ROLLINGSUM Function
Computes the rolling sum of values forward or backward of the current row within the specified column.
If an input value is missing or null, it is not factored in the computation. For example, for the first row in the dataset, the rolling sum of previous values is the value in the first row.
The row from which to extract a value is determined by the order in which the rows are organized based on the
order
parameter.If you are working on a randomly generated sample of your dataset, the values that you see for this function might not correspond to the values that are generated on the full dataset during job execution.
The function takes a column name and two optional integer parameters that determine the window backward and forward of the current row.
The default integer parameter values are
-1
and0
, which computes the rolling average from the current row back to the first row of the dataset.
This function works with the Window transform. See Window Transform.
Wrangle vs. SQL: This function is part of Wrangle, a proprietary data transformation language. Wrangle is not SQL. For more information, see Wrangle Language.
Basic Usage
Column example:
rollingsum(myCol)
Output: Returns the rolling sum of all values in the myCol
column.
Rows before example:
rollingsum(myNumber, 3)
Output: Returns the rolling sum of the current row and the three previous row values in the myNumber
column.
Rows before and after example:
rollingsum(myNumber, 3, 2)
Output: Returns the rolling sum of the three previous row values, the current row value, and the two rows after the current one in the myNumber
column.
Syntax and Arguments
rollingsum(col_ref, rowsBefore_integer, rowsAfter_integer) order: order_col [group: group_col]
Argument | Required? | Data Type | Description |
---|---|---|---|
col_ref | Y | string | Name of column whose values are applied to the function |
rowsBefore_integer | N | integer | Number of rows before the current one to include in the computation. |
rowsAfter_integer | N | integer | Number of rows after the current one to include in the computation |
For more information on the order
and group
parameters, see Window Transform.
For more information on syntax standards, see Language Documentation Syntax Notes.
col_ref
Name of the column whose values are used to compute the rolling sum.
Multiple columns and wildcards are not supported.
Usage Notes:
Required? | Data Type | Example Value |
---|---|---|
Yes | String (column reference to Integer or Decimal values) | myColumn |
rowsBefore_integer, rowsAfter_integer
Integers representing the number of rows before or after the current one from which to compute the rolling sum, including the current row. For example, if the first value is 5
, the current row and the five rows before it are used in the computation. Negative values for rowsAfter_integer
compute the rolling function from rows preceding the current one.
rowBefore=0
generates the current row value only.rowBefore=-1
uses all rows preceding the current one.If
rowsAfter
is not specified, then the value0
is applied.If a
group
parameter is applied, then these parameter values should be no more than the maximum number of rows in the groups.
Usage Notes:
Required? | Data Type | Example Value |
---|---|---|
No | Integer | 4 |
Examples
ヒント
For additional examples, see Common Tasks.
Example - Rolling window functions
This example describes how to use rolling computational functions.
Functions:
Item | Description |
---|---|
ROLLINGSUM Function | Computes the rolling sum of values forward or backward of the current row within the specified column. |
ROLLINGAVERAGE Function | Computes the rolling average of values forward or backward of the current row within the specified column. |
ROWNUMBER Function | Generates a new column containing the row number as sorted by the |
Also:
Item | Description |
---|---|
MONTH Function | Derives the month integer value from a Datetime value. Source value can be a a reference to a column containing Datetime values or a literal. |
FLOOR Function | Computes the largest integer that is not more than the input value. Input can be an Integer, a Decimal, a column reference, or an expression. |
ROWNUMBER Function | Generates a new column containing the row number as sorted by the |
The following dataset contains sales data over the final quarter of the year.
Source:
Date | Sales |
---|---|
10/2/16 | 200 |
10/9/16 | 500 |
10/16/16 | 350 |
10/23/16 | 400 |
10/30/16 | 190 |
11/6/16 | 550 |
11/13/16 | 610 |
11/20/16 | 480 |
11/27/16 | 660 |
12/4/16 | 690 |
12/11/16 | 810 |
12/18/16 | 950 |
12/25/16 | 1020 |
1/1/17 | 680 |
Transformation:
First, you want to maintain the row information as a separate column. Since data is ordered already by the Date
column, you can use the following:
Transformation Name | |
---|---|
Parameter: Formulas | ROWNUMBER() |
Parameter: Order by | Date |
Rename this column to rowId
for week of quarter.
Now, you want to extract month and week information from the Date
values. Deriving the month value:
Transformation Name | |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | MONTH(Date) |
Parameter: New column name | 'Month' |
Deriving the quarter value:
Transformation Name | |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | (1 + FLOOR(((month-1)/3))) |
Parameter: New column name | 'QTR' |
Deriving the week-of-quarter value:
Transformation Name | |
---|---|
Parameter: Formulas | ROWNUMBER() |
Parameter: Group by | QTR |
Parameter: Order by | Date |
Rename this column WOQ
(week of quarter).
Deriving the week-of-month value:
Transformation Name | |
---|---|
Parameter: Formulas | ROWNUMBER() |
Parameter: Group by | Month |
Parameter: Order by | Date |
Rename this column WOM
(week of month).
Now, you perform your rolling computations. Compute the running total of sales using the following:
Transformation Name | |
---|---|
Parameter: Formulas | ROLLINGSUM(Sales, -1, 0) |
Parameter: Group by | QTR |
Parameter: Order by | Date |
The -1
parameter is used in the above computation to gather the rolling sum of all rows of data from the current one to the first one. Note that the use of the QTR
column for grouping, which moves the value for the 01/01/2017
into its own computational bucket. This may or may not be preferred.
Rename this column QTD
(quarter to-date). Now, generate a similar column to compute the rolling average of weekly sales for the quarter:
Transformation Name | |
---|---|
Parameter: Formulas | ROUND(ROLLINGAVERAGE(Sales, -1, 0)) |
Parameter: Group by | QTR |
Parameter: Order by | Date |
Since the ROLLINGAVERAGE
function can compute fractional values, it is wrapped in the ROUND
function for neatness. Rename this column avgWeekByQuarter
.
Results:
When the unnecessary columns are dropped and some reordering is applied, your dataset should look like the following:
Date | WOQ | Sales | QTD | avgWeekByQuarter |
---|---|---|---|---|
10/2/16 | 1 | 200 | 200 | 200 |
10/9/16 | 2 | 500 | 700 | 350 |
10/16/16 | 3 | 350 | 1050 | 350 |
10/23/16 | 4 | 400 | 1450 | 363 |
10/30/16 | 5 | 190 | 1640 | 328 |
11/6/16 | 6 | 550 | 2190 | 365 |
11/13/16 | 7 | 610 | 2800 | 400 |
11/20/16 | 8 | 480 | 3280 | 410 |
11/27/16 | 9 | 660 | 3940 | 438 |
12/4/16 | 10 | 690 | 4630 | 463 |
12/11/16 | 11 | 810 | 5440 | 495 |
12/18/16 | 12 | 950 | 6390 | 533 |
12/25/16 | 13 | 1020 | 7410 | 570 |
1/1/17 | 1 | 680 | 680 | 680 |