Math Functions
A math function performs mathematical calculations. Use Math functions with Numeric data types only.
ABS
ABS(x)
: Returns the absolute value of a number (x). It's the distance between 0 and a number. The value is always positive.
Example
ABS(32)
returns 32.ABS(–32)
returns 32.
ACOS
ACOS(x)
: Returns the arccosine, or inverse cosine, of a number (x). The arccosine is the angle whose cosine is (x).
The returned angle is given in radians in the range 0 (zero) to pi.
The number (x) must be between -1 and 1.
Example
ACOS(0.5)
returns 1.047198.
ASIN
ASIN(x)
: Returns the arcsine, or inverse sine, of a number (x). The arcsine is the angle whose sine is (x).
The returned angle is given in radians in the range -pi/2 to pi/2.
The number (x) must be between -1 and 1.
Example
ASIN(0.5)
returns 0.523599.
ATAN
ATAN(x)
: Returns the arctangent, or inverse tangent, of a number (x). The arctangent is the angle whose tangent is (x). The returned angle is given in radians in the range -pi/2 to pi/2.
Example
ATAN(0.8)
returns 0.674741.
ATAN2
ATAN2(y, x)
: Returns the arctangent, or inverse tangent, of y and x (Arc - Tangent of (y/x)).
Example
ATAN2(4, –3)
returns 2.2143.
Average
Average(n1, ...)
: Returns the average of a list of numbers. NULL values are treated as 0 and taken into consideration in the calculation of the average value.
Example
Average(20,30,55)
returns 35 since [(20+30+55)/3]= 35.
AverageNonNull
AverageNonNull(n1, ...)
: Returns the average of a list of numbers. Null values are excluded from the calculation. The calculation only works with Numeric data types.
Note
Please note that the AverageNonNull function works differently than the above Average(n1, …) function.
AverageNonNull
excludes null values from the average calculation. This is the same behavior as the Average Action available via the Summarize tool.Average
treats null values as 0's.
Because of this, the 2 functions can return different results depending on the input.
Example
AVERAGENONNULL(Null, 1, 1)
returns 1 (vs. 0.666666666666667 with the Average function, which includes Null as 0).AVERAGENONNULL(Null, 1, 2, 3)
returns 2 (vs. 1.5 with the Average function).AVERAGENONNULL(Null, 1, 2, 2)
returns 1.666666666666667 (vs. 1.25 with the Average function).AVERAGENONNULL(Null, 1.2, 2.345, 3.456789)
returns 2.33392966666667 (vs. 1.75044725 with the Average function).AVERAGENONNULL(Null, 1.2, 2.345, 3.456789, Null)
returns 2.33392966666667 (vs. 1.4003578 with the Average function).AVERAGENONNULL(Null, Null, Null)
returns Null. When all values are Null, the results are Null.
CEIL
CEIL(x, [mult])
: Returns a numeric value (x) raised to the lowest multiple of (mult) that is greater than or equal to x. The (mult) parameter must be a number greater than 0. If (mult) is not specified, the function returns the smallest integer greater than or equal to (x).
Note
CEIL(x)
changes double to Int64 value if the value is within INT64 range, else it returns double.
Example
CEIL(9.567)
returns 10 (if we don't provide a parameter, the function defaults to return the smallest integer greater than or equal to x).CEIL(123.456, 10)
returns 130 (rounds up to the nearest multiple of 10).CEIL(–110, 100)
returns -100 (rounds up to the nearest multiple of 100).CEIL(123, Null)
returns Null (If there is a null in any parameter, the result is Null).CEIL(9.123, 0.01)
returns 9.13 (rounds up to the nearest multiple of .01).CEIL(7, 5)
returns 10 (rounds up to the nearest multiple of 5).
COS
COS(x)
: Returns the cosine of a given angle (x). x must be in radians.
Example
COS(1)
returns 0.54030230586814.
COSH
COSH(x)
: Returns the hyperbolic cosine of a number (x).
Example
COSH(1)
returns 1.54308063481524.
DISTANCE
DISTANCE(from_Lat,from_Lon, to_Lat, to_Lon)
: Returns the distance from (lat1,Lon1) to (lat2,lon2).
Example
DISTANCE(42, –90, 43, –80)
returns a value of 513.473706 miles.
EXP
EXP(x)
: Returns the constant e raised to the power of an exponent (x) (e^x).
FACTORIAL
FACTORIAL(x)
: Returns the factorial of a numeric value (x) via the (n! = n x (n–1) x … x 1) calculation. For example, the factorial of 4 is calculated as such: 4! = 4 x 3 x 2 x 1 = 24.
This function accepts positive integers only.
This function doesn't support decimal numbers.
Due to numeric data type size limitations, the maximum allowable value for (x) in the Factorial function is 170.
Note
While the mathematical representation of factorial is commonly denoted as x!, the Alteryx function only recognizes factorial via Factorial(x).
Example
FACTORIAL(0)
returns 1.FACTORIAL(1)
returns 1.FACTORIAL(Null)
returns Null.FACTORIAL(5)
returns 120 (5 * 4 * 3 * 2 * 1).FACTORIAL(8)
returns 40320 (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1).
FLOOR
FLOOR(x, [mult])
: Returns a numeric value (x) lowered to the highest multiple of (mult) that is less than or equal to x. The (mult) parameter must be a number greater than 0. If (mult) is not specified, the function returns the largest integer less than or equal to (x), as shown in the first example below.
Note
FLOOR(x)
changes double to Int64 value if the value is within INT64 range, else it returns double.
Example
FLOOR(4.567)
returns 4 (if you don't provide a parameter, the function defaults to return the largest integer less than or equal to x).FLOOR(4.567, 0.01)
returns 4.56 (rounds down to the nearest hundredth).FLOOR(–15.75, 0.1)
returns –15.8 (rounds down to the nearest tenth).FLOOR(Null, 10)
returns Null (If there is a null in any parameter, the result is Null).FLOOR(13, 5)
returns 10 (rounds down to 10, which is the nearest multiple of 5 that is less than or equal to 13).
LOG
LOG(x)
: Returns the natural logarithm of a number (x). x should be a positive number.
Example
LOG(1)
returns 0.LOG(14)
returns 2.639057.
LOG10
LOG10(x)
: Returns the base-10 logarithm of a number (x). x should be a positive number.
Example
LOG10(1)
returns 0.LOG10(14)
returns 1.146128.
Median
Median(...)
: Calculates the median of 1 or more (possibly unsorted) values.
Example
Median (5, 4, 3, 7, 6)
returns 5.
Mod
Mod(n,d)
: Modulo of a number (n) divided by a number (d) (integer operation).
The Modulo operation finds the remainder of 1 integer (n) divided by a divisor integer (d).
If (n) is positive, the result is positive.
If (n) is negative, the result is negative.
If you use decimal values, the decimal is truncated. This can result in a "Divided by 0" error if the divisor is a decimal less than 1.
Example
MOD(6,4)
returns 2.MOD(6,–4)
returns 2.MOD(–6,4)
returns –2.MOD(–6,–4)
returns –2.MOD(6,.4)
returns [Null].
PI
PI()
: Returns the value of the constant PI to 15 digits of accuracy.
Example
PI()
returns 3.141593.
POW
POW(x, e)
: Returns a number (x) raised to the (e) power.
Example
POW(2, 3)
is equivalent to 23 and returns 8.
RAND
RAND()
: Returns a random number greater than or equal to 0 and less than 1.
Example
RAND()
returns a random number like 0.256.
RandInt
RandInt(n)
: Returns a random integer between 0 and the specified parameter (n).
Example
RandInt(10)
returns 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.RandInt(5000)
returns a random whole number between 0 and 5000, like 741.
Round
Round(x, mult)
: Returns a number (x) rounded to the nearest multiple of (mult).
Note
The rounding is done after dividing the number (x) by mult. If that result is negative (and is exactly an integer plus a half), the function rounds up instead of rounding away from zero. After it rounds to an integer, it multiplies again by the mult.
Example
Round(55.34, 2)
returns a value of 56.Round(39.88, 10)
returns a value of 40.Round(41.1, 10)
returns a value of 40.Round(1.25, 0.1)
returns a value of 1.3.Round(1.227, 0.01)
returns a value of 1.23.Round(–25, –10)
returns a value of -30.Round(–25, 10)
returns a value of –20.Round(–1.5, 1)
returns a value of –1.Round(15, 10)
returns a value of 20.Round(–15, 10)
returns a value of –10.Round(15, –10)
returns a value of 10.Round(–15, –10)
returns a value of –20.
SIN
SIN(x)
: Returns the sine of a given angle (x). x must be in radians.
Example
SIN(90)
returns 0.893996663600558.
SINH
SINH(x
): Returns the hyperbolic sine of a number (x).
SmartRound
SmartRound(x)
: Returns a number (x) rounded to the nearest multiple of a value determined dynamically based on the size of (x).
SQRT
SQRT(x)
: Returns the square root of a number (x).
Example
SQRT(100)
returns a value of 10.
TAN
TAN(x)
: Returns the tangent of a given angle (x). x must be in radians.
Example
TAN(1)
returns 1.5574077246549.
TANH
TANH(x)
: Returns the hyperbolic tangent of a number (x).
Example
TANH(90)
returns 1.