the above datasets.
3. In the Flow Details page for that flow, locate the flow identifier in the URL:

4.

Flow Details URL http://www.example.com:3005/flows/10

Flow Id 10

Retain this identifier for later use.

Create:

1. Through the APIs, you can create a flow using the following call:

Copyright © 2022 Trifacta Inc. Page #41

Endpoint http://www.example.com:3005/v4/flows

Authentication Required

Method POST

Request Body {
 "name": "Point of Sale - 2013",
 "description": "Point of Sale data for state"

}

2. The response should be status code 201 - Created with a response body like the following:

{
 "id": 10,
 "updatedAt": "2017-02-17T17:08:57.848Z",
 "createdAt": "2017-02-17T17:08:57.848Z",
 "name": "Point of Sale - 2013",
 "description": "Point of Sale data for state",
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "workspace": {

 "id": 1
 }

}

3. Retain the flow identifier (10) for later use.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createFlow

Checkpoint: You have identified or created the flow to contain your dataset or datasets.

Step - Create Datasets

To create datasets from the above sources, you must:

1. Create an imported dataset for each file.
2. For each imported dataset, create a recipe, which can be used to transform the imported dataset.

The following steps describe how to complete these actions via API for a single file.

Steps:

1. To create an imported dataset, you must acquire the following information about the source. In the above
example, the source is the POS-r01.txt file.

a. uri
b. name
c. description
d. bucket (if a file stored on S3)

2. Construct the following request:

Endpoint http://www.example.com:3005/v4/importedDatasets

Authentication Required

Copyright © 2022 Trifacta Inc. Page #42

Method POST

Request Body {
 "uri": "hdfs:///user/pos/POS-r01.txt",
 "name": "POS-r01.txt",
 "description": "POS-r01.txt"

}

3. You should receive a 201 - Created response with a response body similar to the following:

{
 "id": 8,
 "size": "281032",
 "uri": "hdfs:///user/pos/POS-r01.txt",
 "dynamicPath": null,
 "bucket": null,
 "isSchematized": true,
 "isDynamic": false,
 "disableTypeInference": false,
 "updatedAt": "2017-02-08T18:38:56.640Z",
 "createdAt": "2017-02-08T18:38:56.560Z",
 "parsingScriptId": {

 "id": 14
 },
 "runParameters": {

 "data": []
 },
 "name": "POS-r01.txt",
 "description": "POS-r01.txt",
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "connection": null

}

4. You must retain the id value so you can reference it when you create the recipe.
5. See https://api.trifacta.com/ee/es.t/index.html#operation/createImportedDataset
6. Next, you create the recipe. Construct the following request:

Endpoint /v4/wrangledDatasetshttp://www.example.com:3005

Authentication Required

Method POST

Request Body { "name":"POS-r01",
 "importedDataset": {

 "id":8
 },
 "flow": {

 "id":10
 }

}

You should receive a response with a response body similar to the following:201 - Created7.

Copyright © 2022 Trifacta Inc. Page #43

{
 "id": 23,
 "wrangled": true,
 "updatedAt": "2018-02-06T19:59:22.735Z",
 "createdAt": "2018-02-06T19:59:22.698Z",
 "name": "POS-r01",
 "active": true,
 "referenceInfo": null,
 "activeSample": {

 "id": 23
 },
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "recipe": {

 "id": 23
 },
 "flow": {

 "id": 10
 }

}

8. From the recipe, you must retain the value for the id. For more information, see
https://api.trifacta.com/ee/es.t/index.html#operation/createWrangledDataset

9. Repeat the above steps for each of the source files that you are adding to your flow.

Checkpoint: You have created a flow with multiple imported datasets and recipes.

Step - Wrangle Data

After you have created the flow with all of your source datasets, you can wrangle the base dataset to integrate all
of the source into it.

Steps for Transactional data:

1. Open the POS-r01 dataset. It's loaded in the Transformer page.
2. To chain together the other transactional data into this dataset, you use a union transform. In the Search

panel, enter union in the textbox and press ENTER.
3. In the Union page:

a. Click Add datasets.
b. Select the other two transactional datasets: POS-r02 and POS-r03.

NOTE: When you join or union one dataset into another, changes made in the joined
dataset are automatically propagated to the dataset where it has been joined.

c. Add the datasets and align by name.
d. Check the dataset names and fields. If all looks well, click Add to Recipe.

Steps for reference data:

In the columns Store_Nbr and Item_Nbr are unique keys into the REF_CAL and REF_PROD datasets,
respectively. Using the Join window, you can pull in the other fields from these reference datasets based on
these unique keys.

1. Open the POS-r01 dataset.

Copyright © 2022 Trifacta Inc. Page #44

2. In Search panel, enter join datasets for the transform. The Join window opens.
3. Select the RED_PROD dataset. Click Accept. Click Next.
4. Review the two keys to verify that they are the proper columns on which to structure the join. Click Next.
5. Click the All tab. Select all fields to add. Click Review.
6. After reviewing your join, click Add to Recipe.
7. For each Item_Nbr value that has a matching ITEM_NBR value in the reference dataset, all of the other

reference fields are pulled into the POS-r01 dataset.

You can repeat the above general process to integrate the reference data for stores.

Checkpoint: You have created a flow with multiple datasets and have integrated all of the relevant data
into a single dataset.

Step - Create Output Objects

Before you run a job, you must define output objects, which specify the following:

Running environment where the job is executed
Profiling on or off
outputObjects have the following objects associated with them:

writeSettings: These objects define the file-based outputs that are produced for the output object
publications: These objects define the database target, table, and other settings for publication to
a relational datastore.

NOTE: You can continue with this workflow without creating outputObjects yet. In this workflow, overrides
are applied during the job definition, so you don't have to create the outputObjects and writeSettings at
this time.

For more information on creating outputObjects, writeSettings, and publications, see
API Workflow - Manage Outputs.

Step - Run Job

Through the APIs, you can specify and run a job. In the above example, you must run the job for the terminal
dataset, which is POS-r01 in this case. This dataset contains references to all of the other datasets. When the
job is run, the recipes for the other datasets are also applied to the terminal dataset, which ensures that the
output reflects the proper integration of these other datasets into POS-r01.

NOTE: In the following example, writeSettings have been specified as overrides in the job definition.
These overrides are applied for this job run only. If you need to re-run the job with these settings, you
must either 1) re-apply the overrides or 2) create the writeSettings objects.For more information, see

.API Workflow - Manage Outputs

Steps:

1. Acquire the internal identifier for the recipe for which you wish to execute a job. In the previous example,
this identifier was 23.

2. Construct a request using the following:

Endpoint /v4/jobGroupshttp://www.example.com:3005

Copyright © 2022 Trifacta Inc. Page #45

Authentication Required

Method POST

Request Body:

{
 "wrangledDataset": {

 "id": 23
 },
 "overrides": {

 "execution": "photon",
 "profiler": true,
 "writesettings": [

 {
 "path": "hdfs://hadoop:50070/trifacta/queryResults/admin@example.com/POS-r01.csv",
 "action": "create",
 "format": "csv",
 "compression": "none",
 "header": false,
 "asSingleFile": false

 }
]

 },
 "ranfrom": null

}

3. In the above example, the specified job has been launched for recipe 23 to execute on the Trifacta Photon
 running environment with profiling enabled.

a. Output format is CSV to the designated path. For more information on these properties, see
https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

b. Output is written as a new file with no overwriting of previous files.
4. A response code of 201 - Created is returned. The response body should look like the following:

{

 "sessionId": "79276c31-c58c-4e79-ae5e-fed1a25ebca1",
 "reason": "JobStarted",
 "jobGraph": {

 "vertices": [
 21,
 22

],
 "edges": [

 {
 "source": 21,
 "target": 22

 }
]

 },
 "id": 3,
 "jobs": {

 "data": [
 {

 "id": 21
 },
 {

 "id": 22
 }

]
 }

}

5. Retain the id value, which is the job identifier, for monitoring.

Copyright © 2022 Trifacta Inc. Page #46

Step - Monitoring Your Job

You can monitor the status of your job through the following endpoint:

Endpoint /v4/jobGroups/<id>/statushttp://www.example.com:3005

Authentication Required

Method GET

Request Body None.

When the job has successfully completed, the returned status message is the following:

"Complete"

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Step - Re-run Job

In the future, you can re-run the job exactly as you specified it by executing the following call:

Tip: You can swap imported datasets before re-running the job. For example, if you have uploaded a
new file, you can change the primary input dataset for the dataset and then use the following API call to
re-run the job as specified. See https://api.trifacta.com/ee/es.t/index.html#operation/updateInputDataset

Endpoint /v4/jobGroupshttp://www.example.com:3005

Authentication Required

Method POST

Request Body {
 "wrangledDataset": {

 "id": 23
 },
 "overrides": {

 "execution": "photon",
 "profiler": true,
 "writesettings": [

 {
 "path": "hdfs://hadoop:50070/trifacta/queryResults/admin@example.com/POS-r01.csv",
 "action": "create",
 "format": "csv",
 "compression": "none",
 "header": false,
 "asSingleFile": false

 }
]

 },
 "ranfrom": null

}

The job is re-run as it was previously specified.

Copyright © 2022 Trifacta Inc. Page #47

API Workflow - Deploy a Flow
Contents:

Overview
Prerequisites
Workflow

Step - Get Flow Id
Step - Export a Flow
Step - Create Deployment
Step - Create Connection
Step - Create Import Rules
Step - Import Package to Create Release
Step - Activate Release
Step - Run Deployment
Step - Iterate
Step - Set up Production Schedule

Overview
In this workflow, you learn how to deploy a flow in development to a production instance of the platform. After you
have created and finished a flow in a Development (Dev) instance, you can deploy it to an environment designed
primarily for production execution of jobs for finished flows (Prod instance). For more information on managing
these deployments, see Overview of Deployment Manager.

Prerequisites

Finished flow: This example assumes that you have finished development of a flow with the following
characteristics:

Single dataset imported from a table through a Redshift connection
Single JSON output

Separate Dev and Prod instances: Although it is possible to deploy flows to the same instance in which they
are developed, this example assumes that you are deploying from a Dev instance to a completely separate Prod
instance. The following implications apply:

Separate user accounts to access Dev (User1) and Prod (Admin2) instances.

Tip: You should do all of your recipe development and testing in Dev/Test. Avoid making changes
in a Prod environment.

NOTE: Although these are separate user accounts, the assumption is that the same admin-level
user is using these accounts through the APIs.

New connections must be created in the Prod instance to access the production version of the database
table.

Workflow

In this example, your environment contains separate Dev and Prod instances, each of which has a different set of
users.

Item Dev Prod

Copyright © 2022 Trifacta Inc. Page #48

Environment http://wrangle-dev.example.com:3005 http://wrangle-prod.example.com:
3005

User User1 Admin2

Source DB devWrangleDB prodWrangleDB

Source Table Dev-Orders Prod-Orders

Connection
Name

Dev Redshift Conn Prod Redshift Conn

Tip: Dev environment work can be done through the UI, which may be
easier.

NOTE: User1 has no access to Prod.

Example Flow:

User1 is creating a flow, which is used to wrangle weekly batches of orders for the enterprise. The flow contains:

A single imported dataset that is created from a Redshift database table.
A single recipe that modifies the imported dataset.
A single output to a JSON file.
Production data is hosted in a different Redshift database. So, the Prod connection is different from the
Dev connection.

Steps:

1. Build in Dev instance: User1 creates the flow and iterates on building the recipe and running jobs until a
satisfactory output can be generated in JSON format.

2. Export: When User1 is ready to push the flow to production, User1 exports the flow and downloads the
export package ZIP file to the local desktop.

3. Deploy to Prod instance:
a. Admin2 creates a new deployment in the Prod instance.
b. Admin2 creates a new connection (Prod Redshift Conn) in the Prod instance.
c. Admin2 creates new import rules in the Prod instance to map from the old connection (Dev Redshift

Conn) to the new one (Prod Redshift Conn).
d. Admin2 uploads the export ZIP package.

4. Test deployment: Through Flow View in the Prod instance, Admin2 runs a job. The results look fine.
5. Set schedule: Using cron, Admin2 sets a schedule to run the active release for this deployment once per

week.
a. Each week, the Prod-Orders table must be refreshed with data.
b. The dataset is now operational in the Prod environment.

Step - Get Flow Id

The first general step is for the Dev user (User1) to get the flowId and export the flow from the Dev instance.

Steps:

Copyright © 2022 Trifacta Inc. Page #49

Tip: If it's easier, you can gather the flowId from the user interface in Flow View. In the following
example, the flowId is :21

http://www.wrangle-dev.example.com:3005/flows/21

1. Through the APIs, you can create a flow using the following call:

Endpoint http://www.wrangle-dev.example.com:3005/v4/flows

Authentication Required

Method GET

Request Body None.

2. The response should be status code 200 - OK with a response body like the following:

{ "data": [
 {

 "id": 21,
 "name": "Intern Training",
 "description": "null",
 "createdAt": "2019-01-08T18:14:37.851Z",
 "updatedAt": "2019-01-08T18:57:26.824Z",
 "creator": {

 "id": 2
 },
 "updater": {

 "id": 2
 },
 "folder": {

 "id": 1
 },
 "workspace": {

 "id": 1
 }

 },
 {

 "id": 19,
 "name": "example Flow",
 "description": null,
 "createdAt": "2019-01-08T17:25:21.392Z",
 "updatedAt": "2019-01-08T17:30:30.959Z",
 "creator": {

 "id": 2
 },
 "updater": {

 "id": 2
 },
 "folder": {

 "id": 4
 },
 "workspace": {

 "id": 1
 }

 }
]

}

3. Retain the flow identifier (21) for later use.

Copyright © 2022 Trifacta Inc. Page #50

Checkpoint: You have identified the flow to export.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/listFlows

Step - Export a Flow

Export the flow to your local desktop.

Tip: This step may be easier to do through the UI in the Dev instance.

Steps:

1. Export flowId=21:

2.

Endpoint http://www.wrangle-dev.example.com:3005/v4/flows/21/package

Authentication Required

Method GET

Request Body None.

The response should be status code . The response body is the flow itself.200 - OK
3. Download and save this file to your local desktop. Let's assume that the filename you choose is flow-

WrangleOrders.zip.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/getFlowPackage

Step - Create Deployment

In the Prod environment, you can create the deployment from which you can manage the new flow. Note that the
following information has changed for this environment:

Item Prod env value

userId Admin2

baseURL http://www.wrangle-prod.example.com:3005

Steps:

1. Through the APIs, you can create a deployment using the following call:

Endpoint http://www.wrangle-prod.example.com:3005/v4/deployments

Authentication Required

Method POST

NOTE: Username and password credentials must be submitted for the account.Admin2

Copyright © 2022 Trifacta Inc. Page #51

Request Body {
 "name": "Production Orders"

}

2. The response should be status code 201 - Created with a response body like the following:

{
 "id": 3,
 "name": "Production Orders",
 "updatedAt": "2017-11-27T23:48:54.340Z",
 "createdAt": "2017-11-27T23:48:54.340Z",
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 }

}

3. Retain the deploymentId (3) for later use.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createDeployment

Step - Create Connection

When a flow is exported, its connections are not included in the export. Before you import the flow into a new
environment:

Connections must be created or recreated in the Prod environment. In some cases, you may need to point
to production versions of the data contained in completely different databases.
Rules must be created to remap the connection to use in the imported flow.

This section and the following step through these processes.

Steps:

1. From the Dev environment, you collect the connection information for the flow:

Endpoint http://www.wrangle-dev.example.com:3005/v4/connections

Authentication Required

Method GET

Request Body None.

NOTE: Username and password credentials must be submitted for the account.User1

2. The response should be status code 200 - Ok with a response body like the following:

Copyright © 2022 Trifacta Inc. Page #52

{
 "data": [

 {
 "id": 9,
 "host": "dev-redshift.example.com",
 "port": 5439,
 "vendor": "redshift",
 "params": {

 "connectStrOpts": "",
 "defaultDatabase": "devWrangleDB",
 "extraLoadParams": "BLANKSASNULL EMPTYASNULL TRIMBLANKS TRUNCATECOLUMNS"

 },
 "ssl": false,
 "vendorName": "redshift",
 "name": "Dev Redshift Conn",
 "description": "",
 "type": "jdbc",
 "isGlobal": true,
 "credentialType": "iamRoleArn",
 "credentialsShared": true,
 "uuid": "b8014610-ce56-11e7-9739-27deec2c3249",
 "disableTypeInference": false,
 "createdAt": "2017-11-21T00:55:50.770Z",
 "updatedAt": "2017-11-21T00:55:50.770Z",
 "credentials": [

 {
 "user": "devDBuser"

 }
],
 "creator": {

 "id": 2
 },
 "updater": {

 "id": 2
 },
 "workspace": {

 "id": 1
 }

 }
],
 "count": {

 "owned": 1,
 "shared": 0,
 "count": 1

 }
}

3. You retain the above information for use in Production.
4. In the Prod environment, you create the new connection using the following call:

Endpoint http://www.wrangle-prod.example.com:3005/v4/connections

Authentication Required

Method POST

NOTE: Username and password credentials must be submitted for the account.Admin2

Copyright © 2022 Trifacta Inc. Page #53

Request Body {
 "host": "prod-redshift.example.com",
 "port": 1433,
 "vendor": "redshift",
 "params": {

 "connectStrOpts": "",
 "defaultDatabase": "prodWrangleDB",
 "extraLoadParams": "BLANKSASNULL EMPTYASNULL TRIMBLANKS TRUNCATECOLUMNS"

 },
 "vendorName": "redshift",
 "name": "Redshift Conn Prod",
 "description": "",
 "isGlobal": true,
 "type": "jdbc",
 "ssl": false,
 "credentialType": "iamRoleArn",
 "credentials": [

 {
 "username": "prodDBUser",
 "password": "<password>",
 "iamRoleArn": "iam:aws:12345"

 }
]

}

5. The response should be status code 201 - Created with a response body like the following:

{
 "id": 12,
 "host": "prod-redshift.example.com",
 "port": 5439,
 "vendor": "redshift",

 "params": {
 "connectStrOpts": "",
 "defaultDatabase": "prodWrangleDB",
 "extraLoadParams": "BLANKSASNULL EMPTYASNULL TRIMBLANKS TRUNCATECOLUMNS"

 },
 "ssl": false,
 "name": "Redshift Conn Prod",
 "description": "",
 "type": "jdbc",
 "isGlobal": true,
 "credentialType": "iamRoleArn",
 "credentialsShared": true,
 "uuid": "fa7e06c0-0143-11e8-8faf-27c0392328c5",
 "disableTypeInference": false,
 "createdAt": "2018-01-24T20:20:11.181Z",
 "updatedAt": "2018-01-24T20:20:11.181Z",
 "credentials": [

 {
 "username": "prodDBUser"

 }
],
 "creator": {

 "id": 2
 },
 "updater": {

 "id": 2
 }

}

6. When you hit the /v4/connections endpoint again, you can retrieve the connectionId for this
connection. In this case, let's assume that the connectionId value is 12.

See https://api.trifacta.com/ee/es.t/index.html#operation/createConnection

Copyright © 2022 Trifacta Inc. Page #54

Step - Create Import Rules

Now that you have defined the connection to use to acquire the production data from within the production
environment, you must create an import rule to remap from the Dev connection to the Prod connection within the
flow definition. This rule is applied during the import process to ensure that the flow is working after it has been
imported.

In this case, you must remap the uuid value for the Dev connection, which is written into the flow definition, with
the connection Id value from the Prod instance.

For more information on import rules, see Define Import Mapping Rules.

Steps:

1. From the Dev environment, you collect the connection information for the flow:

Endpoint http://www.wrangle-dev.example.com:3005/v4/connections

Authentication Required

Method GET

Request Body None.

NOTE: Username and password credentials must be submitted for the account.User1

2. The response should be status code 200 - Ok with a response body like the following:

Copyright © 2022 Trifacta Inc. Page #55

{
 "data": [

 {
 "id": 9,
 "host": "dev-redshift.example.com",
 "port": 5439,
 "vendor": "redshift",
 "params": {

 "connectStrOpts": "",
 "defaultDatabase": "devWrangleDB",
 "extraLoadParams": "BLANKSASNULL EMPTYASNULL TRIMBLANKS TRUNCATECOLUMNS"

 },
 "ssl": false,
 "vendorName": "redshift",
 "name": "Dev Redshift Conn",
 "description": "",
 "type": "jdbc",
 "isGlobal": true,
 "credentialType": "iamRoleArn",
 "credentialsShared": true,
 "uuid": "b8014610-ce56-11e7-9739-27deec2c3249",
 "disableTypeInference": false,
 "createdAt": "2017-11-21T00:55:50.770Z",
 "updatedAt": "2017-11-21T00:55:50.770Z",
 "credentials": [

 {
 "user": "devDBuser"

 }
],
 "creator": {

 "id": 2
 },
 "updater": {

 "id": 2
 },
 "workspace": {

 "id": 1
 }

 }
],
 "count": {

 "owned": 1,
 "shared": 0,
 "count": 1

 }
}

3. From the above information, you retain the following, which uniquely identifies the connection object,
regardless of the instance to which it belongs:

"uuid": "b8014610-ce56-11e7-9739-27deec2c3249",

4. Against the Prod environment, you now create an import mapping rule:

Endpoint http://www.wrangle-prod.example.com:3005/v4/deployments/3
/objectImportRules

Authentication Required

Method PATCH

Request Body:

Copyright © 2022 Trifacta Inc. Page #56

[{"tableName":"connections","onCondition":{"uuid": "b8014610-ce56-11e7-9739-27deec2c3249"},"
withCondition":{"id":12}}]

5. The response should be status code 200 - Ok with a response body like the following:

{
 "deleted": []

}

Since the method is a PATCH, you are updating the rules set that applies to all imports for this deployment.
In this case, there were no pre-existing rules, so the response indicates that nothing was deleted. If
another set of import rules is submitted, then the one you just created is deleted.

See https://api.trifacta.com/ee/es.t/index.html#operation/updateObjectImportRules

See https://api.trifacta.com/ee/es.t/index.html#operation/updateValueImportRules

Step - Import Package to Create Release

You are now ready to import the package to create the release.

Steps:

1. Against the Prod environment, you now import the package:

Endpoint http://www.wrangle-prod.example.com:3005/v4/deployments/3
/releases

Authentication Required

Method POST

Request Body The request body must include the following key and value combination submitted as form data:

key value

data "@path-to-flow-WrangleOrders.zip"

The response should be status code with a response body like the following:201 - Created2.

{ "importRuleChanges": {
 "object": [{"tableName":"connections","onCondition":{"uuid": "b8014610-ce56-11e7-9739-

27deec2c3249"},"withCondition":{"id":12}}],
 "value": []

 },
 "flowName": "Wrangle Orders"

}

See https://api.trifacta.com/ee/es.t/index.html#operation/importPackageForDeployment

Step - Activate Release

When a package is imported into a release, the release is automatically set as the active release for the
deployment. If at some point in the future, you need to change the active release, you can use the following
endpoint to do so.

Steps:

Copyright © 2022 Trifacta Inc. Page #57

1. Against the Prod environment, use the following endpoint:

Endpoint http://www.wrangle-prod.example.com:3005/v4/releases/5

Authentication Required

Method PATCH

Request Body {
 "active": true

}

The response should be status code with a response body like the following:200 - OK2.

{
 "id": 3,
 "updater": {

 "id": 3
 },
 "updatedAt": "2017-11-28T00:06:12.147Z"

}

See https://api.trifacta.com/ee/es.t/index.html#operation/patchRelease

Step - Run Deployment

You can now execute a test run of the deployment to verify that the job executes properly.

NOTE: When you run a deployment, you run the primary flow in the active release for that deployment.
Running the flow generates the output objects for all recipes in the flow.

NOTE: For datasets with parameters, you can apply parameter overrides through the request body
through the following API call. For more information, see
https://api.trifacta.com/ee/es.t/index.html#operation/runDeployment

Steps:

1. Against the Prod environment, use the following endpoint:

Endpoint http://www.wrangle-prod.example.com:3005/v4/deployments/3/run

Authentication Required

Method POST

Request Body None.

2. The response should be status code 201 - Created with a response body like the following:

Copyright © 2022 Trifacta Inc. Page #58

{
 "data": [

 {
 "reason": "JobStarted",
 "sessionId": "dd6a90e0-c353-11e7-ad4e-7f2dd2ae4621",
 "id": 33

 }
]

}

See https://api.trifacta.com/ee/es.t/index.html#operation/runDeployment

Step - Iterate

If you need to make changes to fix issues related to running the job:

Recipe changes should be made in the Dev environment and then passed through export and import of
the flow into the Prod deployment.
Connection issues:

Check Flow View in the Prod instance to see if there are any red dots on the objects in the package.
If so, your import rules need to be fixed.
Verify that you can import data through the connection.

Output problems could be related to permissions on the target location.

Step - Set up Production Schedule

When you are satisfied with how the production version of your flow is working, you can set up periodic schedules
using a third-party tool to execute the job on a regular basis.

The tool must hit the Run Deployment endpoint and then verify that the output has been properly generated.

Copyright © 2022 Trifacta Inc. Page #59

API Workflow - Run Job
Contents:

Run Job Endpoints
Run job
Run flow
Run deployment

Prerequisites
Step - Run Job
Step - Monitoring Your Job
Step - Re-run Job
Step - Run Job with Overrides - Files

Input file overrides
Output file overrides

Step - Run Job with Overrides - Tables
Step - Run Job with Overrides - Webhooks
Step - Run Job with Parameter Overrides
Step - Spark Job Overrides
Step - Databricks Job Overrides

General example
Databricks job overrides reference

This section describes how to run a job using the APIs available in Trifacta®.

A note about API URLs:

In the listed examples, URLs are referenced in the following manner:

<protocol>://<platform_base_url>/

In your product, these map references map to the following:

<http or https>://<hostname>:<port_number>/

For more information, see API Reference.

Run Job Endpoints

Depending on the type of job that you are running, you must use one of the following endpoints:

Run job

Run a job to generate the outputs from a single recipe in a flow.

Endpoint /v4/jobGroups/:id

Tip: This method is covered on this page.

Copyright © 2022 Trifacta Inc. Page #60

Method POST

Reference documentation https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Run flow

Run all outputs specified in a flow. Optionally, you can run all scheduled outputs.

Endpoint /v4/flows/:id/run

Method POST

Reference documentation https://api.trifacta.com/ee/es.t/index.html#operation/runFlow

Run deployment

Run the primary flow in the active release of the specified deployment.

Deployments are available only through the Deployment Manager. For more information, see
Overview of Deployment Manager.

Endpoint /v4/deployments/:id/run

Method POST

Reference documentation https://api.trifacta.com/ee/es.t/index.html#operation/runDeployment

Prerequisites

Before you begin, you should verify the following:

1. Get authentication credentials. As part of each request, you must pass in authentication credentials to
the platform. For more information, see Manage API Access Tokens.

For more information, see https://api.trifacta.com/ee/es.t/index.html#section/Authentication
2. Verify job execution. Run the desired job through the Trifacta application and verify that the output

objects are properly generated.

NOTE: By default, when scheduled or API jobs are executed, no validations are performed of any
writesettings objects for file-based outputs. Issues with these objects may cause failures during
transformation or publishing stages of job execution. Jobs of these types should be tested through
the first. A workspace administrator can disable the skipping of theseTrifacta application
validations.

3. Acquire recipe (wrangled dataset) identifier. In Flow View, click the icon for the recipe whose outputs
you wish to generate. Acquire the numeric value for the recipe from the URL. In the following, the recipe Id
is 28629:

http://<platform_base_url>/flows/5479?recipe=28629&tab=recipe

4. Create output object. A recipe must have at least one output object created for it before you can run a job
via APIs. For more information, see Flow View Page.

If you wish to apply overrides to the inputs or outputs of the recipe, you should acquire those identifiers or paths
now. For more information, see "Run Job with Parameter Overrides" below.

Copyright © 2022 Trifacta Inc. Page #61

Step - Run Job

Through the APIs, you can specify and run a job. To run a job with all default settings, construct a request like the
following:

NOTE: A is an internal object name for the recipe that you wish to run. Please seewrangledDataset
previous section for how to acquire this value.

Endpoint <protocol>://<platform_base_url>/v4/jobGroups

Authentication Required

Method POST

Request Body {
 "wrangledDataset": {

 "id": 28629
 }

}

Response Code 201 - Created

Response Body {
 "sessionId": "79276c31-c58c-4e79-ae5e-fed1a25ebca1",
 "reason": "JobStarted",
 "jobGraph": {

 "vertices": [
 21,
 22

],
 "edges": [

 {
 "source": 21,
 "target": 22

 }
]

 },
 "id": 961247,
 "jobs": {

 "data": [
 {

 "id": 21
 },
 {

 "id": 22
 }

]
 }

}

If the 201 response code is returned, then the job has been queued for execution.

Tip: Retain the value in the response. In the above, is the internal identifier for the job groupid 961247
for the job. You will need this value to check on your job status.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Copyright © 2022 Trifacta Inc. Page #62

Checkpoint: You have queued your job for execution.

Step - Monitoring Your Job

You can monitor the status of your job through the following endpoint:

Endpoint <protocol>://<platform_base_url>/v4/jobGroups/<id>/

Authentication Required

Method GET

Request Body None.

Response Code 200 - Ok

Response Body {
 "id": 961247,
 "name": null,
 "description": null,
 "ranfrom": "ui",
 "ranfor": "recipe",
 "status": "Complete",
 "profilingEnabled": true,
 "runParameterReferenceDate": "2019-08-20T17:46:27.000Z",
 "createdAt": "2019-08-20T17:46:28.000Z",
 "updatedAt": "2019-08-20T17:53:17.000Z",
 "workspace": {

 "id": 22
 },
 "creator": {

 "id": 38
 },
 "updater": {

 "id": 38
 },
 "snapshot": {

 "id": 774476
 },
 "wrangledDataset": {

 "id": 28629
 },
 "flowRun": null

}

When the job has successfully completed, the returned status message includes the following:

"status": "Complete",

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroup

Tip: You have executed the job. Results have been delivered to the designated output locations.

Copyright © 2022 Trifacta Inc. Page #63

Step - Re-run Job

In the future, you can re-run the job using the same, simple request:

Endpoint <protocol>://<platform_base_url>/v4/jobGroups

Authentication Required

Method POST

Request Body {
 "wrangledDataset": {

 "id": 28629
 }

}

The job is re-run as it was previously specified.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createJobGroup

Step - Run Job with Overrides - Files

As needed, you can specify runtime overrides for any of the settings related to the job definition or its outputs. For
file-based jobs, these overrides include:

Data sources
Execution environment
profiling
Output file, format, and other settings

Input file overrides

You can override the file-based data sources your job run. In the following example, two datasets are overridden
with new files.

Endpoint <protocol>://<platform_base_url>/v4/jobGroups

Authentication Required

Method POST

NOTE: Overrides for data sources apply only to file-based sources. File-based sources that are
converted during ingestion, such as Microsoft Excel files, cannot be swapped in this manner.

NOTE: Overrides must be applied to the entire file path. As part of this overrides, you can redefine the
bucket from which the source data is taken.

Copyright © 2022 Trifacta Inc. Page #64

Request Body {
 "wrangledDataset": {

 "id": 28629
 },
 "overrides": {

 "datasources": {
 "airlines - region 1": [

 "s3://my-new-bucket/test-override-input/airlines3.csv",
 "s3://my-new-bucket/test-override-input/airlines4.csv",
 "s3://my-new-bucket/test-override-input/airlines5.csv"

],
 "airlines - region 2": [

 "s3://my-new-bucket/test-override-input/airlines1.csv",
]

 }
 }

}

The job specified for recipe 28629 is re-run using the new data sources.

Notes:

The names of the datasources (airlines - region 1 and airlines - region 2) refer to the
display name values for the datasets that are the sources for the wrangledDataset (recipe) in the flow.
You can use this API method to overwrite the bucket name for your source, but you must replace the
entire path.

The parameterized list of files can be from different folders, too.
File type and size information is not displayed in the Job Details page for these overridden jobs.
No validation is performed on the existence of these files prior to execution. If the files do not exist, the job
fails.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createJobGroup

Output file overrides

NOTE: Override values applied to a job are not validated. Invalid overrides may cause your job to fail.

See API Workflow - Manage Outputs.
See https://api.trifacta.com/ee/es.t/index.html#operation/getWriteSetting

1. Acquire the internal identifier for the recipe for which you wish to execute a job. In the previous example,
this identifier was 28629.

2. Construct a request using the following:

Endpoint <protocol>://<platform_base_url>/v4/jobGroups

Authentication Required

Method POST

Request Body:

Copyright © 2022 Trifacta Inc. Page #65

{
 "wrangledDataset": {

 "id": 28629
 },
 "overrides": {

 "profiler": true,
 "execution": "spark",
 "writesettings": [

 {
 "path": "<new_path_to_output>",
 "format": "csv",
 "header": true,
 "asSingleFile": true,
 "includeMismatches": true

 }
]

 },
 "ranfrom": null

}

3. In the above example, the job has been launched with the following overrides:
a. Job will be executed on the Spark cluster. Other supported values depend on your product edition

and available running environments:

Value for overrides.execution Description

photon Running environment on Trifacta node

spark Spark on integrated cluster, with the following exceptions.

databricksSpark Spark on Azure Databricks

emrSpark Spark on AWS EMR

dataflow Dataflow

b. Job will be executed with profiling enabled.
c. Output is written to a new file path.
d. Output format is CSV to the designated path.
e. Output has a header and is generated as a single file.
f. Output will include values if they are mismatched for the column's data type.

NOTE: includeMismatches is by default. You can set it to as an overridefalse true
or as part of the output object definition.

4. A response code of 201 - Created is returned. The response body should look like the following:

Copyright © 2022 Trifacta Inc. Page #66

{

 "sessionId": "79276c31-c58c-4e79-ae5e-fed1a25ebca1",
 "reason": "JobStarted",
 "jobGraph": {

 "vertices": [
 21,
 22

],
 "edges": [

 {
 "source": 21,
 "target": 22

 }
]

 },
 "id": 962221,
 "jobs": {

 "data": [
 {

 "id": 21
 },
 {

 "id": 22
 }

]
 }

}

5. Retain the id value, which is the job identifier, for monitoring.

Step - Run Job with Overrides - Tables

You can also pass job definition overrides for table-based outputs. For table outputs, overrides include:

Path to database to which to write (must have write access)
Connection to write to the target.

Tip: This identifier is for the connection used to write to the target system. This connection must
already exist. For more information on how to retrieve the identifier for a connection, see

https://api.trifacta.com/ee/es.t/index.html#operation/listConnections

Name of output table
Target table type

Tip: You can acquire the target type from the value in the connection response. For morevendor
information, see

https://api.trifacta.com/ee/es.t/index.html#operation/listConnections

action:

Key value Description

create Create a new table with each publication.

createAndLoad Append your data to the table.

Copyright © 2022 Trifacta Inc. Page #67

truncateAndLoad Truncate the table and load it with your data.

dropAndLoad Drop the table and write the new table in its place.

Identifier of connection to use to write data.

See API Workflow - Manage Outputs.
See https://api.trifacta.com/ee/es.t/index.html#operation/getPublication

1. Acquire the internal identifier for the recipe for which you wish to execute a job. In the previous example,
this identifier was 28629.

2. Construct a request using the following:

Endpoint <protocol>://<platform_base_url>/v4/jobGroups

Authentication Required

Method POST

Request Body:

{
 "wrangledDataset": {

 "id": 28629
 },
 "overrides": {

 "publications": [
 {

 "path": [
 "prod_db"

],
 "tableName": "Table_CaseFctn2",
 "action": "createAndLoad",
 "targetType": "postgres",
 "connectionId": 3

 }
]

 },
 "ranfrom": null

}

3. In the above example, the job has been launched with the following overrides:

NOTE: When overrides are applied to publishing, any publications that are already attached to the
recipe are ignored.

a. Output path is to the prod_db database, using table name is Table_CaseFctn2.
b. Output action is "create and load." See above for definitions.
c. Target table type is a PostgreSQL table.

4. A response code of 201 - Created is returned. The response body should look like the following:

Copyright © 2022 Trifacta Inc. Page #68

{

 "sessionId": "79276c31-c58c-4e79-ae5e-fed1a25ebca1",
 "reason": "JobStarted",
 "jobGraph": {

 "vertices": [
 21,
 22

],
 "edges": [

 {
 "source": 21,
 "target": 22

 }
]

 },
 "id": 962222,
 "jobs": {

 "data": [
 {

 "id": 21
 },
 {

 "id": 22
 }

]
 }

}

5. Retain the id value, which is the job identifier, for monitoring.

Step - Run Job with Overrides - Webhooks

When you execute a job, you can pass in a set of parameters as overrides to generate a webhook message to a
third-party application, based on the success or failure of the job.

For more information on webhooks, see Create Flow Webhook Task.

1. Acquire the internal identifier for the recipe for which you wish to execute a job. In the previous example,
this identifier was 28629.

2. Construct a request using the following:

Endpoint <protocol>://<platform_base_url>/v4/jobGroups

Authentication Required

Method POST

Request Body:

Copyright © 2022 Trifacta Inc. Page #69

{
 "wrangledDataset": {

 "id": 28629
 },
 "overrides": {

 "webhooks": [{
 "name": "webhook override",
 "url": "http://example.com",
 "method": "post",
 "triggerEvent": "onJobFailure",
 "body": {

 "text": "override"
},

 "headers": {
 "testHeader": "val1"
},

 "sslVerification": true,
 "secretKey": "123"

 }]
 }
}

3. In the above example, the job has been launched with the following overrides:

Override
setting

Description

name Name of the webhook.

url URL to which to send the webhook message.

method The HTTP method to use. Supported values: , , , , or DELETE. Body is ignored forPOST PUT PATCH GET GET
and methods.DELETE

triggerEvent Supported values: - send webhook message if job fails - send webhookonJobFailure onJobSuccess
message if job completes successfully - send webhook message when job fails or finishesonJobDone
successfully

body (optional) The value of the field is the message that is sent.text

header (optional) Key-value pairs of headers to include in the HTTP request.

sslVerificati
on

(optional) Set to if SSL verification should be completed. If not specified, the value is .true true

secretKey (optional) If enabled, this value should be set to the secret key to use.

NOTE: Some special token values are supported. See .Create Flow Webhook Task

4. A response code of 201 - Created is returned. The response body should look like the following:

Copyright © 2022 Trifacta Inc. Page #70

{
 "sessionId": "79276c31-c58c-4e79-ae5e-fed1a25ebca1",
 "reason": "JobStarted",
 "jobGraph": {

 "vertices": [
 21,
 22

],
 "edges": [

 {
 "source": 21,
 "target": 22

 }
]

 },
 "id": 962222,
 "jobs": {

 "data": [
 {

 "id": 21
 },
 {

 "id": 22
 }

]
 }

}

5. Retain the id value, which is the job identifier, for monitoring.

Step - Run Job with Parameter Overrides

You can pass overrides of the default parameter values as part of the job definition. You can use the following
mechanism to pass in parameter overrides of the following types:

Datasets with parameters (variable type)
Output object parameters
Flow parameters

The syntax is the same for each type.

1. Acquire the internal identifier for the recipe for which you wish to execute a job. In the previous example,
this identifier was 28629.

2. Construct a request using the following:

Endpoint <protocol>://<platform_base_url>/v4/jobGroups

Authentication Required

Method POST

Request Body:

Copyright © 2022 Trifacta Inc. Page #71

{
 "wrangledDataset": {

 "id": 28629
 },
 "overrides": {

 "runParameters": {
 "overrides": {

 "data": [
 {

 "key": "varRegion",
 "value": "02"

 }
]

 }
 }

 },
 "ranfrom": null

}

3. In the above example, the specified job has been launched for recipe 28629 . The run parameter varRe
gion has been set to 02 for this specific job. Depending on how it's defined in the flow, this parameter
could influence change either of the following:

a. The source for the imported dataset.
b. The path for the generated output.
c. A flow parameter reference in the recipe
d. For more information, see Overview of Parameterization.

4. A response code of 201 - Created is returned. The response body should look like the following:

{
 "sessionId": "79276c31-c58c-4e79-ae5e-fed1a25ebca1",
 "reason": "JobStarted",
 "jobGraph": {

 "vertices": [
 21,
 22

],
 "edges": [

 {
 "source": 21,
 "target": 22

 }
]

 },
 "id": 962223,
 "jobs": {

 "data": [
 {

 "id": 21
 },
 {

 "id": 22
 }

]
 }

}

5. Retain the id value, which is the job identifier, for monitoring.

Step - Spark Job Overrides

When it is enabled, you can submit overrides to a specific set of Spark properties for your job.

Copyright © 2022 Trifacta Inc. Page #72

This feature and the Spark properties to override must be enabled. For more information on enabling this feature,
see Enable Spark Job Overrides .

The following example, shows how to run a job for a specified recipe with Spark property overrides applied to it.
This example assumes that the job has already been configured to be executed on Spark ("execution":
"spark"):

Endpoint <protocol>://<platform_base_url>/v4/jobGroups

Authentication Required

Method POST

Request Body:

{
 "wrangledDataset": {

 "id": 28629
 },
 "overrides": {

 "sparkOptions": [
 {

 "key": "spark.executor.cores",
 "value": "2"

 },
 {

 "key": "spark.executor.memory",
 "value": "4GB"

 }
]

 }
}

Step - Databricks Job Overrides

You can submit overrides to a specific set of Databricks properties for your job execution. These overrides can be
applied to AWS Databricks or Azure Databricks.

General example

The following example shows how to run a job on Databricks for a specified recipe with several property
overrides applied to it:

Endpoint https://www.example.com/v4
/jobGroups

Authentication Required

Method POST

Request Body:

Copyright © 2022 Trifacta Inc. Page #73

{
 "wrangledDataset": {

 "id": 60
 },
 "overrides": {

 "execution": "databricksSpark",
 "profiler": true,
 "databricksOptions": [

 {"key": "maxWorkers", "value": 8},
 {"key": "poolId", "value": "pool-123456789"},
 {"key": "enableLocalDiskEncryption", "value": true}

]
 }

}

The above overrides do the following:

Sets the maximum number of worker nodes on the cluster to 8. Databricks is permitted to adjust the
number of nodes for job execution up to this limit.
Instructs the Databricks cluster to use worker pool pool-123456789 for the job.
Enables encryption on the local Databricks cluster node of temporary job files for additional security.

Databricks job overrides reference

The following properties can be overridden for AWS Databricks and Azure Databricks jobs:

{
 "wrangledDataset": {"id": 60},
 "overrides": {

 "databricksOptions": [
 "autoterminationMinutes" : <integer_override_value>,
 "awsAttributes.availability" : "<string_override_value>",
 "awsAttributes.availabilityZone" : "<string_override_value>",
 "awsAttributes.ebsVolume.count" : <integer_override_value>,
 "awsAttributes.ebsVolume.size" : <integer_override_value>,
 "awsAttributes.ebsVolume.type" : "<string_override_value>",
 "awsAttributes.firstOnDemandInstances" : <integer_override_value>,
 "awsAttributes.instanceProfileArn" : "<string_override_value>",
 "awsAttributes.spotBidPricePercent" : <decimal_override_value>,
 "clusterMode" : "<string_override_value>",
 "clusterPolicyId" : "<string_override_value>",
 "driverNodeType" : "<string_override_value>",
 "enableAutotermination" : <boolean_override_value>,
 "enableLocalDiskEncryption" : <boolean_override_value>,
 "logsDestination" : "<string_override_value>",
 "maxWorkers" : <integer_override_value>,
 "minWorkers" : <integer_override_value>,
 "poolId" : "<string_override_value>",
 "poolName" : "<string_override_value>",
 "driverPoolId" : "<string_override_value>",
 "driverPoolName" : "<string_override_value>",
 "serviceUrl" : "<string_override_value>",
 "sparkVersion" : "<string_override_value>",
 "workerNodeType" : "<string_override_value>",

]
 }

}

NOTE: Overrides that begin with apply to AWS Databricks only.awsAttributes

Copyright © 2022 Trifacta Inc. Page #74

NOTE: If a Databricks cluster policy is used, all job-level overrides except for areclusterPolicyId
ignored.

For more information:

Configure for Azure Databricks
Configure for AWS Databricks

Copyright © 2022 Trifacta Inc. Page #75

API Workflow - Run Job on Dataset with Parameters
Contents:

Overview
Basic Workflow
Example Datasets

Step - Create Containing Flow
Step - Create Datasets with Parameters

Example 1 - Dataset with Datetime parameter
Example 2 - Dataset with Variable
Example 3 - Dataset with pattern parameter
Example 4 - Dataset with parameterized bucket name

Step - Wrangle Data
Step - Run Job

Example 1 - Dataset with Datetime parameter
Example 2 - Dataset with Variable
Example 3 - Dataset with pattern parameter
Example 4 - Dataset with parameterized bucket name

Step - Monitoring Your Job
Step - Re-run Job

Overview

This example workflow describes how to run jobs on datasets with parameters through Trifacta®. A dataset with
parameters is a dataset in which some part of the path to the data objects has been parameterized. Since one or
more of the parts of the path can vary, you can build a dataset with parameters to capture data that spans
multiple files. For example, datasets with parameters can be used to parameterize serialized data by region or
data or other variable.

For more information on datasets with parameters, see Overview of Parameterization.

Basic Workflow

The basic method by which you build and run a job for a dataset with parameters is very similar to the non-
parameterized dataset method with a few notable exceptions. The steps in this workflow follow the same steps
for the standard workflow. Where the steps overlap links have been provided to the non-parameterized
workflow. For more information, see API Workflow - Develop a Flow.

Example Datasets

This example covers three different datasets, each of which features a different type of dataset with parameters.

Example
Number

Parameter
Type

Description

1 Datetime
parameter

In this example, a directory is used to store daily orders transactions. This dataset must be defined with a
Datetime parameter to capture the preceding 7 days of data. Jobs can be configured to process all of this
data as it appears in the directory.

2 Variable This dataset segments data into four timezones across the US. These timezones are defined using the
following text values in the path: , , , and . In this case, youpacific mountain central eastern
can create a parameter called , which can be overridden at runtime to be set to one of these fourregion
values during job execution.

Copyright © 2022 Trifacta Inc. Page #76

3 Pattern
parameter

This example is a directory containing point-of-sale transactions captured into individual files for each region.
Since each region is defined by a numeric value (, ,), the dataset can be defined using a pattern01 02 03
parameter.

4 Environment
parameter

An is defined by an admin and is available for every user of the project orenvironment parameter
workspace. In particular, environment parameters are useful for defining source bucket names, which may
vary between environments in the same organization.

Step - Create Containing Flow

You must create the flow to host your dataset with parameters.

In the response, you must capture and retain the flow Identifier. For more information, see
API Workflow - Develop a Flow.

Step - Create Datasets with Parameters

NOTE: When you import a dataset with parameters, only the first matching dataset is used for the initial
file. If you want to see data from other matching files, you must collect a new sample within the
Transformer page.

Example 1 - Dataset with Datetime parameter

Suppose your files are stored in the following paths:

MyFiles/1/Datetime/2018-04-06-orders.csv
MyFiles/1/Datetime/2018-04-05-orders.csv
MyFiles/1/Datetime/2018-04-04-orders.csv
MyFiles/1/Datetime/2018-04-03-orders.csv
MyFiles/1/Datetime/2018-04-02-orders.csv
MyFiles/1/Datetime/2018-04-01-orders.csv
MyFiles/1/Datetime/2018-03-31-orders.csv

When you navigate to the directory through the application, you mouse over one of these files and select Paramet
erize.

In the window, select the date value (e.g. YYYY-MM-DD) and then click the Datetime icon.

Datetime Parameter:

Format: YYYY-MM-DD
Date Range: Date is last 7 days.
Click Save.

The Datetime parameter should match with all files in the directory. Import this dataset and wrangle it.

After you wrangle the dataset, return to its flow view and select the recipe. You should be able to extract the
flowId and recipeId values from the URL.

For purposes of this example, here are some key values:

flowId: 35
recipeId: 127

Example 2 - Dataset with Variable

Suppose your files are stored in the following paths:

Copyright © 2022 Trifacta Inc. Page #77

MyFiles/1/variable/census-eastern.csv
MyFiles/1/variable/census-central.csv
MyFiles/1/variable/census-mountain.csv
MyFiles/1/variable/census-pacific.csv

When you navigate to the directory through the application, you mouse over one of these files and select Paramet
erize.

In the window, select the region value, which could be one of the following depending on the file: eastern, cent
ral, mountain, or pacific. Click the Variable icon.

Variable Parameter:

Name: region
Default Value:Set this default to pacific.
Click Save.

In this case, the variable only matches one value in the directory. However, when you apply runtime overrides to
the region variable, you can set it to any value.

Import this dataset and wrangle it.

After you wrangle the dataset, return to its flow view and select the recipe. You should be able to extract the
flowId and recipeId values from the URL.

For purposes of this example, here are some key values:

flowId: 33
recipeId: 123

Example 3 - Dataset with pattern parameter

Suppose your files are stored in the following paths:

MyFiles/1/pattern/POS-r01.csv
MyFiles/1/pattern/POS-r02.csv
MyFiles/1/pattern/POS-r03.csv

When you navigate to the directory through the application, you mouse over one of these files and select Paramet
erize.

In the window, select the two numeric digits (e.g. 02). Click the Pattern icon.

Pattern Parameter:

Type: Pattern
Matching regular expression: {digit}{2}
Click Save.

In this case, the Pattern should match any sequence of two digits in a row. In the above example, this
expression matches: 01, 02, and 03, all of the files in the directory.

Import this dataset and wrangle it.

After you wrangle the dataset, return to its flow view and select the recipe. You should be able to extract the
flowId and recipeId values from the URL.

Copyright © 2022 Trifacta Inc. Page #78

For purposes of this example, here are some key values:

flowId: 32
recipeId: 121

Checkpoint: You have created flows for each type of dataset with parameters.

Example 4 - Dataset with parameterized bucket name

You can parameterize part or all of the bucket name in your source or target paths.

Suppose you have multiple workspaces that use different S3 buckets for sources of data. For example, your
environments might look like the following:

Environment S3 Bucket Name

Dev myco-dev

Prod myco-prod

For your datasources, you can parameterize the name of the bucket, so that if you migrate your flow between
these environments, the references to datasources are updated based on the parameterized value for the bucket
in the new environment.

Create environment parameter

Parameterized buckets are a good use for environment parameters. An environment parameter is a parameter
that is available for use by every user in the project or workspace. In this case, the bucket name can be
referenced for all datasets in the project or workspace, so turning that value into a parameter makes managing
your datasources much more efficient.

You can use the following example to create environment parameter called env.bucketName, with a value of my
co-dev. This environment parameter would be created in your Dev environment:

Endpoint /v4/environmentParametershttp://www.example.com:3005

Authentication Required

Method POST

Request Body {
 "overrideKey": "env.bucketName",
 "value": {

 "variable": {
 "value": "myco-dev"

 }
 }

}

NOTE: The value, which is the name of the environment parameter, must begin with .overrideKey env.

Copyright © 2022 Trifacta Inc. Page #79

Response {
 "id": 1,
 "overrideKey": "env.bucketName",
 "value": {

 "variable": {
 "value": "myco-dev"

 }
 },
 "createdAt": "2021-06-24T14:15:22Z",
 "updatedAt": "2021-06-24T14:15:22Z",
 "deleted_at": "2021-06-24T14:15:22Z",
 "usageInfo": {

 "runParameters": 1
 }

}

For more information on creating environment parameters, see
https://api.trifacta.com/ee/es.t/index.html#operation/createEnvironmentParameter

Create dataset with parameterized bucket name

The following example creates an imported dataset with two parameters:

Parameter
Name

Parameter
Type

Environment
Parameter?

Description

myPath path No The parameterized part of the path.

The static value is ./

The default value is ./dummy

In this case, for the job run, the value is overridden with ./dummy2

env.
bucketName

bucket Yes The parameterized part of the bucket path.

The static value is .myco-

In this case, for the job run, the value is inserted after the fifthdev
character in the variable.

Endpoint /v4/importedDatasetshttp://www.example.com:3005

Authentication Required

Method POST

Copyright © 2022 Trifacta Inc. Page #80

Request Body {
 "name": "Dummy Dataset",
 "uri": "/path",
 "description": "My S3 parameterized dataset",
"type": "S3",
"isDynamic": true,

 "runParameters": [
 {

 "type": "path",
 "overrideKey": "myPath",
 "insertionIndices": [

 {
 "index": 1,
 "order": 0

 }
],
 "value": {

 "variable": {
 "value": "dummy2"

 }
 }

 },
 {

 "type": "bucket",
 "overrideKey": "env.bucketParam",
 "insertionIndices": [

 {
 "index": 5,
 "order": 0

 }
],
 "value": {

 "variable": {
 "value": "dev"

 }
 }

 }
],
 "dynamicBucket": "myco-",
 "dynamicPath": "/"

}

Copyright © 2022 Trifacta Inc. Page #81

Response {
 "visible": true,
 "numFlows": 0,
 "path": "/dummy",
 "bucket": "",
 "type": "s3",
 "isDynamic": true,
 "runParameters": [
 {
 "type": "path",
 "overrideKey": "myPath",
 "insertionIndices": [
 {
 "index": 1,
 "order": 0
 }
],
 "value": {
 "variable": {
 "value": "dummy2"
 }
 },
 "isEnvironmentParameter": false
 },
 {
 "type": "bucket",
 "overrideKey": "env.bucketParam",
 "insertionIndices": [
 {
 "index": 5,
 "order": 0
 }
],
 "value": {
 "variable": {
 "value": "dev"
 }
 },
 "isEnvironmentParameter": true
 }
],
 "dynamicBucket": "myco-",
 "dynamicPath": "/"
}

https://api.trifacta.com/ee/es.t/index.html#operation/createImportedDataset

.Transformer Page

NOTE: You cannot apply overrides to these types of datasets with parameters. The following request
contains overrides for write settings but no overrides for parameters.

For more information, see

Step - Wrangle Data

After you have created your dataset with parameter, you can wrangle it through the application. For more
information, see

Step - Run Job

Below, you can review the API calls to run a job for each type of dataset with parameters, including relevant
information about overrides.

Example 1 - Dataset with Datetime parameter

Copyright © 2022 Trifacta Inc. Page #82

1. Endpoint /v4/jobGroupshttp://www.example.com:3005

Authentication Required

Method POST

Request Body {
 "wrangledDataset": {

 "id": 127
 },
 "overrides": {

 "execution": "photon",
 "profiler": true,
 "writesettings": [

 {
 "path": "MyFiles/queryResults/joe@example.com/2018-04-03-orders.csv",
 "action": "create",
 "format": "csv",
 "compression": "none",
 "header": false,
 "asSingleFile": false

 }
]

 },
 "runParameters": {}

}

2. In the above example, the job has been launched for recipe 127 to execute on the Trifacta Photon running
environment with profiling enabled.

a. Output format is CSV to the designated path. For more information on these properties, see
https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

b. Output is written as a new file with no overwriting of previous files.
3. A response code of 201 - Created is returned. The response body should look like the following:

{
 "sessionId": "79276c31-c58c-4e79-ae5e-fed1a25ebca1",
 "reason": "JobStarted",
 "jobGraph": {

 "vertices": [
 21,
 22

],
 "edges": [

 {
 "source": 21,
 "target": 22

 }
]

 },
 "id": 29,
 "jobs": {

 "data": [
 {

 "id": 21
 },
 {

 "id": 22
 }

]
 }

}

Copyright © 2022 Trifacta Inc. Page #83

4. Retain the jobgroupId=29 value for monitoring.

Example 2 - Dataset with Variable

In the following example, the region variable has been overwritten with the value central to execute the job
on orders-central.csv:

1. Endpoint /v4/jobGroupshttp://www.example.com:3005

Authentication Required

Method POST

Request Body {
 "wrangledDataset": {

 "id": 123
 },
 "overrides": {

 "execution": "photon",
 "profiler": true,
 "writesettings": [

 {
 "path": "MyFiles/queryResults/joe@example.com/region-eastern.csv",
 "action": "create",
 "format": "csv",
 "compression": "none",
 "header": false,
 "asSingleFile": false

 }
]

 },
 "runParameters": {

 "overrides": {
 "data": [{

 "key": "region",
 "value": "central"

 }
]}

 }
}

2. In the above example, the job has been launched for recipe 123 to execute on the Trifacta Photon running
environment with profiling enabled.

a. Output format is CSV to the designated path. For more information on these properties, see
https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

b. Output is written as a new file with no overwriting of previous files.
3. A response code of 201 - Created is returned. The response body should look like the following:

Copyright © 2022 Trifacta Inc. Page #84

{
 "sessionId": "79276c31-c58c-4e79-ae5e-fed1a25ebca1",
 "reason": "JobStarted",
 "jobGraph": {

 "vertices": [
 21,
 22

],
 "edges": [

 {
 "source": 21,
 "target": 22

 }
]

 },
 "id": 27,
 "jobs": {

 "data": [
 {

 "id": 21
 },
 {

 "id": 22
 }

]
 }

}

4. Retain the jobgroupId=27 value for monitoring.

Example 3 - Dataset with pattern parameter

1. Endpoint /v4/jobGroupshttp://www.example.com:3005

Authentication Required

Method POST

NOTE: You cannot apply overrides to these types of datasets with parameters. The following request
contains overrides for write settings but no overrides for parameters.

Copyright © 2022 Trifacta Inc. Page #85

Request Body {
 "wrangledDataset": {

 "id": 121
 },
 "overrides": {

 "execution": "photon",
 "profiler": false,
 "writesettings": [

 {
 "path": "hdfs://hadoop:50070/trifacta/queryResults/admin@example.com/POS-r02.

txt",
 "action": "create",
 "format": "csv",
 "compression": "none",
 "header": false,
 "asSingleFile": false

 }
]

 },
 "runParameters": {}

}

2. In the above example, the job has been launched for recipe 121 to execute on the Trifacta Photon running
environment with profiling enabled.

a. Output format is CSV to the designated path. For more information on these properties, see
https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

b. Output is written as a new file with no overwriting of previous files.
3. A response code of 201 - Created is returned. The response body should look like the following:

{
 "sessionId": "79276c31-c58c-4e79-ae5e-fed1a25ebca1",
 "reason": "JobStarted",
 "jobGraph": {

 "vertices": [
 21,
 22

],
 "edges": [

 {
 "source": 21,
 "target": 22

 }
]

 },
 "id": 28,
 "jobs": {

 "data": [
 {

 "id": 21
 },
 {

 "id": 22
 }

]
 }

}

4. Retain the jobgroupId=28 value for monitoring.

Example 4 - Dataset with parameterized bucket name

The following example contains a parameterized bucket reference, with a specified override value. Administrators
and project owners can specify the default value for environment parameters, and users can specify overrides for
these values at job execution time.

Copyright © 2022 Trifacta Inc. Page #86

Endpoint /v4/jobGroupshttp://www.example.com:3005

Authentication Required

Method POST

Request Body {
 "wrangledDataset": {
 "id": 121
 },
 "runParameters": {
 "overrides": {
 "data": [
 {
 "key": "env.bucketName",
 "value": "myco-dev2"
 }
]
 }
 }
}

 to execute with the override 121 env.bucketName
) for the environment parameter. myco-dev2

https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroup

Endpoint /v4/jobGroupshttp://www.example.com:3005

Authentication Required

Method POST

Tip: When you re-run a job, you can change any variable values as part of the request.

In the above example, the job has been launched for recipe
value (

For more information on these properties, see

Step - Monitoring Your Job

After the job has been created and you have captured the jobGroup Id, you can use it to monitor the status of
your job. For more information, see

Step - Re-run Job

If you need to re-run the job as specified, you can use the wrangledDataset identifier to re-run the most recent job.

Example request:

Copyright © 2022 Trifacta Inc. Page #87

Request Body {
 "wrangledDataset": {

 "id": 123
 },
 "runParameters": {

 "overrides": {
 "data": [{

 "key": "region",
 "value": "central"

 }
]}

 }
}

For more information, see API Workflow - Develop a Flow.

Copyright © 2022 Trifacta Inc. Page #88

API Workflow - Run Deployment
Contents:

Run Job Endpoints
Prerequisites
Step - Run Deployment
Step - Monitoring Your Deployment Job
Step - Run Deployment with Overrides

Acquire the active outputs for the deployment
Acquire output object information
Run deployment with overrides

Step - Run Deployment with Spark Overrides

This section describes how to run a deployment using the APIs available in Trifacta®.

A deployment is a packaging mechanism for versioning your production-level flows.
Deployments are created and managed through a separate interface.
For more information, see Overview of Deployment Manager.

A note about API URLs:

In the listed examples, URLs are referenced in the following manner:

<protocol>://<platform_base_url>/

In your product, these map references map to the following:

<http or https>://<hostname>:<port_number>/

For more information, see API Reference.

Run Job Endpoints

Depending on the type of job that you are running, you must use one of the following endpoints:

Run job:

Run a job to generate the outputs from a single recipe in a flow.

Endpoint /v4/jobGroups/:id

Method POST

Reference documentation https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Run flow:

Run all outputs specified in a flow. Optionally, you can run all scheduled outputs.

Endpoint /v4/flows/:id/run

Method POST

Copyright © 2022 Trifacta Inc. Page #89

Reference documentation https://api.trifacta.com/ee/es.t/index.html#operation/runFlow

Run deployment:

Run the primary flow in the active release of the specified deployment.

Tip: This method is covered on this page.

Deployments are available only through the Deployment Manager. For more information, see
Overview of Deployment Manager.

Endpoint /v4/deployments/:id/run

Method POST

Reference documentation https://api.trifacta.com/ee/es.t/index.html#operation/runDeployment

Prerequisites

Before you begin, you should verify the following:

1. Get authentication credentials. As part of each request, you must pass in authentication credentials to
the Trifacta platform.

Tip: The recommended method is to use an access token, which can be generated from the Trifact
. For more information, see .a application Access Tokens Page

See https://api.trifacta.com/ee/es.t/index.html#operation/Authentication
2. Develop your flow. Before you deploy a flow through the Deployment Manager, you should build and test

your flow in a development environment. See API Workflow - Develop a Flow.
3. Deploy your flow. After you have developed a flow, you can deploy it. See API Workflow - Deploy a Flow.
4. Acquire deployment identifier. In Deployment Manager, acquire the numeric value for the deployment.

See Deployment Manager Page.

Step - Run Deployment

Through the APIs, you can run a deployment. When a deployment is executed:

All of the recipes that are included in the active release of the deployment are executed.
All default values for outputs are applied.

In the following example, the deployment identifier is 2.

Endpoint <protocol>://<platform_base_url>/v4/deployments/2/run

Authentication Required

Method POST

Request Body None.

Response Code 201 - Created

Copyright © 2022 Trifacta Inc. Page #90

Response Body {
 "data": [

 {
 "reason": "JobStarted",
 "sessionId": "dd6a90e0-c353-11e7-ad4e-7f2dd2ae4621",
 "id": 33

 }
]

}

If the 201 response code is returned, then the deployment job has been queued for execution.

Tip: Retain the value in the response. In the above, is the internal identifier for the job groupid 961247
for the job. You will need this value to check on your job status.

For more information, see API Workflow - Deploy a Flow.

Checkpoint: You have queued your deployment job for execution.

Step - Monitoring Your Deployment Job

You can monitor the status of your deploy job through the following endpoint using the id value that was returned
in the previous step:

<protocol>://<platform_base_url>/v4/jobGroups/<id>/status

For more information, see API Workflow - Run Job.

Step - Run Deployment with Overrides

When you run a deployment, you cannot apply overrides to the request. However, you can complete the following
steps to apply overrides when you execute the jobs within the active release. In this workflow, you run jobs on the
specific recipes of the active deployment, applying overrides as needed.

Suppose you are running the jobs for deployment id 2, and you want to apply some overrides.

NOTE: A deployment can trigger several different jobs within a single flow. In the following example, it is
assumed that there is only one output.

Acquire the active outputs for the deployment

The first step is to acquire all of the active outputs for the deployment.

Endpoint <protocol>://<platform_base_url>/v4/deployments/2/activeoutputs

Authentication Required

Copyright © 2022 Trifacta Inc. Page #91

Method GET

Request Body None.

Response Code 200 - OK

Response Body {
 "data": [

 {
 "outputObjectId": 6,
 "flowNodeId": 27,
 "recipeName": "USDA_Farmers_Market_2014"

 }
]

}

in the above response:

The flowNodeId value corresponds to the recipe (wrangledDataset) identifier that you wish to modify.
The outputObjectId value corresponds to the output object that is produced by default from the recipe.

Acquire output object information

The next step is to review the output object to determine what needs to be overridden. Since you are overriding a
file-based publication, you can query directly for the writeSettings objects associated with the output object:

Endpoint <protocol>://<platform_base_url>/v4/outputObjects/6/writeSettings

Authentication Required

Method GET

Request Body None.

Response
Code

200 - OK

Copyright © 2022 Trifacta Inc. Page #92

Response
Body

{
 "data": [

 {
 "delim": ",",
 "id": 17,
 "path": "hdfs://hadoop:50070/example/joe@example.com/USDA_Farmers_Market_2014.

csv",
 "action": "create",
 "format": "csv",
 "compression": "none",
 "header": true,
 "asSingleFile": true,
 "prefix": null,
 "suffix": "_increment",
 "hasQuotes": true,
 "createdAt": "2019-11-05T18:26:31.972Z",
 "updatedAt": "2019-11-05T18:30:56.756Z",
 "creator": {

 "id": 2
 },
 "updater": {

 "id": 2
 },
 "outputObject": {

 "id": 6
 }

 },
 {

 "delim": ",",
 "id": 16,
 "path": "hdfs://hadoop:50070/example/joe@example.com/USDA_Farmers_Market_2014.

json",
 "action": "create",
 "format": "json",
 "compression": "none",
 "header": false,
 "asSingleFile": false,
 "prefix": null,
 "suffix": "_increment",
 "hasQuotes": false,
 "createdAt": "2019-11-05T18:26:44.983Z",
 "updatedAt": "2019-11-05T18:30:56.743Z",
 "creator": {

 "id": 2
 },
 "updater": {

 "id": 2
 },
 "outputObject": {

 "id": 6
 }

 }
]

}

Run deployment with overrides

Now that you have access to the outputs generated by the deployment, you decide to override the following for
each file:

Filename:
Remove the year information at the end of the filename
Store in a separate folder called final

Wipe the table and reload it each time (action=overwrite)
Disable profiling

Copyright © 2022 Trifacta Inc. Page #93

From the activeOutputs endpoint, you retrieved the flowNodeId (27).

Endpoint <protocol>://<platform_base_url>/v4/jobGroups/

Authentication Required

Method POST

Request Body {
 "wrangledDataset": {

 "id": 27
 },
 "overrides": {

 "profiler": false,
 "writesettings": [

 {
 "path": "hdfs://hadoop:50070/example/joe@example.com/final/USDA_Farmers_Market.

csv",
 "format": "csv",
 "action": "overwrite"

 },
 {

 "path": "hdfs://hadoop:50070/example/joe@example.com/final/USDA_Farmers_Market.
json",

 "format": "json",
 "action": "overwrite"

 }
]

 },
 "ranfrom": null

}

Response
Code

201 - Created

Copyright © 2022 Trifacta Inc. Page #94

Response {
Body "sessionId": "b29467c3-fc59-499e-aed6-d797746a86eb",

 "reason": "JobStarted",
 "jobGraph": {

 "vertices": [
 10,
 11,
 12

],
 "edges": [

 {
 "source": 10,
 "target": 11

 },
 {

 "source": 10,
 "target": 12

 }
]

 },
 "id": 4,
 "jobs": {

 "data": [
 {

 "id": 10
 },
 {

 "id": 11
 },
 {

 "id": 12
 }

]
 }

}

Checkpoint: Your job with overrides has been queued for execution.

You can use the job identifier (4) to monitor the job status.

Step - Run Deployment with Spark Overrides

When you run a deployment, you can specify override values to the Spark properties that have been made
available for overrides.

NOTE: These overrides only apply if you are running the job on Spark and if the feature has been
enabled in your deployment.

This feature and the properties to override must be enabled. See Enable Spark Job Overrides.
All of the recipes that are included in the active release of the deployment are executed.

All other default values are applied. In the following example, the deployment identifier is 2.

Endpoint <protocol>://<platform_base_url>/v4/deployments/2/run

Copyright © 2022 Trifacta Inc. Page #95

Authentication Required

Method POST

Request Body {
 "sparkOptions": [

 {
 "key": "spark.executor.cores",
 "value": "2"

 },
 {

 "key": "spark.executor.memory",
 "value": "4GB"

 }
]

}

Response Code 201 - Created

Response Body {
 "data": [

 {
 "reason": "JobStarted",
 "sessionId": "dd6a90e0-c353-11e7-ad4e-7f2dd2ae4621",
 "id": 33

 }
]

}

If the 201 response code is returned, then the deployment job has been queued for execution.

Checkpoint: You have queued your deployment job for execution.

Copyright © 2022 Trifacta Inc. Page #96

API Workflow - Publish Results
Contents:

Overview
Basic Workflow

Step - Create Connections
Redshift connection
Hive connection
Tableau Server connection
SQL DW connection

Step - Run Job
Step - Publish Results to Hive
Step - Publish Results to Tableau Server
Step - Publish Results to SQL DW
Step - Publish Results to Redshift
Step - Publish Results with Overrides

Overview

After you have run a job to generate results, you can publish those results to different targets as needed. This
section describes how to automate those publishing steps through the APIs.

NOTE: This workflow applies to re-publishing job results after you have already generated them.

NOTE: After you have generated results and written them to one target, you cannot publish to the same
target. You must configure the outputs to specify a different format and location and then run a new job.

In the application, you can publish after generating results. See Publishing Dialog.

Basic Workflow

1. Create connections to each target to which you wish to publish. Connections must support write
operations.

2. Specify a job whose output meets the requirements for the target.
3. Run the job.
4. When the job completes, publish the results to the target(s).

Step - Create Connections

For each target, you must have access to create a connection to it. After a connection is created, it can be
reused, so you may find it easier to create them through the application.

Some connections can be created via API. For more information, see
https://api.trifacta.com/ee/es.t/index.html#operation/createConnection
Other connections must be created through the application. Links to instructions are provided below.

NOTE: Connections created through the application must be created through the Connections page,
which is used for creating read/write connections. Do not create these connections through the Import
Data page. See .Connections Page

Copyright © 2022 Trifacta Inc. Page #97

Redshift connection

Required Output Format: Avro
Example Id: 2
Create via API: N
Doc Link: Amazon Redshift Connections

Other Requirements:

Requires S3 set as the base storage layer. See Set Base Storage Layer.

Hive connection

Required Output Format: Avro
Example Id: 1
Create via API: Y
Doc Link: Hive Connections
Other Requirements:

Requires integration with a Hadoop cluster.

Tableau Server connection

Required Output Format: HYPER
Example Id: 3
Create via API: Y
Doc Link: Tableau Server Connections
Other Requirements:

None.

SQL DW connection

Required Output Format: Parquet
Example Id: 4
Create via API: N
Doc Link: Microsoft SQL Data Warehouse Connections
Other Requirements:

Available only on Azure deployments. See Configure for Azure.

Step - Run Job

Before you publish results to a different datastore, you must generate results and store them in HDFS.

NOTE: To produce some output formats, you must run the job on the Spark running environment.

In the examples below, the following example data is assumed:

Identifier Value

jobId 2

flowId 3

Copyright © 2022 Trifacta Inc. Page #98

For more information on running a job, see https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup
For more information on the publishing endpoint, see
https://api.trifacta.com/ee/es.t/index.html#operation/publishJobGroup

Step - Publish Results to Hive

The following uses the Avro results from the specified job (jobId = 2) to publish the results to the test_table tabl
e in the default Hive schema through connectionId=1.

NOTE: To publish to Hive, the targeted database is predefined in the connection object. For the path
value in the request body, you must specify the schema in this database to use. Schema information is
not available through API. To explore the available schemas, click the Hive icon in the Import Data page.
The schemas are the first level of listed objects. For more information, see .Import Data Page

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/jobGroups/2/publish

Authentication Required

Method PUT

Request Body {
 "connection": {

 "id": 1
 },
 "path": ["default"],
 "table": "test_table",
 "action": "create",
 "inputFormat": "avro"

}

Response:

Status Code 200 - OK

Response Body {
 "jobgroupId":2,
 "reason":"JobStarted",
 "sessionId":"24862060-4fcd-11e8-8622-fda0fbf6f550"

}

Step - Publish Results to Tableau Server

The following uses the HYPER results from the specified job (jobId = 2) to publish the results to the test_table3
 table in the default Tableau Server database through connectionId=3.

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/jobGroups/2/publish

Authentication Required

Method PUT

Copyright © 2022 Trifacta Inc. Page #99

Request Body {
 "connection": {

 "id": 3
 },
 "path": ["default"],
 "table": "test_table3",
 "action": "createAndLoad",
 "inputFormat": "hyper"

}

Response:

Status Code 200 - OK

Response Body {
 "jobgroupId":2,
 "reason":"JobStarted",
 "sessionId":"24862060-4fcd-11e8-8622-fda0fbf6f552"

}

Step - Publish Results to SQL DW

The following uses the Parquet results from the specified job (jobId = 2) to publish the results to the test_table4
 table in the dbo SQL DW database through connectionId=4.

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/jobGroups/2/publish

Authentication Required

Method PUT

Request Body {
 "connection": {

 "id": 4
 },
 "path": ["dbo"],
 "table": "test_table4",
 "action": "createAndLoad",
 "inputFormat": "pqt"

}

Response:

Status Code 200 - OK

Response Body {
 "jobgroupId": 2,
 "jobIds": 22,
 "reason": "JobStarted",
 "sessionId": "855f83a0-dc94-11e8-bd1a-f998d808020d"

}

Copyright © 2022 Trifacta Inc. Page #100

Step - Publish Results to Redshift

The following uses the Avro results from the specified job (jobId = 2) to publish the results to the test_table2 ta
ble in the public Redshift schema through connectionId=2.

NOTE: To publish to Redshift, the targeted database is predefined in the connection object. For the path
value in the request body, you must specify the schema in this database to use. Schema information is
not available through API. To explore the available schemas, click the Redshift icon in the Import Data
page. The schemas are the first level of listed objects. For more information, see .Import Data Page

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/jobGroups/2/publish

Authentication Required

Method PUT

Request Body {
 "connection": {

 "id": 2
 },
 "path": ["public"],
 "table": "test_table2",
 "action": "create",
 "inputFormat": "avro"

}

Response:

Status Code 200 - OK

Response Body {
 "jobgroupId":2,
 "reason":"JobStarted",
 "sessionId":"fae64760-4fc4-11e8-8cba-0987061e4e16"

}

Step - Publish Results with Overrides

When you are publishing results to a relational source, you can apply overrides to the job to redirect the output or
change the action applied to the target table. For more information, see API Workflow - Run Job.

Copyright © 2022 Trifacta Inc. Page #101

API Workflow - Swap Datasets
Contents:

Overview
Example Datasets
Assumptions

Step - Import Dataset
Step - Swap Dataset from Recipe
Step - Rerun Job
Step - Monitor Your Job
Step - Schedule Your Job

Overview

After you have created a flow, imported a dataset, and created a recipe for that dataset, you may need to swap in
a different dataset and run the recipe against that one. This workflow steps through that process via the APIs.

NOTE: If you are processing multiple parallel datasources in a single job, you should create a dataset
with parameters and then run the job. For more information, see

.API Workflow - Run Job on Dataset with Parameters

This workflow utilizes the following methods:

1. Creating an imported dataset. After the new file has been added to the backend datastore, you can
import into Trifacta® as an imported dataset.

2. Swap dataset. Using the ID of the imported dataset you created, you can now assign the dataset to the
recipe in your flow.

3. Run a job. Run the job against the dataset.
4. Monitor progress. Monitor the progress of the job until it is complete.

Example Datasets

In this example, you are wrangling data from orders placed in different regions on a quarterly basis. When a new
file drops, you want to be able to swap out the current dataset that is assigned to the recipe and swap in the new
one. Then, run the job.

Example Files:

The following files are stored in HDFS:

Path and Filename Description

hdfs:///user/orders/MyCo-orders-west-Q1.txt Orders from West region for Q1

hdfs:///user/orders/MyCo-orders-west-Q2.txt Orders from West region for Q2

hdfs:///user/orders/MyCo-orders-north-Q1.txt Orders from North region for Q1

hdfs:///user/orders/MyCo-orders-north-Q2.txt Orders from North region for Q2

hdfs:///user/orders/MyCo-orders-east-Q1.txt Orders from East region for Q1

Copyright © 2022 Trifacta Inc. Page #102

hdfs:///user/orders/MyCo-orders-east-Q1.txt Orders from East region for Q2

Assumptions

You have already created a flow, which contains the following imported dataset and recipe:

Object Type Name Id

flow MyCo-Orders-Quarter 2

Imported Dataset MyCo-orders-west-Q1.txt 8

Recipe (wrangledDataset) n/a 9

Job n/a 3

NOTE: When an imported dataset is created via API, it is always imported as an unstructured dataset.
Any recipe that references this dataset should contain initial parsing steps required to structure the data.

Tip: Through the UI, you can import one of your datasets as unstructured. Create a recipe for this
dataset and then edit it. In the Recipe panel, you should be able to see the structuring steps. Back in
Flow View, you can chain your structural recipe off of this one. Dataset swapping should happen on the
first recipe.

Base URL:

For purposes of this example, the base URL for the platform is the following:

http://www.example.com:3005

Step - Import Dataset

NOTE: You cannot add datasets to the flow through the endpoint. Moving pre-existing datasetsflows
into a flow is not supported in this release. Create or locate the flow first and then when you create the
datasets, associate them with the flow at the time of creation.

See https://api.trifacta.com/ee/es.t/index.html#operation/createImportedDataset
See https://api.trifacta.com/ee/es.t/index.html#operation/createWrangledDataset

NOTE: When an imported dataset is created via API, it is always imported as an unstructured dataset.
Any recipe that references this dataset should contain initial parsing steps required to structure the data.

The following steps describe how to create an imported dataset and assign it to the flow that has already been
created (flowId=2).

Steps:

1. To create an imported dataset, you must acquire the following information about the source.

a. path
b. type

Copyright © 2022 Trifacta Inc. Page #103

c. name
d. description
e. bucket (if a file stored on S3)

2. In this example, the file you are importing is MyCo-orders-west-Q2.txt. Since the files are similar in
nature and are stored in the same directory, you can acquire this information by gathering the information
from the imported dataset that is already part of the flow. Execute the following:

Endpoint http://www.example.com:3005/v4/importedDatasets

Authentication Required

Method POST

Request Body {
 "path": "hdfs:///user/orders/MyCo-orders-west-Q2.txt",
 "name": "MyCo-orders-west-Q2.txt",
 "description": "MyCo-orders-west-Q2"

}

3. The response should be a 201 - Created status code with something like the following:

{
 "id": 12,
 "size": "281032",
 "path": "hdfs:///user/orders/MyCo-orders-west-Q2.txt",
 "dynamicPath": null,
 "workspaceId": 1,
 "isSchematized": false,
 "isDynamic": false,
 "disableTypeInference": false,
 "createdAt": "2018-10-29T23:15:01.831Z",
 "updatedAt": "2018-10-29T23:15:01.889Z",
 "parsingRecipe": {

 "id": 11
 },
 "runParameters": [],
 "name": "MyCo-orders-west-Q2.txt.txt",
 "description": "MyCo-orders-west-Q2.txt",
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "connection": null

}

4. You must retain the id value so you can reference it when you create the recipe.
5. See https://api.trifacta.com/ee/es.t/index.html#operation/createImportedDataset

Checkpoint: You have imported a dataset that is unstructured and is not associated with any flow.

Step - Swap Dataset from Recipe

The next step is to swap the primary input dataset for the recipe to point at the newly imported dataset. This step
automatically adds the imported dataset to the flow and drops the previous imported dataset from the flow.

1. Use the following to swap the primary input dataset for the recipe:

Copyright © 2022 Trifacta Inc. Page #104

Endpoint http://www.example.com:3005/v4/wrangledDatasets/9
/primaryInputDataset

Authentication Required

Method PUT

Request Body {
 "importedDataset": {

 "id": 12
 }

}

2. The response should be a 200 - OK status code with something like the following:

{
 "id": 9,
 "wrangled": true,
 "createdAt": "2019-03-03T17:58:53.979Z",
 "updatedAt": "2019-03-03T18:01:11.310Z",
 "recipe": {

 "id": 9,
 "name": "POS-r01",
 "description": null,
 "active": true,
 "nextPortId": 1,
 "createdAt": "2019-03-03T17:58:53.965Z",
 "updatedAt": "2019-03-03T18:01:11.308Z",
 "currentEdit": {

 "id": 8
 },
 "redoLeafEdit": {

 "id": 7
 },
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 }

 },
 "referenceInfo": null,
 "activeSample": {

 "id": 7
 },
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "referencedFlowNode": null,
 "flow": {

 "id": 2
 }

}

3. The new imported dataset is now the primary input for the recipe, and the old imported dataset has been
removed from the flow.

https://api.trifacta.com/ee/es.t/index.html#operation/updateInputDataset

Copyright © 2022 Trifacta Inc. Page #105

Step - Rerun Job

To execute a job on this recipe, you can simply re-run any job that was executed on the old imported dataset,
since you reference the job by jobId and wrangledDataset (recipe) Id.

Endpoint /v4/jobGroupshttp://www.example.com:3005

Authentication Required

Method POST

Request Body {
 "wrangledDataset": {

 "id": 9
 }

}

The job is re-run as it was previously specified.

If you need to modify any job parameters, you must create a new job definition.

Step - Monitor Your Job

After the job has been queued, you can track it to completion. See API Workflow - Develop a Flow.

Step - Schedule Your Job

When you are satisfied with how your flow is working, you can set up periodic schedules using a third-party tool
to execute the job on a regular basis.

The tool must hit the above endpoints to swap in the new dataset and run the job.

Copyright © 2022 Trifacta Inc. Page #106

API Workflow - Manage Outputs
Contents:

Overview
Basic Workflow
Variations

Step - Get Recipe ID
Step - Create outputObject
Step - Run a Test Job
Step - Create writeSettings Object
Step - Get Connection ID for Publication
Step - Create a Publication
Step - Apply Overrides
Step - Apply Spark Job Overrides

Overview
Through the APIs, you can separately manage the outputs associated with an individual recipe. This workflow
describes how to create output objects, which are associated with your recipe, and how to publish those outputs
to different datastores in varying formats. You can continue to modify the output objects and their related write
settings and publications independently of managing the wrangling process. Whenever you need new results,
you can reference the wrangled dataset with which your outputs have been associated, and the job is executed
and published in the appropriate manner to your targets.

Relevant terms:

Term Description

outputOb
jects

An is a definition of one or more types of outputs and how they are generated. It must be associated withoutputObject
a recipe.

writeSet
tings

A object defines file-based outputs within an outputObject. Settings include path, format, compression,writeSettings
and delimiters.

publicat
ions

A object is used to specify a table-based output and is associated with an outputObject. Settings includepublications
the connection to use, path, table type, and write action to apply.

NOTE: An outputObject must be created for a recipe before you can run a job on it. One and only one
outputObject can be associated with a recipe.

NOTE: If you need to make changes for purposes of a specific job run, you can add overrides to the
request for the job. These overrides apply only for the current job. For more information, see
https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

Basic Workflow

Here's the basic workflow described in this section.

1. Get the internal identifier for the recipe for which you are building outputs.
2. Create the outputObject for the recipe.
3. Create a writeSettings object and associate it with the outputObject.

Copyright © 2022 Trifacta Inc. Page #107

4. Run a test job, if desired.
5. For any publication, get the internal identifier for the connection to use.
6. Create a publication object and associate it with the outputObject.
7. Run your job.

Variations

If you are generating exclusively file-based or relational outputs, you can vary this workflow in the following ways:

For file-based outputs:

1. Get the internal identifier for the recipe for which you are building outputs.
2. Create the outputObject for the recipe.
3. Create a writeSettings object and associate it with the outputObject.
4. Run your job.

For relational outputs:

1. Get the internal identifier for the recipe for which you are building outputs.
2. Create the outputObject for the recipe.
3. For any publication, get the internal identifier for the connection to use.
4. Create a publication object and associate it with the outputObject.
5. Run your job.

Step - Get Recipe ID

To begin, you need the internal identifier for the recipe.

NOTE: In the APIs, a recipe is identified by its internal name, a .wrangled dataset

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/wrangledDatasets

Authentication Required

Method GET

Request Body None.

Response:

Status Code 200 - OK

Copyright © 2022 Trifacta Inc. Page #108

Response Body {
 "data": [

 {
 "id": 11,
 "wrangled": true,
 "createdAt": "2018-11-12T23:06:36.473Z",
 "updatedAt": "2018-11-12T23:06:36.539Z",
 "recipe": {

 "id": 10
 },
 "name": "POS-r01",
 "description": null,
 "referenceInfo": null,
 "activeSample": {

 "id": 11
 },
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "flow": {

 "id": 4
 }

 },
 {

 "id": 1,
 "wrangled": true,
 "createdAt": "2018-11-12T23:19:57.650Z",
 "updatedAt": "2018-11-12T23:20:47.297Z",
 "recipe": {

 "id": 19
 },
 "name": "member_info",
 "description": null,
 "referenceInfo": null,
 "activeSample": {

 "id": 20
 },
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "flow": {

 "id": 6
 }

 }
]

}

cURL example:

curl -X GET \
 http://www.wrangle-dev.example.com:3005/v4/wrangledDatasets \
 -H 'authorization: Basic <auth_token>' \
 -H 'cache-control: no-cache'

Relevant terms:

Term Description

Copyright © 2022 Trifacta Inc. Page #109

URL URL and method to execute.

authorization Authorization taken to pass to the platform. Basic authorization works.

cache-control Cache control setting.

content-type HTTP content type to send. These applications use .application/json

NOTE: This token must be passed with each request to the platform.

Checkpoint: In the above, let's assume that the recipe identifier of interest is .wrangledDataset=11
This means that the flow where it is hosted is . Retain this information for later.flow.id=4

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/getWrangledDataset

Step - Create outputObject

Create the outputObject and associate it with the recipe identifier. In the following request, the wrangledDataset
identifier that you retrieved in the previous call is applied as the flowNodeId value.

The following example includes an embedded writeSettings object, which generates a CSV file output. You
can remove this embedded object if desired, but you must create a writeSettings object before you can
generate an output.

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/outputObjects

Authentication Required

Method POST

Request Body {
 "execution": "photon",
 "profiler": true,
 "isAdhoc": true,
 "writeSettings": {

 "data": [
 {

 "delim": ",",
 "path": "hdfs://hadoop:50070/trifacta/queryResults/admin@example.com/POS_01.

avro",
 "action": "create",
 "format": "avro",
 "compression": "none",
 "header": false,
 "asSingleFile": false,
 "prefix": null,
 "suffix": "_increment",
 "includeMismatches": true,
 "hasQuotes": false

 }
]

 },
 "flowNode": {

 "id": 11
 }

}

Copyright © 2022 Trifacta Inc. Page #110

Response:

Status Code 201 - Created

Response Body {
 "id": 4,
 "execution": "photon",
 "profiler": true,
 "isAdhoc": true,
 "updatedAt": "2018-11-13T00:20:49.258Z",
 "createdAt": "2018-11-13T00:20:49.258Z",
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "flowNode": {

 "id": 11
 }

}

cURL example:

curl -X POST \
 http://www.wrangle-dev.example.com/v4/outputObjects \
 -H 'authorization: Basic <auth_token>' \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -d '{

 "execution": "photon",
 "profiler": true,
 "isAdhoc": true,
 "writeSettings": {

 "data": [
 {

 "delim": ",",
 "path": "hdfs://hadoop:50070/trifacta/queryResults/admin@example.com/POS_01.avro",
 "action": "create",
 "format": "avro",
 "compression": "none",
 "header": false,
 "asSingleFile": false,
 "prefix": null,
 "suffix": "_increment",
 "includeMismatches": true,
 "hasQuotes": false

 }
]

 },
 "flowNode": {

 "id": 11
 }

}'

Relevant terms:

Term Description

URL URL and method to execute.

Copyright © 2022 Trifacta Inc. Page #111

authorization Authorization taken to pass to the platform. Basic authorization works.

cache-control Cache control setting.

content-type HTTP content type to send. These applications use .application/json

NOTE: This token must be passed with each request to the platform.

Checkpoint: You've created an outputObject () and an embedded writeSettings object and haveid=4
associated them with the appropriate recipe . You can now run a job for this recipeflowNodeId=11
generating the specified output.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createOutputObject

Step - Run a Test Job

Now that outputs have been defined for the recipe, you can just execute a job on the specified recipe flowNodeI
d=11:

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/jobGroups

Authentication Required

Method POST

Request Body {
 "wrangledDataset": {

 "id": 11
 }

}

Response:

Status Code 201 - Created

Copyright © 2022 Trifacta Inc. Page #112

Response Body {

 "sessionId": "79276c31-c58c-4e79-ae5e-fed1a25ebca1",
 "reason": "JobStarted",
 "jobGraph": {

 "vertices": [
 21,
 22

],
 "edges": [

 {
 "source": 21,
 "target": 22

 }
]

 },
 "id": 2,
 "jobs": {

 "data": [
 {

 "id": 21
 },
 {

 "id": 22
 }

]
 }

}

NOTE: To re-run the job against its currently specified outputs, writeSettings, and publications, you only
need the recipe ID. If you need to make changes for purposes of a specific job run, you can add
overrides to the request for the job. These overrides apply only for the current job. For more information,
see https://api.trifacta.com/ee/es.t/index.html#operation/runJobGroup

To track the status of the job:

You can monitor the progress through the application.
You can monitor progress through the status field by querying the specific job. For more information,
see https://api.trifacta.com/ee/es.t/index.html#operation/getJobGroup

Checkpoint: You've run a job, generating one output in Avro format.

Step - Create writeSettings Object

Suppose you want to create another file-based output for this outputObject. You can create a second
writeSettings object, which publishes the results of the job run on the recipe to the specified location.

The following example creates settings for generating a parquet-based output.

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/writeSettings/

Authentication Required

Method POST

Copyright © 2022 Trifacta Inc. Page #113

Request Body {
 "delim": ",",
 "path": "hdfs://hadoop:50070/trifacta/queryResults/admin@example.com/POS_r03.pqt",
 "action": "create",
 "format": "pqt",
 "compression": "none",
 "header": false,
 "asSingleFile": false,
 "prefix": null,
 "suffix": "_increment",
 "hasQuotes": false,
 "outputObjectId": 4

}

Response:

Status Code 201 - Created

Response Body {
 "delim": ",",
 "id": 2,
 "path": "hdfs://hadoop:50070/trifacta/queryResults/admin@example.com/POS_r03.pqt",
 "action": "create",
 "format": "pqt",
 "compression": "none",
 "header": false,
 "asSingleFile": false,
 "prefix": null,
 "suffix": "_increment",
 "hasQuotes": false,
 "updatedAt": "2018-11-13T01:07:52.386Z",
 "createdAt": "2018-11-13T01:07:52.386Z",
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "outputObject": {

 "id": 4
 }

}

cURL example:

Copyright © 2022 Trifacta Inc. Page #114

curl -X POST \
 http://www.wrangle-dev.example.com/v4/writeSettings \
 -H 'authorization: Basic <auth_token>' \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -d '{ "delim": ",",

 "path": "hdfs://hadoop:50070/trifacta/queryResults/admin@example.com/POS_r03.pqt",
 "action": "create",
 "format": "pqt",
 "compression": "none",
 "header": false,
 "asSingleFile": false,
 "prefix": null,
 "suffix": "_increment",
 "hasQuotes": false,
 "outputObject": {

 "id": 4
 }

}

Relevant terms:

Term Description

URL URL and method to execute.

authorization Authorization taken to pass to the platform. Basic authorization works.

cache-control Cache control setting.

content-type HTTP content type to send. These applications use .application/json

NOTE: This token must be passed with each request to the platform.

Checkpoint: You've added a new writeSettings object and associated it with your outputObject ().id=4
When you run the job again, the Parquet output is also generated.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createWriteSetting

Step - Get Connection ID for Publication

To generate a publication, you must identify the connection through which you are publishing the results.

Below, the request returns a single connection to Hive (id=1).

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/connections

Authentication Required

Method GET

Request Body None.

Response:

Copyright © 2022 Trifacta Inc. Page #115

Status Code 200 - OK

Response Body {
 "data": [

 {
 "id": 1,
 "host": "hadoop",
 "port": 10000,
 "vendor": "hive",
 "params": {

 "jdbc": "hive2",
 "connectStringOptions": "",
 "defaultDatabase": "default"

 },
 "ssl": false,
 "vendorName": "hive",
 "name": "hive",
 "description": null,
 "type": "jdbc",
 "isGlobal": true,
 "credentialType": "conf",
 "credentialsShared": true,
 "uuid": "28415970-e6c4-11e8-82be-9947a31ecdd5",
 "disableTypeInference": false,
 "createdAt": "2018-11-12T21:44:39.816Z",
 "updatedAt": "2018-11-12T21:44:39.842Z",
 "credentials": [],
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "workspace": {

 "id": 1
 }

 }
],
 "count": 1

}

cURL example:

curl -X GET \
 http://www.wrangle-dev.example.com/v4/connections \
 -H 'authorization: Basic <auth_token>' \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json'

Relevant terms:

Term Description

URL URL and method to execute.

authorization Authorization taken to pass to the platform. Basic authorization works.

cache-control Cache control setting.

content-type HTTP content type to send. These applications use .application/json

NOTE: This token must be passed with each request to the platform.

Copyright © 2022 Trifacta Inc. Page #116

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/listConnections

Step - Create a Publication

Example - Hive:

You can create publications that publish table-based outputs through specified connections. In the following, a
Hive table is written out to the default database through connectionId = 1. This publication is associated with
the outputObject id=4.

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/publications

Authentication Required

Method POST

Request Body {
 "path": [

 "default"
],
 "tableName": "myPublishedHiveTable",
 "targetType": "hive",
 "action": "create",
 "outputObject": {

 "id": 4
 },
 "connection": {

 "id": 1
 }

}

Response:

Status Code 201 - Created

Response Body {
 "path": [

 "default"
],
 "id": 3,
 "tableName": "myPublishedHiveTable",
 "targetType": "hive",
 "action": "create",
 "updatedAt": "2018-11-13T01:25:39.698Z",
 "createdAt": "2018-11-13T01:25:39.698Z",
 "creator": {

 "id": 1
 },
 "updater": {

 "id": 1
 },
 "outputObject": {

 "id": 4
 },
 "connection": {

 "id": 1
 }

}

Copyright © 2022 Trifacta Inc. Page #117

cURL example:

curl -X POST \
 http://example.com:3005/v4/publications \
 -H 'authorization: Basic <auth_token>' \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -d '{

 "path": [
 "default"

],
 "tableName": "myPublishedHiveTable",
 "targetType": "hive",
 "action": "create",
 "outputObject": {

 "id": 4
 },
 "connection": {

 "id": 1
 }

}'

Relevant terms:

Term Description

URL URL and method to execute.

authorization Authorization taken to pass to the platform. Basic authorization works.

cache-control Cache control setting.

content-type HTTP content type to send. These applications use .application/json

NOTE: This token must be passed with each request to the platform.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createPublication

Checkpoint: You're done.

You have done the following:

1. Created an output object:
a. Embedded a writeSettings object to define an Avro output.
b. Associated the outputObject with a recipe.

2. Added another writeSettings object to the outputObject.
3. Added a table-based publication object to the outputObject.

You can now generate results for these three different outputs whenever you run a job (create a jobgroup) for the
associated recipe.

Step - Apply Overrides

When you are publishing results to a relational source, you can optionally apply overrides to the job to redirect the
output or change the action applied to the target table. For more information, see API Workflow - Run Job.

Copyright © 2022 Trifacta Inc. Page #118

Step - Apply Spark Job Overrides

You can optionally submit override values for a predefined set of Spark properties on the output object. These
overrides are applied each time that the outputobject is used to generate a set of results.

NOTE: This feature and the Spark properties available for override must be configured by a workspace
administrator. For more information, see .Enable Spark Job Overrides

Tip: You can apply Spark job overrides to the job itself, instead of applying overrides to the outputobject.
For more information, see .API Workflow - Run Job

In the following example, an existing outputObject (id=4) is modified to include override values for the default set
of Spark overrides. Each Spark property and its value as specified as a key-value pair in the request:

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/outputObjects/4

Authentication Required

Method PUT

Request Body {
 "execution": "spark",
 "outputObjectSparkOptions": [

 {
 "key": "spark.driver.memory",
 "value": "10G"

 },
 {

 "key": "spark.executor.memory",
 "value": "10G"

 },
 {

 "key": "spark.executor.cores",
 "value": "5"

 },
 {

 "key": "transformer.dataframe.checkpoint.threshold",
 "value": "450"

 }
]

}

Response:

Status Code 200 - Ok

Copyright © 2022 Trifacta Inc. Page #119

Response Body {
 "id": 4,
 "updater": {

 "id": 1
 },
 "updatedAt": "2020-03-21T00:27:00.937Z",
 "createdAt": "2020-03-20T23:30:42.991Z"

}

cURL example:

curl -X PUT \
 http://www.wrangle-dev.example.com/v4/outputObjects/4 \
 -H 'authorization: Basic <auth_token>' \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -d '{
 "execution": "spark",
 "outputObjectSparkOptions": [

 {
 "key": "spark.driver.memory",
 "value": "10G"

 },
 {

 "key": "spark.executor.memory",
 "value": "10G"

 },
 {

 "key": "spark.executor.cores",
 "value": "5"

 },
 {

 "key": "transformer.dataframe.checkpoint.threshold",
 "value": "450"

 }
]

}'

Relevant terms:

Term Description

URL URL and method to execute.

authorization Authorization taken to pass to the platform. Basic authorization works.

cache-control Cache control setting.

content-type HTTP content type to send. These applications use .application/json

NOTE: This token must be passed with each request to the platform.

Copyright © 2022 Trifacta Inc. Page #120

API Workflow - Manage AWS Configurations
Contents:

Overview
Per-User Authentication Methods
Basic Workflow

Step - Acquire information
Step - Locate user
Step - Create awsConfig object
Step - Verify Authentication
Step - For Method 2, assign new IAM role to awsConfig object
Step - Switching Persons or Workspaces for an awsRole
Step - Switching Authentication Methods

Overview
The Trifacta® platform supports multiple methods of authenticating to AWS resources. At the topmost level,
authentication can be broken down into two modes: system and user.

System mode: One set of credentials is used for each user of the platform to authenticate to AWS.
User mode: Individual user accounts must be configured with AWS credentials.

NOTE: This section covers how to manage AWS credentials through the APIs for individual users
(user mode). When in system mode, please manage AWS configuration through the application.

Per-User Authentication Methods
To connect to AWS resources and access S3 data, the following information is required for each user, depending
on the method of authentication.

NOTE: Since instance credentials are provided at the system level, use of the instance credential
provider type in AWS configuration objects is not supported.

Method 1 - AWS Key and Secret
If users are providing key-secret combinations, the following information is required.

Item Description

key/secret (credential provider type is) The AWS key and secret for the user to authenticatedefault

default bucket The default S3 bucket where the user can upload data and store generated results

extra buckets Any extra S3 buckets to which the user should have access

Method 2 - AWS IAM Role ARNs

Users can access AWS resources by assigning an awsConfig object to the account.

Tip: This method is recommended.

The following information is required:

Item Description

Copyright © 2022 Trifacta Inc. Page #121

IAM
role

(credential provider type is) The IAM role to use to authenticate.temporary

default
bucket

The default S3 bucket where the user can upload data and store generated results

extra
buckets

Any extra S3 buckets to which the user should have access

NOTE: If this information is not immediately available, a placeholder one is created when you create the configuration
object. You can assign roles later. More information is provided below.

Authentication objects

For each authentication method, the above pieces of information must be provided for each user.

These pieces of information are defined in an awsConfig object. An awsConfig object is a set of AWS
configuration properties that can be created, modified, and assigned to individual users via API.

For Method 2, the awsConfig object maps to an awsRole object. An awsRole object references an IAM role and
an awsConfig object. When you create an awsConfig object and its credential provider is set to temporary, the
awsRole object is automatically created for you:

Each awsRole object maps to a single IAM role.
Each awsRole object is mapped to an awsConfig object.
The awsConfig object is then assigned to individual users.
Through this mechanism, you have more flexibility in assigning the active role to users.
As needed, the awsConfig object can be mapped at a later time to another awsRole object through
the role attribute.

This workflow steps through the process for all these methods.

Platform roles

To complete this workflow, your account must have one of the following roles:

Workspace admin

Trifacta admin

For more information, see

https://api.trifacta.com/ee/es.t/index.html#section/Authentication

Basic Workflow

1. Choose your method of authentication.
2. Locate the internal identifier for the user to which to assign the configuration object.
3. Create an awsConfig object, assigning the object to the user as part of the process.
4. Verify that the assignment is working.

Step - Acquire information

Acquire all of the information listed above for the awsConfig object you wish to create.

Step - Locate user

Now, you need to locate the internal identifier for the user to which you wish to assign this AWS configuration.

Copyright © 2022 Trifacta Inc. Page #122

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/people

Authentication Required

Method GET

Request Body None.

Response:

Status Code 200 - Ok

Copyright © 2022 Trifacta Inc. Page #123

Response Body {
 "data": [

 {
 "id": 3,
 "email": "4070250@example.com",
 "name": "Test User4070250",
 "ssoPrincipal": null,
 "hadoopPrincipal": null,
 "isAdmin": false,
 "isDisabled": false,
 "forcePasswordChange": false,
 "state": "active",
 "lastStateChange": null,
 "createdAt": "2019-04-16T16:27:51.143Z",
 "updatedAt": "2019-04-16T16:27:56.630Z",
 "outputHomeDir": "/trifacta/queryResults/4070250@example.com",
 "fileUploadPath": "/trifacta/uploads",
 "awsConfigId": 2

 },
 {

 "id": 2,
 "email": "32870@example.com",
 "name": "Test User32870",
 "ssoPrincipal": null,
 "hadoopPrincipal": null,
 "isAdmin": false,
 "isDisabled": false,
 "forcePasswordChange": false,
 "state": "active",
 "lastStateChange": null,
 "createdAt": "2019-04-16T16:27:19.511Z",
 "updatedAt": "2019-04-16T16:27:26.703Z",
 "outputHomeDir": "/trifacta/queryResults/32870@example.com",
 "fileUploadPath": "/trifacta/uploads",
 "awsConfigId": 1

 },
 {

 "id": 1,
 "email": "<admin_email>",
 "name": "Administrator",
 "ssoPrincipal": null,
 "hadoopPrincipal": null,
 "isAdmin": true,
 "isDisabled": false,
 "forcePasswordChange": false,
 "state": "active",
 "lastStateChange": null,
 "createdAt": "2019-04-16T07:44:04.299Z",
 "updatedAt": "2019-04-16T16:28:16.379Z",
 "outputHomeDir": "/trifacta/queryResults/admin@example.com",
 "fileUploadPath": "/trifacta/uploads",
 "awsConfigId": 3

 }
]

}

Checkpoint: In the above, you noticed that userId=2 is associated with awsConfig object id=1, which is
the one you are replacing. This is the user to modify. Retain this value for later.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/getPerson

Copyright © 2022 Trifacta Inc. Page #124

Step - Create awsConfig object

Create the AWS configuration object.

NOTE: Optionally, the value can be inserted into the request to assign the AWS configurationpersonId
object to a specific user at create time, when it is created by an admin user. If it is created by a non-
admin user, the object is assigned to the user who created it.

NOTE: For Method 2, an awsRole object is automatically created for you when you create the awsConfig
object. It is mapped to the awsConfig object.

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/awsConfigs

Authentication Required

Method POST

Request Body Method 1: AWS key-secret combination

{
 "credentialProvider": "default",
 "personId": 2,
 "key": "<my_key>",
 "secret": "<my_secret>",
 "defaultBucket": "main_bucket",
 "extraBuckets":["extra-bucket1","extra-bucket2"]

}

Method 2: IAM role

{
 "credentialProvider": "temporary",
 "personId": 2,
 "role":"<my_iam_role_object>",
 "defaultBucket":"main_bucket",
 "extraBuckets":["extra-bucket1","extra-bucket2"]

}

Response for Method 2:

Status Code 201 - Created

Copyright © 2022 Trifacta Inc. Page #125

Response Body Method 2 example:

{
 "extraBuckets": [

 "extra-bucket1",
 "extra-bucket2"

],
 "id": 6,
 "defaultBucket": "main_bucket",
 "credentialProvider": "temporary",
 "externalId": null,
 "activeRoleId":"4",
 "updatedAt": "2019-04-16T23:06:32.049Z",
 "createdAt": "2019-04-16T23:06:32.047Z",
 "credential": null

}

Checkpoint: In the above, the awsConfig object has an internal identifier ().id=6

As part of the request, this object was assigned to user 2 .personId=2

The attribute indicates that the internal ID of the awsRole object that was automaticallyactiveRoleId
created for you.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/createAwsConfig

Step - Verify Authentication
To verify that the above configuration works:

1. User id=2 should login to the application.
2. User uploads assets through the Import Data page.
3. User creates a short recipe that modifies these assets.
4. User runs a job on that recipe to generate output to the default S3 bucket in CSV or JSON for downloading.
5. User verifies that the results can be downloaded.

Checkpoint: Configuration and verification is complete.

Step - For Method 2, assign new IAM role to awsConfig object

If you need to change the IAM role ARN for a user, you can modify the awsConfig object for that user with the
new role information.

NOTE: This section only applies if has been set to for the objectcredentialProvider temporary
and if you are using multiple IAM role ARNs in the .Trifacta platform

The following request modifies the awsConfig id=6.

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/awsConfigs/6

Authentication Required

Method PATCH

Copyright © 2022 Trifacta Inc. Page #126

Request Body {
 "role":"<my_iam_role_object_3>"

}

Response:

Status Code 200 - OK

Response Body {
 "extraBuckets": [

 "extra-bucket1",
 "extra-bucket2"

],
 "id": 6,
 "defaultBucket": "main_bucket",
 "credentialProvider": "temporary",
 "externalId": null,
 "activeRoleId":"<awsRoleId>",
 "updatedAt": "2019-04-16T23:06:32.049Z",
 "createdAt": "2019-04-16T23:06:32.047Z",
 "credential": null

}

Checkpoint: In the above step, you assigned a new IAM role to the awsConfig object. The underlying
awsRole object is created for you and automatically assigned. For more information, see
https://api.trifacta.com/ee/es.t/index.html#operation/createAwsRole

NOTE: After you have completed the above update, the previous awsRole object still exists. If the IAM
role associated with it is no longer in use, you should delete the awsRole object. See
https://api.trifacta.com/ee/es.t/index.html#operation/deleteAwsRole

Step - Switching Persons or Workspaces for an awsRole

When you create or modify an awsRole, you can optionally pass in a person or workspace identifier. When either
value is provided, the Trifacta platform attempts to assign the awsRole to the provided identifier based on the
related awsConfig object.

Acquire awsRole identifier

Via awsConfig identifier

Use the following endpoint to retrieve the awsConfig object. This one uses awsConfigId=6:

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/awsConfigs/6

Authentication Required

Method GET

Request Body Empty.

Copyright © 2022 Trifacta Inc. Page #127

Response:

Status Code 200 - OK

Response Body {
 "extraBuckets": [

 "extra-bucket1",
 "extra-bucket2"

],
 "id": 6,
 "defaultBucket": "main_bucket",
 "credentialProvider": "temporary",
 "externalId": null,
 "activeRoleId":"<awsRoleId>",
 "updatedAt": "2019-04-16T23:06:32.049Z",
 "createdAt": "2019-04-16T23:06:32.047Z",
 "credential": null

}

Acquire the value for activeRoleId.

Via awsRoles identifier

Use the following request to retrieve all of the awsRoles:

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/awsRoles

Authentication Required

Method GET

Request Body Empty.

In the response, locate the appropriate identifier.

Reassign the awsRole

You can use the PUT method of the following endpoint to re-assign the awsRole to the specified person or
workspace. The following example reassigns awsRoleId=3 to personId=6.

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/awsRoles/3

Authentication Required

Method PUT

Request Body {
 "personId": 6

}

If the request is successful, the awsRole is reassigned to the person identifier.

Copyright © 2022 Trifacta Inc. Page #128

Tip: In the above request, you can replace with to reassign the role to all"personId" "workspaceId"
users in a workspace.

Step - Switching Authentication Methods

Suppose you have created your awsConfig objects to use the AWS Key-Secret method of authenticating. You
have now created a set of IAM roles that you would like to assign to your Trifacta users.

The generalized workflow for completing this task is the following:

1. Acquire the identifiers for all of the awsConfigs you wish to modified. For each awsConfig, retain the perso
nId, so that you can map your configuration changes to individuals. See
https://api.trifacta.com/ee/es.t/index.html#operation/listAwsConfigs

a. For more information on getting your list of users, see
https://api.trifacta.com/ee/es.t/index.html#operation/getPerson

2. For each user account (personId), you must identify the IAM role that you wish to assign it.
3. Use the following modification to the awsConfig object to switch to using the IAM role for the user:

Request:

Endpoint http://www.wrangle-dev.example.com:3005/v4/awsConfigs/<awsConfigId>

Authentication Required

Method PUT

Request Body {
 "credentialProvider": "temporary",
 "role":"<my_iam_role_object>"

}

Response for Method 2:

Status Code 200 - Ok

Response Body Method 2 example:

{
 "extraBuckets": [

 "extra-bucket1",
 "extra-bucket2"

],
 "id": <awsConfigId>,
 "defaultBucket": "main_bucket",
 "credentialProvider": "temporary",
 "externalId": null,
 "activeRoleId":"<awsRoleId>",
 "updatedAt": "2019-04-16T23:06:32.049Z",
 "createdAt": "2019-04-16T23:06:32.047Z",
 "credential": null

}

Notes:

Item Description

Copyright © 2022 Trifacta Inc. Page #129

credentia
lProvider

To use IAM roles, this attribute must be updated to be .temporary

role The IAM role to assign to the configuration.

personId If needed, you can change the person (user) to which this awsConfig is applied. Note that the former user of the
configuration cannot access AWS resources until you create a new configuration object for the user's account.

activeRol
eId

(response) Internal identifier of the awsRole object that was created for you and assigned to this awsConfig object.

NOTE: The above request must be applied to each awsConfig object that you wish to remap to using an
IAM role.

Copyright © 2022 Trifacta Inc. Page #130

API Workflow - Run Plan
Contents:

Prerequisites
Step - Run Plan
Step - Run Plan with Overrides
Step - Monitoring Your Plan Run
Step - Add Flow Messages

This section describes how to run a plan using the APIs available in Trifacta®.

A plan is a scheduled sequence of tasks based on a trigger that you define.
When a plan is executed via API, the request is the trigger, and the plan is executed immediately.

Plans can be designed in the Trifacta application. For more information, see Plans Page.
For more information on plans in general, see Overview of Operationalization.

A note about API URLs:

In the listed examples, URLs are referenced in the following manner:

<protocol>://<platform_base_url>/

In your product, these map references map to the following:

<http or https>://<hostname>:<port_number>/

For more information, see API Reference.

Prerequisites

Before you begin, you should verify the following:

1. Get authentication credentials. As part of each request, you must pass in authentication credentials to
the platform.

Tip: The recommended method is to use an access token, which can be generated from the Trifact
. For more information, see .a application Access Tokens Page

For more information, see https://api.trifacta.com/ee/es.t/index.html#section/Authentication
2. Verify plan and its flows and outputs:

a. You must create a plan first. See Plan View Page.
b. As part of creating that plan, you must verify that all referenced flows and output objects are

properly defined and can be executed independently.

NOTE: In a flow, all recipes that you wish to have executed by the corresponding task must
have a defined output object. For each output object, you must create at least one write
settings or publication object. During plan runs, these objects are not validated, and tasks
fail without them.

Copyright © 2022 Trifacta Inc. Page #131

c. Any applicable parameters are applied to the tasks at the time of execution. Parameter overrides
are not supported in plans.

d. See Flow View Page.
3. Verify plan execution. Run the desired plan through the Trifacta application and verify that the output

objects are properly generated. See Plan View Page.
4. Acquire plan identifier. In Plan View, acquire the numeric value for the plan from the URL. In the

following, the plan Id is 1234:

http://<platform_base_url>/plans/1234

Step - Run Plan

Through the APIs, you can run a plan. Construct a request like the following, where:

<id> is the plan identifier that you already extracted from the Plan View URL.

Endpoint <protocol>://<platform_base_url>/v4/plans/<id>/run

Authentication Required

Method POST

Request Body None.

Response Code 201 - Created

Response Body {
 "validationStatus": "Valid",
 "planSnapshotRunId": 2

}

If the 201 response code is returned, then the plan has been queued for execution.

Tip: Retain the value in the response. In the above, is the internal identifier for the plan run, which isid 2
referenced via the generated snapshot of the corresponding flows in the plan's tasks. You will need this
value to check on your plan run status.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/runPlan

Checkpoint: You have queued your plan for execution.

Step - Run Plan with Overrides

When you run your plan, you can apply overrides to any of the parameters that are sourced in flow tasks within
the plan. Overrides are applied in the body request when submitting to the plan run API endpoint.

Endpoint <protocol>://<platform_base_url>/v4/plans/<id>/run

Authentication Required

Method POST

Copyright © 2022 Trifacta Inc. Page #132

Request Body {
 "planNodeOverrides": [

 {
 "handle": "ax",
 "overrideKey": "region",
 "value": {

 "variable": {
 "value": "02"

 }
 }

 },
 {

 "handle": "cq",
 "overrideKey": "state",
 "value": "CA"

 }
]

}

Response Code 201 - Created

Response Body {
 "validationStatus": "Valid",
 "planSnapshotRunId": 2

}

Request
Body
Attribute

Description

handle This value corresponds to the identifier for the task node in Plan View. In the ,Trifacta application

Tasks are label in the following format:

<task_type>-<handleId>

where:

<task_type> - is a string literal:
flowtask denotes a flow task.
http denotes an HTTP task.
slack denotes a Slack task.
delete denotes a Delete task.

<handleId> - a lowercase identifier for the task. Handle value must be two lowercase letters, at a minimum.
Value must be unique to the tasks of the plan. This value is used as the value.handle

override
Key

The name of the parameter to override.

value The override value to apply to the parameter. This value can be specified as a String value or as a JSON object. See the
previous examples.

Tip: You can retrieve this value by selecting the task in Plan View, which is listed at the top of the task icon.

If the 201 response code is returned, then the plan has been queued for execution.

Copyright © 2022 Trifacta Inc. Page #133

Tip: Retain the value in the response. In the above, is the internal identifier for the plan run, which isid 2
referenced via the generated snapshot of the corresponding flows in the plan's tasks. You will need this
value to check on your plan run status.

For more information, see https://api.trifacta.com/ee/es.t/index.html#operation/runPlan

Step - Monitoring Your Plan Run

You can monitor the status of your plan run through the following endpoint, where:

<id> is the plan snapshot identifier for your run that you retained from the previous step.

Endpoint <protocol>://<platform_base_url>/v4/planSnapshotRuns/<id>

Authentication Required

Method GET

Request Body None.

Response Code 200 - Ok

Response Body {
 "id": 2,
 "status": "InProgress",
 "scheduleHistoryId": null,
 "startedAt": "2020-04-23T17:53:33.466Z",
 "finishedAt": null,
 "submittedAt": "2020-04-23T17:53:32.993Z",
 "executionId": null,
 "createdAt": "2020-04-23T17:53:33.312Z",
 "updatedAt": "2020-04-23T17:53:33.499Z",
 "plan": {

 "id": 1
 }

}

When the plan run has successfully completed, the returned status message includes the following:

"status": "Complete",

For more information, see https://api.trifacta.com/ee/es.t/index.html#tag/PlanSnapshotRunYou can also review
your plan runs through the Trifacta application at the following URL:

<protocol>://<platform_base_url>/plans/<planId>/runs/<planSnapshotRunId>

Tip: You have executed the plan run. Results have been delivered to the designated output locations.

Step - Add Flow Messages

Copyright © 2022 Trifacta Inc. Page #134

You can configure flow webhooks and email notifications to deliver to stakeholders through the individual flows
that are referenced in your plans.

NOTE: These features may require enablement and configuration in your environment.

For more information on these messaging types, see Overview of Operationalization.

A flow webhook is a REST API-based message that is triggered on the success or failure of generating an
output from a flow. When the output referenced in a plan is generated, any webhook messages for the output are
also triggered.

NOTE: You can define the equivalent of a webhook in your plan. HTTP tasks execute similar requests to
a flow webhook and are an integrated part of plans. For more information, see .Create HTTP Task

Some uses:

You can configure webhooks to deliver messages for each output referenced in the flow. Based on the
schedule for your flow, you can review these messages to determine if the flow executed properly.
You can configure a final output in the final task that is executed after the upstream recipes in the same
flow.

All of the upstream recipes in the flow feed into a final recipe, which generates an unused output.
When you create a flow webhook based on this final output, you can send a message that the final task
has been executed.

For more information, see Create Flow Webhook Task.

An email notification is an email that is sent through the configured SMTP server to stakeholders based on the
successful or failed execution of an output. You can define email notifications for your individual flows, and these
messages get delivered as part of the flow execution that is part of the plan.

Tip: When an email notification is sent as part of task execution, the internal plan identifier is included as
part of the message.

For more information on email notification, see Manage Flow Notifications Dialog.

Copyright © 2022 Trifacta Inc. Page #135

API Workflow - Wrangle Output to Python

EXPERIMENTAL FEATURE: This feature is intended for demonstration purposes only. This
feature may be modified or removed from the without warning in a futureTrifacta platform
release. It should not be deployed in a production environment.

Contents:

Alpha Release
Enable
Limitations
v4 OutputObjects WrangleToPython Create

Required Permissions
Request
Response
Reference

You can enable an API endpoint that converts the your recipe steps to generate a specific output into Python
Pandas code. When executed, this generated Python Pandas code applies transformations to your specified
dataset and generates the specified output.

Alpha Release

This endpoint is the beginning of enabling the Trifacta® platform to integrate with pre-existing Python data
pipelines.

This documentation provides information on how to explore the capabilities of the Trifacta platform to generate
Python code for your external data pipelines.

Enable

To enable generation of Python Pandas code, please complete the following:

Steps:

1. You apply this change through the Workspace Settings Page. For more information, see
Platform Configuration Methods.

2. Locate the following setting and set it to Enabled:

Wrangle to Python Conversion

3. The feature is now enabled.

Limitations

This endpoint does not currently support multi-dataset operations.
The generated Python code does not yield readable columns in the output code.
Conversion of Wrangle script to Python code is supported for CSV files only.

Copyright © 2022 Trifacta Inc. Page #136

v4 OutputObjects WrangleToPython Create

This section contains reference documentation on the API endpoint. This endpoint method is applied to a
specified outputObject. This outputObject is the result of execution of a specific recipe (wrangledDataset). That
recipe has references to its source importedDatasets and connections.

For more information on supported versions of the APIs, see
https://api.trifacta.com/ee/es.t/index.html#section/Overview/Versioning-and-Endpoint-Lifecycle.

This API enables generation of Python Pandas code for the Wrangle recipe associated with an output object.

Version: v4

Relevant terms:

Term Description

outputOb
jects

An is a definition of one or more types of outputs and how they are generated. It must be associated withoutputObject
a recipe.

writeSet
tings

A object defines file-based outputs within an outputObject. Settings include path, format, compression,writeSettings
and delimiters.

publicat
ions

A object is used to specify a table-based output and is associated with an outputObject. Settings includepublications
the connection to use, path, table type, and write action to apply.

NOTE: An outputObject must be created for a recipe before you can run a job on it. One and only one
outputObject can be associated with a recipe.

Required Permissions

Each request to the must include authentication credentials. SeeNOTE: Trifacta® platform
.https://api.trifacta.com/ee/es.t/index.html#section/Authentication

Request

Request Type: POST

Endpoint:

/v4/outputObjects/<id>/wrangleToPython

Request URI - Example:

/v4/outputObjects/3/wrangleToPython

Request Body:

The following defines the running environment used for the outputObject.

{
 "execution": "spark"

}

Copyright © 2022 Trifacta Inc. Page #137

Response

Response Status Code - Success: 200 - OK

Response Body Example:

The generated response is the Python Pandas code:

{
from trifacta.transform_functions.function_definitions import Replace
import pandas as pd
import numpy as np

def run_transforms(df0=None):
 if (df0 is None):

 df0 = pd.read_csv('input.csv', skip_blank_lines=False, lineterminator='\n', dtype=str, encoding='UTF-8')
 replace1 = Replace('x', 'u', False, False)
 replace2 = Replace('x', 'u', True, False)
 replace3 = Replace('x', 'u', True, True)
 replace4 = Replace('x', '\\\\', True, False)
 df3 = pd.DataFrame({'new_column1': df0['col1'].apply((lambda x: replace1.exec(x))), 'new_column2': df0

['col1'].apply((lambda x: replace2.exec(x))), 'new_column3': df0['col1'].apply((lambda x: replace3.exec(x))),
'new_column4': df0['col1'].apply((lambda x: replace4.exec(x)))})
 return df3

}

Reference

For more information , see
https://api.trifacta.com/ee/es.t/index.html#operation/getPythonScriptForOutputObjectInput

Copyright © 2022 Trifacta Inc. Page #138

API Documentation Versions
Depending on where you access the API documentation, you may be presented different sets of available
endpoints for the following reasons.

API Reference Docs

Location: api.trifacta.com

At api.trifacta.com, you can select the API reference documentation for your product edition. When selected, you
can review all possible API endpoints and methods that are supported in your product edition.

This portal is available on the public Internet.

Tip: Review this content to see what is possible for your product edition.

API Deployment Docs

Location: In the Trifacta application, select Help menu > API Documentation.

This instance of the API documentation filters the preceding API reference documentation based on the following:

Features that are enabled or disabled in your Trifacta deployment
Endpoints that are accessible based on your API access token
Any roles that may be applicable to your user account

This portal is available only for registered users of the workspace from which it is accessed.

Tip: Review this version to see the API endpoints that you can use with your current account in your
specific .Trifacta deployment

Copyright © 2022 Trifacta Inc. Page #139

Python SDK
Contents:

Prerequisites
Trifacta prerequisites
Python prerequisites

Limitations
Download and Install
Examples
Wrangle function reference

Trifacta module functions
WrangleFlow module functions
Data profiling functions

The Trifacta® Python SDK enables you to integrate the Trifacta application into your Python pipelines. When your
Python environment has been integrated with the Trifacta application, you can leverage the visual tools in the
application to rapidly construct your transformation steps on exampled data that you upload. When you have
finished building your recipe, you can invoke a function in your Python environment to download the recipe as
Python Pandas code for use in your data pipelines.

Basic workflow:

1. Through your Python notebook:
a. Upload example data to your Trifacta workspace.
b. Launch the Trifacta application.

2. In the Trifacta application:
a. Use the transformation tools in the application to transform your example data using a series of

recipe steps.
b. Iterate on your recipe. Generate results through the Trifacta application to verify that you have

transformed your data correctly.
3. In your Python notebook:

a. Invoke a function to translate the recipe into Python Pandas and download it to your local Python
environment.

b. Deploy this recipe into other Python pipelines to transform other datasets as needed.

Prerequisites

Trifacta prerequisites

A workspace administrator must enable the Python to Wrangle feature in your workspace. For more
information, see Workspace Settings Page.
You must have a valid API access token. For more information, see Manage API Access Tokens.

Python prerequisites

Please see the installation instructions available at the download URL listed below.

Limitations

NOTE: This is an Alpha release. Do not use the Python SDK in a production environment.

Some Wrangle functions and transformations are not supported by Python Pandas. Known limitations:

Copyright © 2022 Trifacta Inc. Page #140

NUMFORMAT function
String comparison functions

Transformations that use Array or Map data types are not supported for Python Pandas generation.
Uploaded files must be in CSV file format.

Download and Install

For more information on downloading and installing the Python SDK, see https://pypi.org/project/trifacta/.

Examples

For a basic example, please see https://pypi.org/project/trifacta/.

Wrangle function reference

The following wrangling functions are available through the SDK.

Trifacta module functions

tf is an alias to the Trifacta module.

Function
Name

Description Arguments

tf.
wrangle
(*datas
ets)

Upload one ore more datasets to the andTrifacta application
create a flow for it.

This flow is then available through the ,Trifacta application
where you can transform the dataset through the user
interface. See .https://pypi.org/project/trifacta/

*datasets: Pandas DataFrames to be wrangled.

It could also be a tuple, where the first element in the tuple
is a Pandas DataFrame, and second element is the
reference name (string) for the DataFrame.

WrangleFlow module functions

All the below functions are available for the object in your Python environment. So, you must callWrangleFlow
them using a object.WrangleFlow

wf is a reference to the WrangleFlow object.

Function Name Description Arguments

wf.add_datasets
(*datasets)

Add Pandas DataFrames to
a flow, where datasets
is a list of DataFrames.

*datasets: Pandas DataFrames to be added to a flow.

It could also be a tuple, where the first element in the tuple is a
Pandas DataFrame, and second element is the reference name
(string) for the DataFrame.

get_pandas
(add_to_next_cell=Fal
se, recipe_name="
<my_recipe>")

Generates Python Pandas
code for your Wrangle
recipe.

add_to_next_cell: Set it to True, if you're using Jupyter Notebook
and would like to add the generated Pandas code to be added to
next cell. If False, the Pandas code is returned as string.

: Recipe for which you want to get the Pandas code. Ifrecipe_name
not specified, the default recipe is used. Use wf.

to retrieve available recipes.recipe_names()

wf.run_job(pbar=None,
execution='photon',
recipe_name=None)

Run a job for a specified
recipe.

pbar: can be ignored.
: Running environment in where youexecution Trifacta platform

want to execute the job. Possible values: or .photon emrSpark

recipe_name: Recipe for which you want to execute the job. If set to
, input is the default recipe.None

Copyright © 2022 Trifacta Inc. Page #141

wf.summary
(recipe_name=None)

Returns a table of summary statistics
per column

recipe_name: Recipe name for which you want to generate
the summary. If set to , input is the default recipe.None

wf.dq_bars
(show_types=True,
recipe_name=None)

Returns the valid/invalid/missing ratio
per column

show_types: Show column types information along with
data quality bars for the column.

: Recipe name for which you want to generaterecipe_name
the data quality bar. If set to , input is the defaultNone
recipe.

wf.col_types
(recipe_name=None)

Lists the inferred data type for each
column

recipe_name: Recipe name for which you want to infer data
types for each column. If set to , input is the defaultNone
recipe.

wf.bars_df_list
(recipe_name=None)

Returns a list of dataframes, one per
column, representing a bar-chart for
that column

recipe_name: Recipe name for which you want to generate
the bar-chart. If set to , input is the default recipe.None

wf.pdf_profile
(filename=None,
recipe_name=None)

Returns a snazzy PDF report with all
the statistics

filename: Name of the file to which PDF profile results are
written. If set to , results are returned back from theNone
function.

: Recipe for which you want to generate PDFrecipe_name
profile results. If set to , results are generated for theNone
default recipe.

wf.profile
(recipe_name=None)

Generate a profile for a
specified recipe.

recipe_name: Recipe for which you want to generate profile. If set
to , input is the default recipe.None

wf.recipe_names() Lists the recipe names for
the recipe present in Trifact

.a flow

N/A

wf.open_profile
(recipe_name=None)

Open a profile that you
have previously generated
for the specified recipe.

recipe_name: Recipe for which you want to open the profile. If set
to , input is the default recipe.None

Data profiling functions

Function Name Description Arguments

Copyright © 2022 Trifacta Inc. Page #142

 Copyright © 2022 - Trifacta, Inc.
All rights reserved.

	Trifacta Developer Guide
	User-Defined Functions
	Java UDFs

	Create Custom Data Types Using RegEx
	API Reference
	Manage API Access Tokens
	API Endpoints for Trifacta Self-Managed Enterprise
	API Workflows
	API Workflow - Develop a Flow
	API Workflow - Deploy a Flow
	API Workflow - Run Job
	API Workflow - Run Job on Dataset with Parameters
	API Workflow - Run Deployment
	API Workflow - Publish Results
	API Workflow - Swap Datasets
	API Workflow - Manage Outputs
	API Workflow - Manage AWS Configurations
	API Workflow - Run Plan
	API Workflow - Wrangle Output to Python

	API Documentation Versions

	Python SDK

