The NULL
function generates null values.
The
ISNULL
function tests for the presence of null values. See ISNULL Function.Null values are different from missing values.
To test for missing values, see ISMISSING Function.
Wrangle vs. SQL: This function is part of Wrangle, a proprietary data transformation language. Wrangle is not SQL. For more information, see Wrangle Language.
null()
Output: Returns a null value.
if((isnull(FirstName) || isnull(LastName)), null(), 'not null') as:'status'
Output: If there are null values in either the FirstName
or LastName
column, generate a null value in the status
column. Otherwise, the returned value is not null
.
There are no arguments for this function.
Astuce
For additional examples, see Common Tasks.
This example illustrates how various type checking functions can be applied to your data.
Functions:
Item | Description |
---|---|
VALID Function | Tests whether a set of values is valid for a specified data type and is not a null value. |
ISMISMATCHED Function | Tests whether a set of values is not valid for a specified data type. |
ISMISSING Function | The |
ISNULL Function | The |
NULL Function | The |
Source:
Some source values that should match the State and Integer data types:
State | Qty |
---|---|
CA | 10 |
OR | -10 |
WA | 2.5 |
ZZ | 15 |
ID | |
4 |
Transformation:
Invalid State values: You can test for invalid values for State using the following:
Transformation Name | |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | ISMISMATCHED (State, 'State') |
The above transform flags rows 4 and 6 as mismatched.
Note
A missing value is not valid for a type, including String type.
Invalid Integer values: You can test for valid matches for Qty using the following:
Transformation Name | |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | (ISVALID (Qty, 'Integer') && (Qty > 0)) |
Parameter: New column name | 'valid_Qty' |
The above transform flags as valid all rows where theQty
column is a valid integer that is greater than zero.
Missing values: The following transform tests for the presence of missing values in either column:
Transformation Name | |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | (ISMISSING(State) || ISMISSING(Qty)) |
Parameter: New column name | 'missing_State_Qty' |
After re-organizing the columns using the move
transform, the dataset should now look like the following:
State | Qty | mismatched_State | valid_Qty | missing_State_Qty |
---|---|---|---|---|
CA | 10 | false | true | false |
OR | -10 | false | false | false |
WA | 2.5 | false | false | false |
ZZ | 15 | true | true | false |
ID | false | false | true | |
4 | false | true | true |
Since the data does not contain null values, the following transform generates null values based on the preceding criteria:
Transformation Name | |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | ((mismatched_State == 'true') || (valid_Qty == 'false') || (missing_State_Qty == 'true')) ? NULL() : 'ok' |
Parameter: New column name | 'status' |
You can then use the ISNULL
check to remove the rows that fail the above test:
Transformation Name | |
---|---|
Parameter: Condition | Custom formula |
Parameter: Type of formula | Custom single |
Parameter: Condition | ISNULL('status') |
Parameter: Action | Delete matching rows |
Results:
Based on the above tests, the output dataset contains one row:
State | Qty | mismatched_State | valid_Qty | missing_State_Qty | status |
---|---|---|---|---|---|
CA | 10 | false | true | false | ok |