Skip to main content

ROLLINGMINDATE Function

Computes the rolling minimum of Date values forward or backward of the current row within the specified column. Inputs must be of Datetime type.

  • If an input value is missing or null, it is not factored in the computation. For example, for the first row in the dataset, the rolling minimum of previous values is undefined.

  • The row from which to extract a value is determined by the order in which the rows are organized based on the order parameter.

  • If you are working on a randomly generated sample of your dataset, the values that you see for this function might not correspond to the values that are generated on the full dataset during job execution.

  • The function takes a column name and two optional integer parameters that determine the window backward and forward of the current row.

    • The default integer parameter values are -1 and 0, which computes the rolling function from the current row back to the first row of the dataset.

  • This function works with the Window transform. See Window Transform.

For more information on a non-rolling version of this function, see MINDATE Function.

Wrangle vs. SQL: This function is part of Wrangle, a proprietary data transformation language. Wrangle is not SQL. For more information, see Wrangle Language.

Basic Usage

Column example:

rollingmindate(myDates)

Output: Returns the rolling minimum of all Datetime values in the myDates column.

Rows before example:

rollingmindate(myDates, 3)

Output: Returns the rolling minimum of the current row and the three previous row values in the myDates column.

Rows before and after example:

rollingmindate(myDates, 3, 2)

Output: Returns the rolling minimum of the three previous row values, the current row value, and the two rows after the current one in the myDates column.

Syntax and Arguments

rollingmindate(col_ref, rowsBefore_integer, rowsAfter_integer) order: order_col [group: group_col]

Argument

Required?

Data Type

Description

col_ref

Y

string

Name of column whose values are applied to the function

rowsBefore_integer

N

integer

Number of rows before the current one to include in the computation

rowsAfter_integer

N

integer

Number of rows after the current one to include in the computation

For more information on the order and group parameters, see Window Transform.

For more information on syntax standards, see Language Documentation Syntax Notes.

col_ref

Name of the column whose values are used to compute the function. Inputs must be Datetime values.

Multiple columns and wildcards are not supported.

Usage Notes:

Required?

Data Type

Example Value

Yes

String (column reference to Datetime values)

transactionDate

rowsBefore_integer, rowsAfter_integer

Integers representing the number of rows before or after the current one from which to compute the rolling function, including the current row. For example, if the first value is 5, the current row and the five rows before it are used in the computation. Negative values for rowsAfter_integer compute the rolling function from rows preceding the current one.

  • rowBefore=0 generates the current row value only.

  • rowBefore=-1 uses all rows preceding the current one.

  • If rowsAfter is not specified, then the value 0 is applied.

  • If a group parameter is applied, then these parameter values should be no more than the maximum number of rows in the groups.

Usage Notes:

Required?

Data Type

Example Value

No

Integer

4

Examples

提示

For additional examples, see Common Tasks.

Example - Rolling date functions

This example describes how to use rolling functions for Datetime values.

Functions:

Item

Description

ROLLINGMINDATE Function

Computes the rolling minimum of Date values forward or backward of the current row within the specified column. Inputs must be of Datetime type.

ROLLINGMAXDATE Function

Computes the rolling maximum of date values forward or backward of the current row within the specified column. Inputs must be of Datetime type.

ROLLINGMODEDATE Function

Computes the rolling mode (most common value) forward or backward of the current row within the specified column. Input values must be of Datetime data type.

Source:

The following table contains an unordered list of orders:

myDate

prodId

orderDollars

2020-03-13

p001

1445

2020-03-06

p002

712

2020-03-16

p003

1374

2020-03-23

p001

1675

2020-04-09

p002

1005

2020-08-09

p003

984

2020-05-02

p001

1395

2020-06-14

p002

1866

2020-07-16

p003

824

2020-09-02

p001

1785

2020-08-31

p002

697

2020-10-22

p003

1513

2020-03-17

p001

768

2020-03-21

p002

1893

2020-03-23

p003

1122

2020-04-06

p001

805

2020-05-09

p002

1752

2021-01-09

p003

616

2020-08-18

p001

1563

2020-09-12

p002

730

2020-10-04

p003

587

2021-02-15

p001

1979

2021-02-22

p002

134

2021-03-14

p003

938

Transformation:

You can use the following Window transformation to calculate the rolling minimum, maximum, and mode dates for the last five orders for each product identifier:

Transformation Name

Window

Parameter: Formula1

ROLLINGMINDATE(orderDate, 4, 0)

Parameter: Formula2

ROLLINGMAXDATE(orderDate, 4, 0)

Parameter: Formula3

ROLLINGMODEDATE(orderDate, 4, 0)

Parameter: Group by

prodId

Parameter: Order by

prodId

You can use the following transformation to rename the generated window columns:

Transformation Name

Rename columns

Parameter: Option

Manual rename

Parameter: Column

window1

Parameter: New column name

rollingMinDate

Parameter: Parameter: Column

window2

Parameter: New column name

rollingMaxDate

Parameter: Parameter: Column

window3

Parameter: New column name

rollingModeDate

Results:

orderDate

prodId

orderDollars

rollingMinDate

rollingMaxDate

rollingModeDate

3/16/20

p003

1374

3/16/20

3/16/20

3/16/20

8/9/20

p003

984

3/16/20

8/9/20

3/16/20

7/16/20

p003

824

3/16/20

8/9/20

3/16/20

10/22/20

p003

1513

3/16/20

10/22/20

3/16/20

3/23/20

p003

1122

3/16/20

10/22/20

3/16/20

1/9/21

p003

616

3/23/20

1/9/21

3/23/20

10/4/20

p003

587

3/23/20

1/9/21

3/23/20

3/14/21

p003

938

3/23/20

3/14/21

3/23/20

3/13/20

p001

1445

3/13/20

3/13/20

3/13/20

3/23/20

p001

1675

3/13/20

3/23/20

3/13/20

5/2/20

p001

1395

3/13/20

5/2/20

3/13/20

9/2/20

p001

1785

3/13/20

9/2/20

3/13/20

3/17/20

p001

768

3/13/20

9/2/20

3/13/20

4/6/20

p001

805

3/17/20

9/2/20

3/17/20

8/18/20

p001

1563

3/17/20

9/2/20

3/17/20

2/15/21

p001

1979

3/17/20

2/15/21

3/17/20

3/6/20

p002

712

3/6/20

3/6/20

3/6/20

4/9/20

p002

1005

3/6/20

4/9/20

3/6/20

6/14/20

p002

1866

3/6/20

6/14/20

3/6/20

8/31/20

p002

697

3/6/20

8/31/20

3/6/20

3/21/20

p002

1893

3/6/20

8/31/20

3/6/20

5/9/20

p002

1752

3/21/20

8/31/20

3/21/20

9/12/20

p002

730

3/21/20

9/12/20

3/21/20

2/22/21

p002

134

3/21/20

2/22/21

3/21/20